
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
Published online 11 February 2009 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1409

Accessing RDF(S) data
resources in service-based Grid
infrastructures‡

Miguel Esteban Gutiérrez1, Isao Kojima2,∗,†, Said Mirza Pahlevi2,
Óscar Corcho1 and Asunción Gómez-Pérez1

1Ontology Engineering Group, Departamento de Inteligencia Artificial, Facultad
de Informática, Universidad Politécnica de Madrid, Boadilla del Monte, 28660,
Madrid, Spain
2Information Technology Research Institute, National Institute of Advanced
Industrial Science and Technology Tsukuba, 305-8568, Japan

SUMMARY

We describe the results of the RDF(S) activity within the Open Grid Forum (http://www.ogf.org) (OGF)
Database Access and Integration Services (DAIS) Working Group (http://forge.gridforum.org/projects/
dais-wg) whose objective is to develop standard service-based grid access mechanisms for data expressed
in RDF and RDF Schema. We produce two specifications, focused on the provision of SPARQL querying
capabilities for accessing RDF data and a set of RDF Schema ontology handling primitives for creating,
retrieving, updating, and deleting RDF data. In this paper we present a set of use cases that justify this
work and an overview of these specifications, which will enter in editorial process at OGF25. We conclude
by outlining the future work that will be made in the context of this standardization process. Copyright
© 2009 John Wiley & Sons, Ltd.

Received 15 March 2008; Revised 4 September 2008; Accepted 1 November 2008

KEY WORDS: database access and integration; OGSA; semantic web; RDF

∗Correspondence to: Isao Kojima, Information Technology Research Institute, National Institute of Advanced Industrial
Science and Technology Tsukuba, 305-8568, Japan.

†E-mail: kojima@ni.aist.go.jp
‡Note: All URLs in this paper are as of 07/22/2008.

Contract/grant sponsor: AIST-SOA
Contract/grant sponsor: The Grant-in-Aid Scientific Research(A); contract/grant number: KAKENHI #20240010
Contract/grant sponsor: EU FP6 OntoGrid; contract/grant number: FP6-511513
Contract/grant sponsor: Marie Curie Reintegration Grant WS-DAIOnt-OWL: OWL Ontology Access in Grid Systems;
contract/grant number: FP6-2004-Mobility-11, ref #046415

Copyright q 2009 John Wiley & Sons, Ltd.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148653587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1030 M. ESTEBAN GUTIÉRREZ ET AL.

1. INTRODUCTION

1.1. Motivation and background

The next generation of grid technologies need to be able to virtualise the notion of distributed
computation, storage, and communication over unlimited resources [1]. One of the major challenges
to overcome is that related to the openness of the grid, that is, the fact that any grid node may provide,
at any point in time, new services, functions, or, in general, new resources that are unknown a priori
to its clients or other grid nodes. In order to incorporate these new elements into other applications
or middleware, or to cooperate with them, not only do they have to be made available and accessible
in a standardized way, but also visible [2]. Metadata usually plays an important role in this equation.
One usual means to represent this type of metadata is through the use of vocabularies that are

defined, agreed, and shared by a community; hence, ensuring some degree of interoperability across
the applications and/or middleware that exploits this metadata. Examples of resource description
vocabularies are GLUE [3], the forthcoming Network Mark-up Language (NML) [4], the OGSA
Reference Model [5], the DMTF Common Information Model (CIM) [6], etc. Through the use of
these vocabularies, communities aim at tackling challenges such as resource discovery and selection
(aka matchmaking), brokering, monitoring, accounting, etc.
These vocabularies have been traditionally expressed with XML Schema [7–9], which defines

both the structure of resource descriptions and the set of datatypes needed for such structure.
Hence, actual resource descriptions are XML documents that follow the corresponding schemata.
This approach is enough in closed environments where the types of resources or the information
that can be described are known a priori. However, in open environments where new elements
can be incorporated dynamically this approach is too rigid: in general it proves to be difficult to
extend existing vocabularies without changing the corresponding schemata and without having a
negative effect over the systems that are able to consume and produce XML documents according
to such schemata. For instance, imagine that in the CIM Model we need to refer to new Services
different from the predefined TimeService (e.g. an authentication service). This modification would
require extending the CIM schemata with a new XML element CIM AuthenticationService together
with the associated complex types required for defining such element according to CIM’s schemata
development guidelines (i.e. the base complex type CIM AuthenticationService Type).
Besides, in many cases vocabularies contain taxonomies of terms (e.g. in GLUE there are several

types of policies—ManagementPolicy, AccessPolicy, and MappingPolicy—and all of them inherit
characteristics of the Policy element). However, in the actual XML renderings of these vocabularies,
these taxonomies disappear and consequently systems using those descriptions are in charge of
manually performing the necessary inferences when processing the information contained in the
XML documents. For instance, if we need to retrieve information about policies in GLUE, our
system needs to look for three different types of elements in the XML document—those related
to management policies, access policies, and mapping policies—and this has to be hardcoded.
Furthermore, if an element in a vocabulary needs to be extended (e.g. adding a new attribute to
CIM Services), in current XML Schema representations all its descendants have to be modified
to include this new attribute.
The Resource Description Framework (RDF) is a set of recommendations of the WorldWideWeb

Consortium for representing metadata that includes two main representation languages: RDF [10]

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



ACCESSING RDF(S) DATA RESOURCES 1031

and RDF Schema [11], whose combination is usually known as RDF(S). This framework allows
overcoming the aforementioned problems, namely the lack of flexibility and extensibility of resource
description vocabularies and the lack of support for the representation and use of taxonomies within
the vocabularies. In fact, there are already several ongoing efforts in the Grid community to embrace
this framework (Grid Ontology§ [12], and of Open Grid Forum (OGF) groups that are considering
RDF(S): GLUE, NML, etc.).
On to other matters, RDF(S) is also being used to represent large amounts of data in a num-

ber of applications worldwide. For example, the UniProt Protein Database contains 262 million
RDF triples¶ , the IngentaConnect bibliographic metadata storage contains over 200 million RDF
triples‖, and the CombeChem application manages more than 80 million RDF triples in multiple
databases∗∗.
For all these reasons, there is a need to work on the provision of a standard, scalable, and robust

access mechanism for distributed RDF(S) data resources. The key to realizing this goal is to provide
a standard RDF(S) data access mechanism based on grid computing technologies, which is one of
the main goals of our activity within the OGF DAIS working group.

