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Problem-solving methods are high-level, domain-independent, reusable knowledge 
templates that support the development of knowledge-intensive applications. The authors 
show how to use them to bolster subject-matter experts’ understanding of process execution 
by implementing such methods into the Knowledge-Oriented Provenance Environment.

I n the context of scientific data for compu-
tation-intensive disciplines such as physics, 
biology, and astronomy, provenance focus-
es on describing and understanding where 

and how data is produced, the actors involved in 
its production, and the processes applied before it 
arrived in the collection from which it’s now ac-
cessed. In a typical discovery task, for example, 
scientists integrate data from various sources, fil-
ter the combined data according to some criteria, 
and then annotate it with information about the 
relationships they’ve just discovered. All the tasks 
applied in this process contribute to that data 
product’s provenance record. 

However, having all this information recorded 
together with the data product isn’t enough—given 
the large amount of information, the provenance 
record requires an abstraction process before any-
one can use it. Think of provenance information 
as a pyramid with four levels from the bottom up: 
data, organization, process, and knowledge.1 Al-

though most current provenance systems focus 
on the first three levels by providing means for 
recording and querying process documentation, 
other efforts approach the provenance problem 
from a semantic perspective in an attempt to 
tackle the knowledge level. These systems use 
domain ontologies in Semantic Web languages 
such as RDFS (www.w3.org/TR/rdf-schema) and 
OWL (www.w3.org/2004/OWL), which establish 
well-defined associations between the resources 
used during process documentation and the do-
main. This lets users build semantic provenance 
metamodels with the terminology necessary for 
meaningfully expressing provenance entities and 
the relationships between them.

But regardless of the approach taken for prov-
enance gathering and representation, the docu-
mentation of a process’s execution generates large 
quantities of heavily linked and annotated prove-
nance data. As the size and complexity of processes 
increase, process documentation can become hard 
to assimilate and eventually unmanageable. Fur-
thermore, the main beneficiaries of provenance 
information are subject-matter experts (SMEs) 
who don’t necessarily have a strong background 
in computer science or, more specifically, prove-
nance. An additional semantic layer with a higher 
level of abstraction could help address this gap. 

As much as possible, our goal is to support 
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provenance interpretation by SMEs with little 
background in computer science. Thus, we use 
problem-solving methods (PSMs) as semantic 
overlays that represent provenance at multiple 
levels of abstraction. Our approach facilitates 
the user’s understanding of how provenance in-
formation relates to process execution, simplifies 
process execution analysis by showing the overall 
process’s decomposition into domain-level sub-
processes, and offers visualizations of process ex-
ecution at various levels of detail.

PSMs in Process Representation
PSMs originally emerged as reusable knowledge 
strategies that researchers could apply in different 
application domains to solve conceptually similar 
problems in terms of the goals to be achieved and 
the type of knowledge required. They’re typi-
cally used to acquire knowledge and describe the 
primary rationale behind a process. But by apply-
ing PSMs to provenance analysis, we propose a 
novel way of using them: to interpret past events 
instead of model them. We can further exploit 
PSMs to facilitate provenance comprehension at 
our pyramid’s knowledge level2,3 by abstracting 
fine-grained provenance logs.

PSM frameworks such as the Unified Problem 
Solving Method Development Language4 define 
four main types of knowledge resources: tasks, 
PSMs, domain models, and ontologies. Tasks 
provide high-level descriptions of the type of ac-
tivity that we intend to accomplish by executing a 
particular process. Thus, we can view processes 
as occurrences (or instantiations) of tasks in a 
particular domain—for example, in the financial 
domain, a loan recommendation process is a par-
ticular occurrence of a generic assessment task,5 
whereas in the biological domain, a digestion 
process is an occurrence of task recombination.6 
Although tasks describe what a process’s execu-
tion will achieve, PSMs describe how they’ll do it: 

in short, PSMs define strategies, such as how to 
decompose tasks into simpler (sub)tasks, the steps 
required to accomplish each of them, and the 
knowledge to apply in each step. Finally, domain 
models describe the particular domain to which 
we apply tasks and PSMs, and ontologies provide 
the semantics required. 