1.2. Activity history and approach

The DAIS RDF(S) activity has its origins in several presentations made at the 3rd GGF Semantic
Grid Workshop and the DAIS for RDF birds of a feather session held at GGF16, in February 2006
[13–15]. Most of these presentations showed that RDF(S) was commonly used in middleware and
application development.
As a result, the Database Access and Integration Services Working Group (DAIS-WG) chartered

an activity to develop an RDF(S) access specification as part of its data access specifications port-
folio, composed at that time by the WS-DAI core specification [16], the WS-DAIR realization††
for relational data access [17], and the WS-DAIX realization for XML data access [18]. The
objective of this activity was to define a mechanism, WS-DAI-RDF(S), that provides a set of
standard access interfaces to RDF(S) data resources, compliant with the principles and practices
defined by the Open Grid Services Architecture (OGSA) [5], and with the guidelines of the data
access and integration facilities defined by the WS-DAI core specification. This activity is part
of the more general activity to develop OGSA’s data architecture [19]. Figure 1 depicts the cur-
rent DAIS WG Specification portfolio and shows how the new WS-DAI-RDF(S) realization fits
within it.
The WS-DAI-RDF(S) realization distinguishes two types of access to RDF(S) data resources:

programmatic and declarative. The former defines a set of fine-grained operations for accessing
RDF(S) data resources exploiting the semantics of the RDF Schema model and the latter relies on

§ In fact, the Grid Ontology described in [12] is expressed in a more expressive language, OWL, which is built on top of
RDF(S), but this is out of the scope of this paper.
¶UniProt Protein Database (http://dev.isb-sib.ch/projects/uniprot-rdf/).
‖IngentaConnect (http://www.ingentaconnect.com).
∗∗CombeChem (http://www.combechem.org).
††A realization is an extension of the WS-DAI core specification, aimed at providing an specific access mechanism for a

particular type of data resource.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



1032 M. ESTEBAN GUTIÉRREZ ET AL.

WS-DAIR

Relational Access

WS-DAIX

XML Access

Guideliness for developing
realizations:
- Data access patterns
- Message patterns

- Ontology-based access
- Query-based access

WS-DAI
Data Service Model

Base Faults
Core Interfaces, Messages and Properties

WS-DAI-RDF(S)

RDF(S) Access

Figure 1. The current data access and integration services portfolio and the new RDF(S) realization.

the usage of the SPARQL RDF query language [20] for expressing declaratively the data that is to
be retrieved.
As a result of the work performed in this activity, there are currently one informational document

that includes background information and motivational scenarios, one glossary of terms document,
and two specification documents, one for each of the types of access.
The remainder of the paper is organized as follows. Section 2 introduces a set of motivational

scenarios which further justify the need for RDF(S) access mechanisms. Section 3 describes the
internals of the WS-DAI-RDF(S) realization, covering both the declarative and programmatic spec-
ifications. Section 4 outlines our current work plan to conclude the development of the realization,
and Section 5 draws conclusions.

2. MOTIVATIONAL SCENARIOS

In this section we present several scenarios that demonstrate the need and usefulness of RDF(S)
to describe data and resource metadata and of the RDF(S) data access methods developed by this
activity to manage the access to it. Other use cases that show the usefulness of RDF(S) data access
protocols in different types of applications can be found in [21]. In this section, we have focused
on grid-specific use cases.
The first scenario shows that RDF(S) can be used to enable resource matchmaking in a virtual

organization, where RDF(S) is used to describe the resources offered by each organization, and
how RDF(S) access methods (either programmatic or declarative) enable this task.
The second scenario shows how the resources in a virtual organization, such as the one formed

in the aforementioned matchmaking scenario, can be monitored and annotated in order to maintain
up-to-date metadata about them, so that future matchmaking tasks can be performed accurately.
Finally, the third scenario shows the importance of using a standard access method in a large

scale distributed RDF database.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



ACCESSING RDF(S) DATA RESOURCES 1033

2.1. Grid resource matchmaking in virtual organizations

Motivation. A grid may include a large number of resources with various intrinsic capabilities
distributed across different organizations. The explicit representation of resource metadata, with its
adequate exploitation, plays an important role in facilitating effective grid resource discovery and
selection, as shown in [22–28]. This is a key aspect considered in semantic grid information system
architectures and middlewares such as S-MDS [14], S-OGSA [29], GRIMOIRES [30], S-SRB [31],
CaBIG data access services [32], etc.
Goal. Given the repositories and services that store metadata from different types of resources,

the goal of a matchmaker is to discover and select appropriate resources for a given task. This can
be done by querying the available metadata –either using a high-level RDF query language such
as SPARQL or using a specialized data access API– and ordering the matched resources based on
specific ordering criteria, i.e. class subsumption relationships.
Requirement analysis. Each semantic grid information system may collect resource information

from different sources of the grid, and maintain the resource metadata using their own proprietary
mechanisms. Despite the differences, the metadata representation used by these systems is the
same, that is, it is based on the RDF(S) model. Besides, the metadata could be created using
the same RDF schema. In this scenario, it is also desirable to retrieve resource metadata from
multiple available systems, so that the final user may obtain more complete information about
resources, as the lack of information in one system might be overcome with the information of
others.
Use case. Figure 2 shows the aforementioned matchmaking scenario implemented using the

SPARQL query language. In this scenario, RDF(S) data sources are exposed through RDF(S) data
access services, which support the WS-DAI-RDF(S) query-based access mechanism. A requester
sends a resource request to the matchmaker, specifying the resource requirements as a SPARQL
query (1). The matchmaker forwards the query to existing metadata information systems, which
also support the same querying capabilities (2, 4, 6, 8). After receiving the query results (3, 5, 7, 9),
the matchmaker merges the results and forwards them to the consumer (10). Similar work has been
proposed and implemented in a semantic web environment [33].

2.2. Grid resource annotation and monitoring

Motivation. As previously mentioned, a grid can host a large number of resources with hetero-
geneous characteristics and capabilities distributed across different organizations, hosting various
semantic grid applications (i.e. [34]), and architectures (see [29,35]) aimed at facilitating the dis-
covery and selection of the resources available by using metadata of these resources. Providing
the means for maintaining valid and up-to-date metadata is fundamental for carrying out accurate
resource matchmaking in this scenario.
Goal. Given a set of agents that monitor available resources (which provide monitoring capabili-

ties, i.e. INFOD [36] implemented for notifying changes in resource status) in a virtual organization,
checking their characteristics, capabilities, and status; and given a set of repositories and services
that store metadata and the vocabularies that provide the semantics for these metadata; the goal is
to provide the means for creating the metadata using an adequate monitoring vocabulary, and for
maintaining the metadata stored in the repositories.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



1034 M. ESTEBAN GUTIÉRREZ ET AL.

Figure 2. Grid resource matchmaking using WS-DAI-RDF(S) data access mechanisms.

Requirement analysis. The maintenance of the metadata implies browsing, updating, and deleting
existing metadata already stored in the repositories. Therefore, it is necessary to have the means
for both reading and writing the metadata. Furthermore, as both the annotation process and the
metadata managed might be very complex and long, deleting and generating all the metadata about
a resource every time a change happens may not be feasible. Thus, providing fine-grained operations
for operating over the metadata is worthwhile.
Use case. Figure 3 schematically depicts this monitoring and annotation scenario. RDF(S) data

access services provide a standard access method for the RDF(S) data resources (metadata reposi-
tories and vocabulary repositories). Monitoring agents connect to the resources’ monitoring facil-
ities (1). When a change in the resource is detected and notified to the agent (2), it browses the
vocabulary repositories to check which elements are affected by the specific change (elements that
are obsolete, elements that may be out-of-date, and new elements that may also have to be added) (3).
After determining the set of changes that have to be made in the metadata repositories, the agent
deletes the obsolete parts of the affected metadata (4), updates those parts that are out-of-date (5),
and creates any new part that is required (6).

2.3. Distributed RDF storage for ubiquitous objects

Motivation. Ubiquitous code (ucode) [37] is a unique id in the form of 128-bit binary piece of
data assigned to real-world objects for identification purposes among multiple computer systems.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



ACCESSING RDF(S) DATA RESOURCES 1035

suscribe

RDF(S)
Data

Resource
Metadata
Repository

RDF(S)
Data Access

Service

Ontology
Access

RDF(S)
Data

Resource
Ontology

Repository

RDF(S)
Data Access

Service

Ontology
Access

Grid
Resource

Monitoring
Facilities

Monitoring
Agent

Grid
Resource

Monitoring
Facilities

.

.

.

1

find affected
elements3

delete obsolete
metadata4

update out-of-date
metadata

create new
metadata6

notify
changes2

5

Figure 3. Grid resource monitoring and annotation using WS-DAI-RDF(S) data access mechanisms.

It is stored as a ucode tag attached to an identified object; this is often physically implemented
as an RFID tag. A relation between objects (ucodes), which is called a ucode relation (UCR), is
modeled as a triple, consisting of subject, predicate, and object. For example, this apple (subject
ucode) is produced by (predicate relation ucode) the JA Tsugaru-Minami Farm (object ucode). The
triples, which are usually large in number, are generally stored in a wide area distributed database
(UCR database). There have been efforts to implement UCR databases using RDF databases which
support SPARQL‡‡.
Goal. Given such RDF databases, the goal is to provide a robust and scalable federated database

that supports seamless access over the set of heterogeneous RDF databases.
Requirement analysis. UCR triples are stored in distributed UCR databases. Furthermore, each

UCR database usually contains a large number of triples. Processing a user query usually involves
accessing several databases, and the integration of the retrieved data. This may also involve large data
transfers between database nodes for processing join queries. Thus, providing a query processing
agent that provides a seamless and efficient access to the distributed database is crucial.
Use case. Figure 4 shows an overview of a grid-based distributed RDF database, which federates

various (UCR) RDF databases. The service-based SPARQL query interfaces provide a uniform

‡‡Nihon Unisys SSDB (http://dev.tyzoh.jp/trac/semi-structured-db/).

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



1036 M. ESTEBAN GUTIÉRREZ ET AL.

RFID
RFID

RFID

RDASRDAS

RDASRDAS
RDASRDAS

RDASRDAS
SA

SA
SA

SA

The GridThe Grid

UCR
RDF-DB

UCR
RDF-DB

UCR
RDF-DB

Distributed
Processing

SPARQL

RFID
RFIDRFID

RFID RDASRDAS

RDASRDAS
RDASRDAS

RDAS

RDAS: RDF(S) Data Access Service
SA: SPARQLAccess

SA

SA
SA

RFID

UCR
RDF-DBRDAS

SA

Figure 4. Large-scale distributed RDF database.

accessmechanism to the heterogeneous RDF databases for distributed query processing. The indirect
data access of the proposed specification (SPARQLAccess) is crucial to distributed query processing,
as was the case in OGSA-DAI-RDF§§ . Another attempt to distributed SPARQL query processing
is described in [38].

3. THE WS-DAI RDF(S) REALIZATION

The WS-DAI-RDF(S) realization is aimed at providing specialized data access mechanisms for
RDF(S) data resources. In this context, an RDF(S) data resource is a data source or sink that is
based on the RDF data model, together with its associated management infrastructure that may
exhibit RDF(S) model-based views.
As we presented before, this new realization distinguishes two types of access to RDF(S) data

resources: declarative and programmatic. The former relies on the usage of the SPARQL RDF
query language for expressing declaratively the data that are to be retrieved, while the latter defines
a set of fine-grained operations for accessing RDF(S) data resources exploiting the semantics of
the RDF Schema model.
These approaches have been implemented in two different specifications (WS-DAI-RDFS Query-

ing [39] and WS-DAI-RDF(S) Ontology [40]). Each specification addresses a single approach, and

§§OGSA-DAI-RDF (http://wiki.dbgrid.org/index.php?OGSA-DAI-RDF).

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



ACCESSING RDF(S) DATA RESOURCES 1037

provides the set of interfaces, operations, and properties required for dealing with RDF(S) data
resources according to the approach followed. The remainder of the section presents these specifi-
cations in detail.

3.1. Accessing RDF(S) using a query-based approach

3.1.1. Foundations

One challenge of data management in a distributed environment is that RDF data are created in a
bottom-up manner. That is, each application creates its own RDF data and stores the data in their
own storage space, resulting in RDF data being stored in a distributed environment and managed
locally, as was shown in the example in Section 2.3. In such an environment it is important to
facilitate efficient data integration by providing common interfaces.
The objective of the querying specification here is to provide a set-oriented declarative access

method to get the data set in which the user is interested. Our specification does not specify its
own access language for RDF(S) data resources. Instead, it acts as a channel for RDF queries
and updates languages to be conveyed to the appropriate data resources, for instance RDF(S) data
resources or data resources that support RDF-type queries. The query language supported is the
W3C recommended SPARQL [20].
In addition to the SPARQL query language, the W3C has recommended the following related

standard specifications to access remote/distributed RDF data using SPARQL:

• SPARQL Query Results XML Format [41] is an XML format for the variable binding and
boolean result format provided by the SPARQL query language.

• SPARQL Protocol for RDF [42] is a protocol for conveying SPARQL queries from query
clients to SPARQL query processors.

The approach taken here in theWS-DAI-RDF(S) Querying specification is to keep as much compati-
bility with the existingW3C standards while satisfying theWS-DAI core specification. As described
later, the WS-DAI-RDF(S) Querying specification fully supports the SPARQL query language and
its associated result format [41]. In addition, the core WS-DAI provides useful grid-specific func-
tionalities such as indirect access. These functionalities are not supported by any W3C standard
and supporting them as a minimum extension to the existing W3C standards is very important.

3.1.2. Interfaces

3.1.2.1. Direct access interfaces. Direct access to a data access service allows the results of a
request to be delivered to the consumer directly in the response message. This is one of two
data access modes, provided by the WS-DAI core model. To cater for this mode of operation the
following interface is defined for accessing an RDF(S) data resource using SPARQL:

• SPARQLAccess allows the evaluation of SPARQL queries across a collection of RDF graphs.
This interface supports SPARQL requests to be made to an RDF(S) data resource.

In the example shown in Figure 5, a consumer uses the SPARQLExecute message to submit a
RequestDocument in a format defined in [42]. The associated SPARQLQueryExecuteResponse

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



1038 M. ESTEBAN GUTIÉRREZ ET AL.

SPARQL
Data Access 

Service

SPARQL
Description

SPARQLAccess

Consumer

)
)

SPARQLExecuteResponse(
Dataset(

DatasetFormatURI,
DatasetData

)

SPARQLExecute(
DataResourceAbstractName
DatasetDataFormatURI,
SPARQLQueryRequest

,

Figure 5. Direct access using the SPARQLAccess interface.

message will contain a set of query result items. Message patterns and XML data structure of the
interface are defined based on W3C standards described above.
It is worth mentioning that SPARQL provides only retrieval functionality without update capa-

bilities. In our querying specification, we do not define any specific update language and leave this
problem open to future discussion in W3C. However, our WS-DAI-RDF(S) querying framework
could be extended to encompass any new or emerging RDF query/update standards by employing
the patterns established in the WS-DAI core specification.
Another important point is that SPARQL is a data-oriented query language that queries infor-

mation held in the RDF data model or RDF graph (i.e. it does not support RDF schema-based
reasoning). For example, SPARQL without reasoning could not get all subclasses of a class since it
does not support the transitive closure of class–subclass relationships. The semantics given by RDF
Schema are not supported since the solution to the query is obtained by just matching graph patterns
to subgraphs of the target RDF graphs. The lack of this important feature has forced most RDF
database products to provide reasoning functions for SPARQL implemented in various ways¶¶ .
In line with this, we are currently considering the provision of a SPARQL query interface which

supports reasoning. These reasoning capabilities would be provided as optional features, so that
maximum compatibility with the existing SPARQL related W3C standards is maintained. Ongoing
discussion on how to provide the reasoning functions is presented in Section 5.