When focusing on PSMs as semantic overlays, 
we can enumerate their components7 as follows:

name,
goal,
subtasks,
input tasks,
output tasks,
data flow between subtasks in terms of data roles,
input roles,
output roles,
control flow over the subtasks, and
suitability criteria.

We can also represent PSMs in three views:

The interaction view (Figure 1a) describes a PSM 
(in red) in terms of its I/O roles (in yellow), pro-
viding a “black box” perspective.
The knowledge-flow view (Figure 1b) shows how 
information is exchanged between subtasks 
(in green) as they consume and produce new 
knowledge to deal with the original task.
The decomposition view (Figure 2) shows how 
PSMs decompose tasks into subtasks down to 
the level of primitive actions. As we continue 
the decomposition, the level of detail increases, 
producing more specific, fine-grained informa-
tion about the PSM’s strategies for a particu-
lar task. Figure 2, for example, shows that the 
prime catalogue method’s strategy for accom-
plishing the catalogue task is to decompose it 
into three subtasks (normalize, consolidate, 
and represent), which interact with each other. 

•
•
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Method_PrimeCatalogueInitialObservation_0 InformationRepresentation_0

Task_NormalizeInitialObservation_0 NormalizedInformation_0

Task_RepresentInformationRepresentation_0 ConsolidatedInformation_0

Task_Consolidate

(a)
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Figure 1. Interaction and knowledge-flow views. (a) The interaction view describes a problem-solving 
method (in red) in terms of its I/O roles (in yellow). (b) The knowledge-flow view shows a task 
decomposed into subtasks (green ellipses).
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The decomposition view also shows alternative 
methods, such as performing task comparison 
with exact compare (PSM exactCompare) or 
threshold compare (PSM thresholdCompare).

In the next section, we describe our approach’s 
implementation in a real system.

A Knowledge-oriented  
Provenance environment
We developed the Knowledge-Oriented Prov-
enance Environment (KOPE) as a stand-alone sys-
tem the user can install to analyze provenance logs. 
KOPE requires the following knowledge resources 
to support user-oriented interpretations of prove-
nance information at different levels of abstraction: 
a metamodel of PSM constructs and how they relate 
to each other, a library with a hierarchy of methods 
and instances of the PSM metamodel, and domain 
ontologies that describe the application domain.

As Figure 3 shows, KOPE’s architecture has 
three building blocks: an underlying provenance 

infrastructure for documenting and querying pro-
cess execution information, a PSM editor that lets 
users manage PSM libraries and domain ontolo-
gies as well as visualize provenance information 
at multiple levels of detail, and the KOPE engine, 
which uses the methods in the PSM libraries and 
ontologies to analyze process executions. 

KOPE’s underlying provenance infrastructure 
for process documentation and provenance que-
rying is based on data structures identified by the 
Provenance-Aware Service-Oriented Architec-
ture (PASOA) data model.8 PASOA doesn’t de-
pend on a workflow enactor to produce process 
documentation—rather, it documents process ex-
ecution as p-assertions. The PASOA model is flex-
ible in terms of the contents of the information 
recorded in these p-assertions, which in turn lets 
us enrich process documentation with the seman-
tic metadata automatically produced during pro-
cess execution. Because domain and PSM entities 
are related by bridges, such metadata lets KOPE 
analyze provenance in terms of the domain,9 ac-
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Figure 2. Decomposition view. The prime catalogue method’s strategy for accomplishing the catalogue task is to decompose 
it into three subtasks (normalize, consolidate, and represent), but this view also offers alternatives, such as performing task 
compare with exact compare (PSM exactCompare) or threshold compare (PSM thresholdCompare).
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cording to the generic process descriptions pro-
vided in the PSM library. 

On the GUI side, KOPE uses an extended ver-
sion of the Ontology Design Environment for 
Semantic Grid Services (ODESGS) PSM editor 
to invoke the KOPE engine for process execution 
analysis and visualization as well as to handle ba-
sic ontology management tasks.10 ODESGS also 
supports mapping concepts from the domain on-
tology to PSMs’ I/O roles via bridges. ODESGS 
can describe domain ontologies and methods in 
the PSM library independently to maximize their 
reusability across different domains.