3.1.2.2. Indirect access interfaces. Indirect access is another access pattern that the WS-DAI core
model supports. This allows data, usually the result of a query, to be accessed by means of a
new service-managed data resource, and thus the data are not returned directly to the consumer.
SPARQL is similar to SQL and can return a huge amount of data as a result of a query. Indirect

¶¶Oracle Semantic Technology Center (http://www.oracle.com/technology/tech/semantic technologies), AllegroGraph (http://
agraph.franz.com/allegrograph), SPARQL Implementations (http://esw.w3.org/topic/SparqlImplementations).

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



ACCESSING RDF(S) DATA RESOURCES 1039

access can thus be very useful when it is anticipated that the size of a query result will be large.
It is also useful to keep a data snapshot as in the application scenario given in our motivational
document [43].
Another important reason to provide indirect access is to support the distributed query processing

for SPARQL. As in the ubiquitous use case in Section 2.1, the RDF data are spread over a network
and processing a query over many RDF databases requires to support distributed SPARQL query
processing. Similar problem is discussed as the Federated SPARQL problem‖‖. This problem will
be the focus for future research, however, we need to have the basic access mechanisms to build a
distributed query processing system across RDF databases. Using indirect access is important as it
supports the creation of intermediate results during the distributed query processing process. It is
also useful as the basis for supporting third-party data transfer which will be needed for performing
distributed ‘join’ operations within a SPARQL query.
In DAIS indirect access is supported through the use of the factory pattern. To cater for this mode

of operation the following interface has been defined:

• SPARQLFactory provides access to the results of a SPARQL query.

The example in Figure 6 presents an RDF(S) data service that implements the SPARQLFactory
interface.
The SPARQLExecuteFactory operation is used to make the results of a query available through,

potentially, a separate data access service; for example, a data access service that implements the
SPARQLItemsSet interface. In this example the SPARQLItemsSet could be stored in a database
or decoupled from the database, but the important distinction is that the data are no longer made
available through a service implementing direct data access interfaces; hence, the service does not
have to provide facilities for submitting SPARQL expressions.
To support access to the data resources resulting from the use of the factory pattern, additional

interfaces and properties are defined, in particular:

• SPARQLItemsSetDescription provides properties of a set of SPARQL query result items.

ResultsSetAccess and TripleSetsAccess. SPARQL has four query forms: CONSTRUCT,DESCRIBE,
SELECT, and ASK. The first and second forms return an RDF graph as query result; the former
returns an RDF graph constructed by substituting variables in query patterns, while the latter returns
an RDF graph that describes the resources found. The resulting RDF graph can be presented by
using RDF/XML [44] or N3 (Notation 3) format.
In contrast to these two forms, the results of the other two are not RDF graphs: the third returns all,

or a subset of, the variables bound in a query pattern match; the fourth returns a boolean indicating
whether there is a match for a query pattern. To represent the latter query results, i.e. bindings in
an XML format, the W3C provides the SPARQL Result Set XML Format specification [41].
In line with the aforementioned particularities of the query results, we define two interfaces

that provide specialized access to these query results. The interfaces are to be implemented by
those data access services whose EPR are returned to the user by the SPARQLExecuteFactory
operations.

‖‖Federated SPARQL, (http://www.w3.org/2007/05/SPARQLfed/).

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



1040 M. ESTEBAN GUTIÉRREZ ET AL.

SPARQL
Data Access 

Service

SPARQLFactory

SPARQL
Description

SPARQLExecuteFactory(
DataResourceAbstractName,
PortTypeQName,
ConfigurationDocument,
SPARQLQueryRequest

)

Reference to SPARQL Query results

SPARQLItemsSet
Data Access

Service

SPARQLResultSetAccess

SPARQLItemsSet
DescriptionGetResults(

StartPosition,
ResultsCount

)

Results

Consumer

Figure 6. Indirect data access to the results of a SPARQL query.

• SPARQLResultsSetAccess provides access to a set of query results, which are the result of a
SPARQL SELECT/ASK query.

• SPARQLTriplesSetAccess provides access to a set of triples, which are the result of a SPARQL
CONSTRUCT/DESCRIBE query.

A consumer uses the GetResults (or GetTriples) message to retrieve a number of results from the
items set. It submits a RequestData containing the StartPosition and ResultCount parameters. The
associated GetResultsResponse (or GetTriplesresponse) message will contain the requested results
in a serialized form.
GraphCollectionAccess. The specification extends the base interfaces and corresponding proper-

ties defined in the WS-DAI core specification to provide access to RDF(S) data resources consisting
of a collection of RDF graphs. To cater for this representation, the following property and interface
are defined:

• GraphCollectionDescription provides properties of an RDF(S) Collection that a data access
service may represent.

• GraphCollectionAccess provides access to RDF graphs in a collection.

They provide basic access methods for the set of RDF triples, i.e. an RDF graph.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



ACCESSING RDF(S) DATA RESOURCES 1041

3.2. Accessing RDF(S) using an ontology-based approach

The aforementioned approach is aimed at accessing RDF(S) sources using the SPARQL query
language. Unlike to SQL, the SPARQL query language does not provide the means for specifying
RDF(S) data creation, deletion, or update. Thus, it is mandatory to provide further RDF(S) access
mechanisms that allow tackling these aspects when dealing with RDF(S) sources, and complement
the query specification.
Up to now, the Semantic Web community has been the most active in the development of systems

for using and exploiting RDF(S), and has developed a plethora of RDF(S) triple store, third-party
libraries, and tools, for working with RDF(S)∗∗∗. Nevertheless, the vast majority of these systems
are oriented toward the usage of RDF(S) for solving specific problems. Thus, the RDF(S) access
mechanisms provided by these systems are biased according to the specific needs they had when
working with RDF(S) data sources. As a result, no agreed API for accessing RDF(S) is available yet.
The objective of the WS-DAI-RDF(S) Ontology access specification is to provide an integral

access mechanism for RDF(S) sources that goes beyond the retrieval capabilities offered by the
querying specification, while providing a simple but complete set of functionalities that abstract the
most general necessities a user may have when working with RDF(S) data sources.
To achieve this objective, the specification proposes a model-based access mechanism for

accessing RDF(S) sources at the conceptual level, that is, an access mechanism that revolves
around the concepts and semantics defined by the RDF(S) model. Thus, the specification details
a set of ontology handling primitives for dealing with such model, hiding the syntactic aspects of
RDF(S) and transparently exploiting its semantics.
In order to integrate this in the grid, the WS-DAI-RDF(S) Ontology specification defines a

collection of data access interfaces for RDF(S) data resources, which extends those specified in the
WS-DAI core specification [16]. These new interfaces provide a set of model-based operations for
accessing RDF(S) data resources at different granularities.

3.2.1. Data resources

The WS-DAI-RDF(S) Ontology specification differentiates several types of RDF(S) data resources,
each of them provided for allowing addressing and managing RDF(S) sources at different granu-
larity levels. The diagram depicted in Figure 7 shows which are the data resources defined in the
specification and the relationships existing between them using UML notation.
The data resources can be classified in two groups:

(a) Placeholders of built-in RDF(S) classes (Resource, Class, Property, Statement, Container,
and List data resources): These data resources provide class-oriented views to an RDF(S)
resource, that is, the views focus on the specific data that can be associated with a particular
RDF(S) resource that is an individual of the main RDF(S) built-in classes, as defined in [45].
These data resources are organized hierarchically, having the Resource data resource as

the more general type of resource (defining the minimum data that are common to all these

∗∗∗http://esw.w3.org/topic/SemanticWebTools.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



1042 M. ESTEBAN GUTIÉRREZ ET AL.

manages?

contains?

+ repositories

+ resources

<<data resource>>
Repository

*

*

<<data resource>>
List

<<data resource>>
Container

<<data resource>>
Statement

<<data resource>>
Property

<<data resource>>
Class

<<data resource>>
Resource

<<data resource>>
RepositoryCollection

Figure 7. WS-DAI-RDF(S) Ontology Data resource model.

data resources), and the other data resources specialize this view, taking into account the
specificities of the particular class they represent.
The specialized data resources are classified in two groups: schema data resources, which

contains placeholders of elements that define the schema of the ontology (Class and Prop-
erty data resources) and additional data resources, which are focused on other specific
types of resources that can be defined in RDF(S) (reified statements, RDF collections, and
containers).

(b) Convenience abstractions (RepositoryCollection and Repository data resources): The pre-
viously mentioned data resources provide fine grain views focused on specific parts of an
RDF(S) source, in particular those associated with a given resource. But RDF(S) sources
can contain more than a resource; therefore, it is necessary to raise the granularity at which
RDF(S) sources are viewed and can be managed.
In this way, a repository data resource represents an aggregation of resources and the data

associated with them†††, where the key issue is that the resources belong to the repository
(thus, resource data resources are derived data resources from repository data resources).
Similarly, a repository collection data resource is an aggregation of repositories, the repos-

itories managed by the implementation. Nevertheless, in this case the repositories are not

†††Another way of understanding a repository data resource is as a container of RDF triples.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



ACCESSING RDF(S) DATA RESOURCES 1043

owned by the repository collection but managed, so that these repositories can be potentially
managed by several implementations simultaneously.

How these resources can be used will depend on the specific application. For instance, Repository
Collection and Repository data resources could be used in the first scenario described in Section 2.
These data resources would hold the metadata as well as the vocabularies needed for carrying out
the semantic matchmaking. Using these type of resources the application has a complete view of
the data involved in the semantic matchmaking process. Nevertheless, a constrained view of the
complete data set might be better, as is the case of the annotation and monitoring scenario (see
Section 2.2). In this scenario we require both the complete and the partial view of the data set. The
former is required for determining the changes that have to be done—using RepositoryCollection
and Repository data resources, and also using Class and Property data resources. The latter is
preferred for carrying out the changes, targeting the affected RDF resources –using Resource data
resources.

3.2.2. Interfaces

In order to interact with the data resources described above, several interfaces are provided in the
WS-DAI-RDF(S) Ontology specification. These interfaces are organized following two
principles:

(a) Operation granularity. It is necessary to differentiate and separate data access capabili-
ties and interfaces according to the granularity of the operations, and to the type of data
resources they are associated with. Three interface levels are identified: collection level
interfaces provide the means for managing RDF(S) sources as a whole, and deal with Repos-
itoryCollection data resources; repository level interfaces contain operations for accessing
to particular RDF(S) sources, by interacting with Repository data resources; and resource
level interfaces deal with RDF(S) resource data resource placeholders, and provide the most
specialized operations required for dealing with the specific data managed by these data
resources.
Each level is linked to the next through factory interfaces that allow the creation of derived

data resources, and forward further access to these data resources through other data services,
which implement specialized access interfaces of lower levels.
Figure 8 depicts the interfaces defined and also presents a possible composition of them

into data access services. The dashed lines represent the intended navigability from factory
interfaces to access interfaces.

(b) Operation complexity. The interfaces are also grouped according to the complexity of the
operations they provide. Thus, primitive interfaces include operations that provide basic
straightforward data creation, retrieval, and removal for a given data resource. On the other
hand, utility interfaces include complex operations for a given data resource, which provide
added value functionalities that enhance the access capabilities for a data resource.

3.2.2.1. Direct access interfaces. Direct access to a data access service allows the results of a
request to be delivered to the consumer directly in the response message. To cater for this mode of

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



1044 M. ESTEBAN GUTIÉRREZ ET AL.

Figure 8. Data access services and interfaces.

operation the following interfaces are defined for accessing RDF(S) data resources:

• RepositoryCollectionAccess provides access to repositories of a collection.
• RepositoryAccess provides access to the inside of repositories, offering functionalities for

managing the repository at RDF(S) resource level.
• ResourceAccess provides access to a particular RDF(S) resource, centered in those aspects

common to every resource: property value management, resource description, etc.
• ClassAccess provides access to particular RDF(S) resources that are RDF(S) class, focusing

on the data that are specific to RDF(S) classes: class hierarchy traversal, instance retrieval, etc.
• PropertyAccess provides access to particular RDF(S) resources that are RDF(S) properties,

focusing on the data that are specific to RDF(S) properties: range and domain management,
property hierarchy traversal, etc.

• StatementAccess provides access to particular RDF(S) resources that are RDF(S) statements—
reified triples, not the triples themselves—focusing on the management of the components that
set up the reification.

• ListAccess provides access to particular RDF(S) resources that are RDF collections (List),
focusing on the management of the members of the collection, as well as, the structure of the
collection.

• ListIteratorAccess provides access to RDF collections following the iterator pattern [46],
allowing an easy retrieval of the members of the collection without requiring the identifi-
cation of the position in it.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



ACCESSING RDF(S) DATA RESOURCES 1045

• ContainerAccess provides access to particular RDF(S) resources that are RDF(S) containers,
focusing on the management of the members of the container, as well as the structure of the
container, regardless of its specific type‡‡‡.

• ContainerIteratorAccess provides access to RDF(S) containers following the iterator pattern
[46], allowing an easy retrieval of the members of the container without requiring the identi-
fication of the position in it.

• AltAccess provides access to particular RDF(S) containers that are of the particular alt type.

3.2.2.2. Indirect access interfaces. Indirect access is supported through the use of the factory
pattern. This allows data, usually a particular view of the whole data set, to be accessed by way of
a new service-managed data resource, and thus the data are not returned directly to the consumer.
To cater for this mode of operation the specification provides the following interfaces:

• RepositoryCollectionFactory provides access to repositories of a collection.
• RepositoryFactory provides access to the inside of repositories.
• ListFactory provides access to the contents of an RDF collection.
• ContainerFactory provides access to the contents of a container.

The usage of the factory pattern provides a basic navigation mechanism that lets the user browse
RDF(S) data resources with different granularities and exploiting the particular semantics of the
RDF(S) data represented by concrete RDF(S) data resources.

3.2.2.3. Description interfaces. In addition to these interfaces, multiple description interfaces are
provided (RepositoryCollectionDescription, RepositoryDescription, ResourceDescription, Class
Description, PropertyDescription, StatementDescription, ListDescription, and ContainerDescrip-
tion), which extend the properties enumerated in the WS-DAI core specification to provide infor-
mation about the relationships of the RDF(S) data services and resources with the RDF(S) data to
which they provide access.