As we described earlier, PSMs offer generic 
strategies for accomplishing the tasks of which 
domain-specific processes are occurrences. The 
KOPE engine’s goal is to identify these tasks in the 
provenance store’s process documentation. The 
KOPE engine detects task occurrences via twig 
join algorithms,11,12 which, at each PSM decom-
position level, allow matching the PASOA process 
documentation with the PSM’s knowledge flow. 
In this process, the KOPE engine detects whether 
the twig between the execution’s inputs and out-
puts occurs in the PSM’s knowledge flow as well. 
The KOPE engine implements twig_join(D, i(T), 
o(T)) as a Boolean function that checks whether 
a twig exists that joins i(T) and o(T) in D, where 
i(T) is the set of input roles of T, o(T) is the set of 
output roles of T, and D is the p-DAG of the docu-
mented process, returned by a provenance query.

the Provenance challenge
In 2007, we evaluated KOPE in the context of the 
“Provenance Challenge” (http://twiki.ipaw.
info/bin/view/Challenge/SecondProvenance 
Challenge), a community-driven effort toward 
provenance standardization stemming from dis-
cussions first held at the International Provenance 
and Annotation Workshop (IPAW 06; www.ipaw.
info). This initiative’s goal is a comprehensive 
standard that will eventually ensure interoper-
ability among different systems using compliant 
data models. 

To date, the challenge has occurred twice: the 
first (2006) provided valuable insight into the vari-
ous provenance approaches already existing in the 
community, whereas the second (2007) proposed 
a systematic approach for comparing different 
systems and representations of provenance data. 
Interoperability among provenance systems was 
the issue in the first challenge, thus the second 
challenge intended to understand the extent to 
which data in one model is translatable to or has 
no parallel in another model and how to trace data 

provenance across multiple systems, thereby add-
ing value to all those systems.

evaluation Setup
During both challenges, several worldwide teams 
evaluated the systems in the context of a workflow 
for creating population-based brain atlases from 
the fMRI Data Center’s archive of high-resolu-
tion anatomical data. The workflow associated 
with this process comprises procedures and the 
data items flowing between them. 

KOPE participated in the second challenge 
with a twofold goal: to evaluate its interoperation 
with other provenance systems, in particular with 
PASOA (because its infrastructure and data mod-
el support process documentation in the KOPE 
architecture), and to evaluate its capabilities 
for interpreting provenance information at the 
knowledge level. The knowledge resources KOPE 
used to analyze the brain atlas workflow’s execu-
tion included the catalogue PSM library (specifi-
cally, the prime catalogue) and a domain ontology 
for brain atlases. The former describes strategies 
to solve the task of creating a catalogue in a given 
domain (in this case, the brain atlas), whereas the 
latter provides a description of brain images.

The prime catalogue method describes the task 
of creating catalogues at four different abstraction 
levels. The most abstract one, Level 1, is the meth-
od’s top level, in which I/O roles are initial obser-
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Figure 3. Knowledge-Oriented Provenance Environment (KOPE) 
architecture. The PSM editor (ODESGS) uses bridges to relate domain 
ontologies with PSM libraries. PASOA is the underlying low-level 
provenance infrastructure used to document process executions; the 
KOPE engine selects adequate PSMs from the library and abstracts 
the detailed provenance logs by matching them with the tasks into 
which they’re divided.
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vation and information representation, respectively. 
Being so abstract, this first level doesn’t provide 
much information about the analyzed process; 
instead, Level 2 provides a first decomposition of 
the original task into finer-grained subtasks that 
describe the process in more detail. As mentioned 
earlier, these three subtasks are normalize, con-
solidate, and represent, and KOPE analyzes each 
of them via PSMs. The Level 2 task also shows 
two alternative methods—represent by decomposi-
tion and represent by projection—that contain differ-
ent strategies for representing (or displaying) an 
item, which, in this case, is the result of the tasks 
preceding represent at this level (normalize and con-
solidate) in the PSM’s knowledge flow view.