3.2.3. Profiles

The WS-DAI-RDF(S) Ontology specification is aimed at providing a means for managing RDF(S)
data resources in an integral fashion, offering mechanisms for creating, retrieving, updating, and
deleting contents. The specification defines these mechanisms following the RDF(S) model and
semantics, providing to the user with different granularity levels for using available data resources
with the required detail. To achieve this, the specification provides multiple different data resources
and interfaces. As a result, the full specification is bigger than that of other realizations, such as
the relational [17] or the XML one [18].
From a consumer/service provider point of view, the usefulness of the specification will depend

on his requirements, and especially on the necessities he has when dealing with the RDF(S) data
sources, that is, what he needs to do, and how he expects to do it. Thus, depending on his needs,
he shall only use the subset of the specification that completely fulfills them.

‡‡‡RDF(S) defines three types of predefined containers: seq, bag, and alt.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



1046 M. ESTEBAN GUTIÉRREZ ET AL.

WS-DAI-RDF(S) Ontology
Specification

Profile 2:
Full RDF(S) Support

Profile 1:
RDF Schema Support

Profile 0:
Basic RDF Support

RepositoryCollection D.R.
Repository Data R.
Resource Data Resource

Class Data Resource
Property Data Resource

Statement Data Resource
Container Data Resource
List Data Resource

RepositoryCollectionAccess
RepositoryCollectionFactory
RepositoryAccess
RepositoryFactory
ResourceAccess

ClassAccess
PropertyAccess

StatementAccess
ContainerAccess
ContainerFactory
ContainerIterator
AltAccess
ListAccess
ListFactory
ListIterator

Figure 9. WS-DAI-RDF(S) Ontology profiles.

Consequently, in order to facilitate the adoption and implementation of the specification from
the community, it is necessary to allow using what is needed, without enforcing the adoption of the
elements of minor interest.
To achieve this we divide the specification into three different profiles, each one including an

increasing number of functionalities that shall enable the user to deal with RDF(S) data resources
with finer grain of detail, while ensuring interoperability among implementations (see the relation-
ships between profiles in Figure 9).
Profile 0: Basic RDF support. This profile includes the minimum set of functionalities needed

for dealing with RDF data. The functionalities of this profile are those defined in the following
interfaces: RepositoryCollectionAccess, RepositoryCollectionFactory, RepositoryAccess, Reposi-
toryFactory (limited to Resource EPR retrieval), and ResourceAccess.
Profile 1: RDF Schema support. This profile includes the functionalities described in the Profile 0,

and extends them to those required for dealing with RDF vocabularies, as defined in the following
interfaces: RepositoryFactory (augmented to retrieve Class and Property EPRs), ClassAccess, and
PropertyAccess.
Profile 2: Full RDF(S ) support. This profile includes the functionalities described in Profile 1,

and extends them to those required for dealing with the rest of the built-in RDF vocabulary (contain-
ers, RDF collections and reifications). These functionalities are defined in the following interfaces:
RepositoryFactory (augmented to support the rest of the data resource EPRs), StatementAccess, List
Access, ListFactory, ListIteratorAccess, ContainerAccess, ContainerFactory, ContainerIteratorAc-
cess, ContainerFactory.
Going back to the motivational scenarios, and taking into account the discussion about which

data resources could be used in some of them, we can see that the Profile 0 is enough for the first
scenario, as it provides the base means for dealing with RDF data resources. The second scenario

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



ACCESSING RDF(S) DATA RESOURCES 1047

requires dealing with RDF vocabularies for determining the scope of the changes that have to be
carried out. Thus, the scenario would benefit from using a Profile 1 compliant implementation, as
it would provide the means for further exploiting the semantics of RDF vocabularies.

4. IMPLEMENTATIONS

OGF requires two interoperable implementations of any specification before any Grid Working
Draft becomes a recommendation. Up to now both the National Institute of Advanced Industrial
Science and Technology of Japan (AIST) and the Universidad Politécnica de Madrid (UPM) in
Spain have provided implementations of these specifications. AIST is leading the development of
OGSA-DAI-RDF [15], the preliminary work that is the basis of the WS-DAI-RDFS Query spec-
ification. The system is developed on top of OGSA-DAI§§§ that will provide implementations of
the relational and XML specifications of WS-DAI. OGSA-DAI RDF provides a multi-platform
environment for different RDF(S) data resources such as Sesame¶¶¶ , Jena‖‖‖, and Boca∗∗∗∗. It
includes the RDF Schema-based reasoning functionalities, and implements a subset of the ontology
primitives that are defined in early WS-DAIOnt-RDF(S) specifications explained below. Although
the current version of OGSA-DAI RDF does not fully comply with the current querying specifica-
tion, we have released the software for public use†††† to get user feedback, which will be of interest
for the specification discussion. Figure 10 shows some screenshots of the OGSA-DAI RDF user
interface.
The Ontology Engineering Group of the UPM‡‡‡‡ keeps working in the RDF(S) Grid Access

Bridge prototype developed as part of the OntoGrid project§§§§ [47]. The system is the reference
implementation of WS-DAIOnt-RDF(S), the RDF(S) ontology access specification that has been
used as basis for the development of the WS-DAI RDF(S) Ontology specification [48]. Current
developments are devoted to covering the full WS-DAI-RDF(S) realization.
We applied our current implementation to S-MDS [34] with Query-based matchmaking [33] as in

the scenario of Section 2.1. As the feedback from this application, we learned the following lessons.

(1) Service-based, platform-independent access method is very useful to access distributed RDF
databases, which are constructed by using different software products.

(2) As the current software is based on popular grid tools such as Globus and OGSA-DAI, it
is very easy to interface RDF databases with existing grid middleware, such as MDS and
GRAM. This implies that WS-DAI specification implementation will be also easy to interact
with other OGSA-based specification implementations.

(3) There was a strong need to support OWL language also with the OWL reasoners. Providing
the extensibility to support other semantic web languages will be the issue. This will be
discussed in Section 5.

§§§OGSA-DAI Homepage (http://www.ogsadai.org.uk/).
¶¶¶Sesame (http://www.openrdf.org).
‖‖‖Jena Semantic Web Framework (http://jena.sourceforge.net).
∗∗∗∗IBM Semantic Layered Research Platform (http://ibm-slrp.sourceforge.net).
††††AIST Database Grid Home (http://www.dbgrid.org/).
‡‡‡‡Ontology Engineering Group Home (http://www.oeg-upm.net).
§§§§OntoGrid Project Home (http://www.ontogrid.eu).

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



1048 M. ESTEBAN GUTIÉRREZ ET AL.

Figure 10. Screenshots of the OGSA-DAI RDF: SPARQL Query interface and the result.

5. ONGOING AND FUTURE WORKS

The WS-DAI-RDF(S) realization work is still in progress. Both the Query and Ontology specifi-
cations are still being aligned, so that they both provide a unified view of RDF(S) data resources,
while providing different means for accessing to them.
In order to carry out this alignment, we are developing a glossary in which the terminol-

ogy used in the specifications is defined [49]. Once the glossary is finished, the current ver-
sions of the specifications—see [39,40]—will be updated to reflect the agreed terminology. In
addition, the current informational document that introduces the RDF(S) activity [43] will be
updated as well, including more motivational scenarios and the terminology defined in the glos-
sary. These documents will then all be submitted to the OGF Editors to enter the standardization
pipeline.
Future works on the specification include how to support the reasoning within the querying

specification. Possible extension to the current specification will be one of the following approaches
currently in discussion.

(1) Define separate SPARQLQueryStatement (withReasoner) interface that supports reasoning
function.

(2) Extend the current SPARQLQueryStatement interface to support reasoning option.
(3) Define the configurable description of the resource to support RDF(S) reasoning.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



ACCESSING RDF(S) DATA RESOURCES 1049

These in-discussion candidates have their own pros and cons, especially to support the future
extensibility for other semantic language.
Though the work that has been carried out to date is focused on access to RDF(S), this work

can be extended to other higher languages in the Semantic Web stack (such as OWL), as the
definition of the specifications has been done at conceptual level, defining operations that comply
with the RDF(S) model semantics and data resources that organically reflect the structure of the
RDF(S) model. Thus, supporting a new language atop RDF(S) would just require focusing on the
representation primitives that change the base RDF(S) semantics and data model, and creating new
operations and data resources as required, and adjusting the semantics of the related operations as
needed, extending the configuration mechanisms defined in the specifications.

6. CONCLUSION

In this paper we have introduced the WS-DAI-RDF(S) realization, including an overview of the
Query and Ontology specifications. We have also presented several scenarios that show how these
specific parts of the realization could be used. More and more interdisciplinary projects and activities
across the world are creating enormous quantities of RDF(S) data, which have to be made available
in a robust, scalable, and effective manner so that researchers and third-party users can exploit
this increasing amount of data. The WS-DAI-RDF(S) realization, which is being developed in the
OGF DAIS-WG, is aimed at developing the necessary robust scalable standard RDF(S) access
mechanisms, which shall enable the integration of RDF(S) data resources in service-based grid
platforms. This mechanism together with the rest of mechanisms and capabilities provided by the
grid infrastructure represent the best way for solving the aforementioned issue.

ACKNOWLEDGEMENTS

This work is supported by several research and development projects. In Japan, our work has been funded
by AIST-SOA project to provide a semantic SOA infrastructure [50] The Grant-in-Aid Scientific Research(A)
(KAKENHI #20240010) also supported this work in part. In Spain, this work is supported by the EU FP6
OntoGrid project (FP6-511513) funded under the Grid-based Systems for solving complex problems. Part of
this work has also been supported by the Marie Curie Reintegration Grant WS-DAIOnt-OWL: OWL Ontology
Access in Grid Systems (FP6-2004-Mobility-11, ref #046415). We would like to thank all the participants of
the DAIS-WG, especially Prof. Norman Paton, Dr. Dave Pearson, and Dr. Mario Antonioletti, who have helped
in chartering this activity, and have provided valuable feedback about the integration of both specifications with
the WS-DAI initiative. We would also like to thank Masahiko Kimoto, Steven Lynden, Akiyoshi Matono, and
Haruyuki Kawabe for valuable discussions and comments.

REFERENCES

1. Foster I, Kesselman C. The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kauffman: Los Altos, CA,
2003; 748.

2. Jeffery K, De Roure D. Future for European Grids: GRIDs and service oriented knowledge utilities. Vision and research
directions 2010 and beyond. Next Generation GRIDS Expert Group Report, European Commission, Brussels, January
2006.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



1050 M. ESTEBAN GUTIÉRREZ ET AL.

3. Andreozzi S, Burke S, Ehm F, Field L, Galang G, Konya B, Litmaath M, Millar P, Navarro JP. GLUE Specification
v. 2.0, GLUE Working Group, Open Grid Forum, 28 February 2008.

4. Grosso P, Patil A, Primet P, Ceyden A. Network Topology Descriptions in Optical Hybrid Networks, NML Working
Group, Open Grid Forum, 10 January 2008.

5. Foster I, Berry D, Djaoui A, Grimshaw A, Horn B, Kishimoto H, Maciel F, Savva A, Siebenlist F, Subramanian R,
Treadwell J, Von Reich JJ. The Open Grid Services Architecture, Version 1.5, Foster I, Kishimoto H, Savva A (eds.).
OGSA-WG, Global Grid Forum, 24 July 2006; GFD.80.

6. Common Information Model (CIM ) Infrastructure Specification. Distributed Management Task Force, Inc. (DMTF),
4 October 2005; DSP0004.

7. Biron PK, Malhotra A. XML Schema Part 2: Datatypes Second Edition, W3C XML Schema Working Group Documents,
World Wide Web Consortium, 28 October 2004.

8. Fallside DC, Walmsley P. XML Schema Part 0: Primer Second Edition, W3C XML Schema Working Group Documents,
World Wide Web Consortium, 2004.

9. Thompson HS, Beech D, Maloney M, Mendelsohn N. XML Schema Part 1: Structures Second Edition, W3C XML
Schema Working Group Documents, World Wide Web Consortium, 28 October 2004.

10. Carroll JJ, Klyne G. Resource description framework (RDF): Concepts and abstract syntax. RDF Core Working Group
Documents, McBride B (ed.), World Wide Web Consortium, 10 February 2004.

11. Brickley D, Guha RV. RDF vocabulary description language 1.0: RDF schema. RDF Core Working Group Documents,
McBride B (ed.), World Wide Web Consortium, 10 February 2004.

12. Parkin M, van der Burghe S, Corcho Ó, Snelling D, Brooke J. The knowledge of the grid: A grid ontology. The Cracow
Grid Workshop 2006, Cracow, Poland, Bubak M, Turala M, Wiatr K (eds.). 2006; 111–118.

13. Esteban Gutiérrez M, Gómez-Pérez A, Muñoz Garcı́a Ó, Terrazas BV. Ontology access in grid environments with
WS-DAIOnt and the RDF(S) realization. Third GGF Semantic Grid Workshop, Athens, Greece, 2006.

14. Said MP, Kojima I. S-MDS: A semantic information service for advanced resource discovery and monitoring in
WS-resource framework. Third GGF Semantic Grid Workshop, Athens, Greece, 2006.

15. Kojima I. Design and implementation of OGSA-DAI-RDF. Third GGF Semantic Grid Workshop, Athens, Greece, 2006.
16. Antonioletti M, Atkinson M, Krause A, Malaika S, Laws S, Pearson D, Paton NW, Riccardi G. Web Services Data

Access and Integration—The Core (WS-DAI) Specification, Version 1.0. DAIS Working Group, Open Grid Forum, 2006.
17. Antonioletti M, Collins B, Krause A, Laws S, Magowan J, Malaika S, Paton NW. Web Services Data Access and

Integration—The Relational Realisation (WS-DAIR) Specification, 1.0. DAIS Working Group, Open Grid Forum, 2006.
18. Antonioletti M, Hastings S, Krause A, Langella S, Lynden S, Laws S, Malaika S, Paton NW. Web Services Data Access

and Integration—The XML Realization (WS-DAIX) Specification, 1.0. DAIS Working Group, Open Grid Forum, 2006.
19. Berry D, Luniewski A, Antonioletti M. OGSA Data Architecture. OGSA Data WG, Open Grid Forum, 14 November

2007.
20. Prud’hommeaux E, Seaborne A. SPARQL Query Language for RDF. RDF Data Access Working Group Documents,

W3C, 12 November 2007.
21. Clark KG. RDF Data Access Use Cases and Requirements. RDF Data Access Working Group Documents, Word Wide

Web Consortium, 25 March 2005.
22. Tangmunarunkit H, Decker S, Kesselman C. Ontology-based resource matching in the grid—The grid meets the semantic

web. Second International Web Conference, ISWC2003, Sanibel Island, FL, U.S.A., Fensel D, Sycara KP, Mylopoulos
J (eds.). Springer: Berlin/Heidelberg, 2003; 706–721.