Task normalize reuses part of the PSM library 
for diagnosis and is the most complex of the hi-
erarchy. A method of the same name decomposes 
this task into two subtasks (verify normalization 
and create normal form), which, together with the 
tasks that couldn’t be further decomposed in Lev-
el 2 (consolidate and represent), form Level 3. 

evaluation Results
Because this evaluation’s objective was to mea-
sure the accuracy of using PSMs as a semantic 
overlay for searching, recovering, analyzing, and 
eventually interpreting information about process 
execution from provenance data, we explain the 
results obtained in terms of precision and recall. 
Here, precision is the ratio of expected matches to 
actual matches, taking into account the different 
levels of decomposition the PSM library provided, 
whereas recall is the fraction of relevant matches 
the system returned. 

We want to analyze the execution of the popu-
lation-based brain atlas creation process, focusing 
on its validation with respect to the high-level 
process specification provided by the prime cata-
logue method. In this context, high precision and 
recall would indicate that this process’s execution 
is perfectly compliant with the PSM-provided 
specification. However, high precision and low re-
call would also show that the SME didn’t succeed 
in defining the correct mapping between domain 
entities and PSM roles via the required bridges, 
whereas low precision and high recall indicate that 
the PSM didn’t provide a detailed enough specifi-
cation of the process.

Figure 4 uses a color code to show the actual 
matching of the process documentation for brain 
atlas creation with the PSM library catalogue for 
each level of refinement that the prime catalogue 
method’s decomposition view provided.

We originally designed the prime catalogue 
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Figure 4. Analysis of the brain atlas creation process. Comparing the low-level provenance information with the prime 
catalogue method, green stands for a perfect match, yellow represents an imperfect match, and red indicates no match at all.

table 1. Precision and recall per abstraction level  
of the prime catalogue method.

Abstraction level Precision (%) Recall (%)

1 100 100

2 83.3 100

3 25 100

4 0 0
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method as a generic strategy for creating a cata-
logue of items in a given domain, but there are 
many ways in which to do so. Nevertheless, the 
prime catalogue method performed well during 
the challenge. With it, KOPE described the brain 
atlas creation process up to the method’s third 
level of refinement, out of a maximum of four ab-
straction levels.

Overall precision and recall figures reached 75 
and 100 percent, respectively; Table 1 shows the 
results at each abstraction level. We can therefore 
assert that the brain atlas creation process is com-
pliant with the prime catalogue method’s process 
specification and can be interpreted as an occur-
rence of a catalogue task (Level 1) that decomposes 
into three main tasks (Level 2) that occur sequen-
tially. The last two tasks are completely compliant 
with the information recorded in the process doc-
umentation, but the first one (normalize) is only 
partially achieved because only one of its subtasks 
(create normal form, at Level 3) is reflected in the 
actual process. Low precision and high recall at 
Level 3 show that the prime catalogue method’s 
process specification isn’t so detailed at this level 
of decomposition. Table 1 shows this, where pre-
cision drops from 83.3 percent at Level 2 to 25 
percent at Level 3; the 100 percent recall at Level 
3 becomes 0 percent at Level 4.

W ith KOPE’s participation in the 
second challenge, we’ve dem-
onstrated our approach to prov-
enance understanding has good 

results in terms of precision and recall when the 
level of detail that we’re interested in is broad. 
However, when we move into the exact details 
about how each subprocess is executed, we need 
to improve our approach with better matching 
algorithms. This is part of our future work, in 
which we’ll enhance some bottom-up approaches 
to provenance interpretation.13 Our belief is that 
this hierarchical approach to provenance under-
standing is what SMEs require to understand 
which high-level processes are involved in a com-
plex process execution.

As part of our future work, we’ll also apply our 
approach to disciplines that don’t just deal with 
scientific domains but that still have complex 
networks of processes, such as business process 
management in telecommunications, in which 
distributed groups of SMEs make decisions. 
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