23. Brooke J, Fellows D, Garwood K, Goble C. Semantic matching of grid resource descriptions. Second European
AcrossGrids Conference, AxGrids 2004, Nicosia, Cyprus, Dikaiakos MD (ed.). Springer: Berlin/Heidelberg, 2004;
240–249. DOI: 10.1007/b99982.

24. Raman R, Livny M, Solomon M. Matchmaking: Distributed resource management for high throughput computing.
Seventh IEEE International Symposium on High Performance Distributed Computing (HPDC7 ), Chicago, IL, U.S.A.
IEEE Press: 1998; 140–146.

25. Chuang L, Lingyun Y, Foster I, Angulo D. Design and evaluation of a resource selection framework for grid applications.
Eleventh IEEE Symposium on High-Performance Distributed Computing (HDPC-11), Edinburgh, Scotland. IEEE Press:
2002; 63–72.

26. Raman R, Livny M, Solomon M. Matchmaking: An extensible framework for distributed resource management. Cluster
Computing 1999; 2(2):129–138. ISSN: 1386-7857.

27. Chapin SJ, Katramatos D, Karpovich J, Grimshaw A. Resource management in legion. Future Generation Computer
Systems 1999; 5(5–6):583–594.

28. Czajkowski K, Foster I, Karonis N, Kesselman C, Martin S, Warren S, Tuecke S. A resource management architecture
for metacomputing systems. Fourth Workshop on Job Scheduling Strategies for Parallel Processing (in Conjunction
with IPPS/SPDP’98), Orlando, FL, U.S.A., Goos G, Hartamanis J, van Leeuwen J (eds.). Springer: Berlin/Heidelberg,
30 March 1998; 62–82. DOI: 10.1007/BFb0053977.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe



ACCESSING RDF(S) DATA RESOURCES 1051

29. Alper P, Bechhofer S, Corcho Ó, Goble C, Kotsiopoulos I, Missier P. An overview of S-OGSA: A reference semantic
grid architecture. Journal of Web Semantics 2006; 4(2):102–115.

30. Miles S, Papay J, Payne T, Decker K, Moreau L. Towards a protocol for the attachment of semantic descriptions to
grid services. Second European AcrossGrids Conference, AxGrids 2004, Nicosia, Cyprus, Dikaiakos MD (ed.). Springer:
Berlin/Heidelberg, 28–30 January 2004; 230–239. DOI: 10.1007/b99982.

31. Jeffrey SJ, Hunter J. A semantic search engine for the storage resource broker. Third GGF Semantic Grid Workshop,
Athens, Greece, 2006.

32. Saltz J, Oster S, Hastings S, Langella S, Kurc T, Sanchez W, Kher M, Manisundaram A, Shanbhag K, Covitz P. caGrid:
Design and implementation of the core architecture of the cancer biomedical informatics grid. Bioinformatics—Computer
Applications in the Biosciences 2006; 22(15):1910–1916.

33. Said MP, Kojima I. SPARQL-based set-matching for semantic grid resource selection. Second Advances in Semantics
for Web Services 2007 Workshop (Semantics4ws’07), Brisbane, Australia, 2007.

34. Said MP, Kojima I. Towards automatic service discovery and monitoring in WS-resource framework. First International
Conference on Semantics, Knowledge and Grids, Beijing, China. IEEE Computer Society: 2005; 106–106.

35. Goble C, De Roure D, Shadbolt NR, Fernandes AAA. Enhancing services and applications with knowledge and semantics.
The Grid 2: Blueprint for a New Computing Infrastructure, Foster I, Kesselman C (eds.). Morgan Kauffman: Los Altos,
CA, 2003.

36. Davey S, Dialani V, Fehling R, Fisher S, Gawlick D, Kantarjiev C, Madsen C, Malaika S, Mishra S, Shankar M.
Information dissemination in the Grid environment—Base specifications, INFOD Working Group, Open Grid Forum,
2007.

37. T-Engine Forum. Ubiquitous ID Architecture (in Japanese), T-Engine Forum, November 2006. UID-CO00002-0.00.24.
38. Prud’hommeaux E. Federated SPARQL, W3C, 2007.
39. Kojima I, Pahlevi SM. Web Services Data Access and Integration—The RDF(S) Realization (WS-DAIRDFS) RDF(S)

Querying Specification, Version 0.1. DAIS Working Group, Open Grid Forum, December 2006.
40. Esteban Gutiérrez M, Gómez-Pérez A. Web services data access and integration—The RDF(S) realization (WS-DAI-

RDF(S)) RDF(S) ontology access specification, Version 0.8. DAIS Working Group, Open Grid Forum, 21 February
2008.

41. Beckett D, Broekstra J. SPARQL Query Results XML Format. RDF Data Access Working Group Document, W3C,
12 November 2007.

42. Grant Klark K, Feigenbaum L, Torres E. SPARQL Protocol for RDF, W3C, 12 November 2007.
43. Esteban Gutiérrez M, Gómez-Pérez A, Kojima I, Pahlevi SM. DAIS for RDF(S) Realization—Background and motivational

scenarios. DAIS Working Group, Open Grid Forum, September 2006.
44. Beckett D. RDF/XML syntax specification (Revised). RDF Core Working Group Documents, McBride B (ed.), World

Wide Web Consortium, 2004.
45. Hayes P. RDF semantics. RDF Core Working Group Documents. McBride B (ed.), World Wide Web Consortium, 2004.
46. Gamma E, Helm R, Johnson R, Vlissides JM. Design Patterns: Elements of Reusable Object-Oriented Software (Addison-

Wesley Professional Computing Series). Addison-Wesley Professional: Reading, MA, 1994.
47. Esteban Gutiérrez M, Gómez-Pérez A, Muñoz Garcı́a Ó. Deliverable 3.2v2. Deployment of Ontology Services. OntoGrid

Project, 2007.
48. Esteban Gutiérrez M, Gómez-Pérez A, Corcho O, Muñoz Garcı́a Ó. WS-DAIOnt-RDF(S): Ontology access provision in

grids. Eighth IEEE/ACM International Conference on Grid Computing (Grid 2007), Austin, TX, U.S.A., Fahringer T
et al. (eds.). IEEE Computer Society: 2007; 89–96.

49. Esteban Gutiérrez M, Muñoz Garcı́a Ó. Data access and integration services—RDF(S) access glossary of terms. DAIS
Working Group, Open Grid Forum, October 2007.

50. Sekiguchi S. AIST SOA for building service oriented e-Infrastructure. Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID’06), Singapore, Turner SJ, Sung Lee B, Cai W (eds.). IEEE Computer Society:
2006; 4. Available from: http://doi.ieeecomputersociety.org/10.1109/CCGRID.2006.15.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 21:1029–1051
DOI: 10.1002/cpe


