
54 1094-7167/02/$17.00 © 2002 IEEE IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Ontology Languages
for the Semantic Web
Asunción Gómez-Pérez and Oscar Corcho, Universidad Politécnica de Madrid

Ontologies have proven to be an essential element in many applications. They are

used in agent systems, knowledge management systems, and e-commerce plat-

forms. They can also generate natural language, integrate intelligent information, provide

semantic-based access to the Internet, and extract information from texts in addition to

being used in many other applications to explicitly
declare the knowledge embedded in them.

However, not only are ontologies useful for appli-
cations in which knowledge plays a key role, but they
can also trigger a major change in current Web con-
tents. This change is leading to the third generation of
the Web—known as the Semantic Web—which has
been defined as “the conceptual structuring of the Web
in an explicit machine-readable way.”1 This definition
does not differ too much from the one used for defin-
ing an ontology: “An ontology is an explicit, machine-
readable specification of a shared conceptualization.”2

In fact, new ontology-based applications and
knowledge architectures are developing for this new
Web. A common claim for all of these approaches is
the need for languages to represent the semantic
information that this Web requires—solving the het-
erogeneous data exchange in this heterogeneous
environment. Here, we don’t decide which language
is best of the Semantic Web. Rather, our goal is to
help developers find the most suitable language for
their representation needs.

Ontology languages
Several ontology languages have been developed

during the last few years, and they will surely
become ontology languages in the context of the
Semantic Web. Some of them are based on XML
syntax, such as Ontology Exchange Language
(XOL),3 SHOE4 (which was previously based on
HTML), and Ontology Markup Language (OML),5

whereas Resource Description Framework (RDF)6

and RDF Schema7 are languages created by World

Wide Web Consortium (W3C) working groups.
Finally, two additional languages are being built on
top of RDF(S)—the union of RDF and RDF
Schema—to improve its features: Ontology Infer-
ence Layer (OIL)8 and DAML+OIL9 (see Figure 1).
Other languages have also been used, traditionally,
for building ontologies, but that analysis is out of the
scope of this article.

XML-based Ontology Exchange
Language

The US bioinformatics community designed XOL
for the exchange of ontology definitions among a
heterogeneous set of software systems in their
domain. Researchers created it after studying the rep-
resentational needs of experts in bioinformatics.
They selected Ontolingua and OML as the basis for
creating XOL, merging the high expressiveness of
OKBC-Lite, a subset of the Open Knowledge Based
Connectivity protocol, and the syntax of OML, based
on XML. There are no tools that allow the develop-
ment of ontologies using XOL. However, since XOL
files use XML syntax, we can use an XML editor to
author XOL files.

Simple HTML Ontology Extension
SHOE, developed at the University of Maryland

and used to develop OML, was created as an exten-
sion of HTML, incorporating machine-readable
semantic knowledge in HTML documents or other
Web documents. Recently, the University of Mary-
land has adapted the SHOE syntax to XML. SHOE
makes it possible for agents to gather meaningful infor-

The authors analyze

the most representative

ontology languages

created for the Web

and compare them

using a common

framework.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148653582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

mation about Web pages and documents,
improving search mechanisms, and knowledge
gathering. This process consists of three-
phases: Define an ontology, annote HTML
pages with ontological information to
describe themselves and other pages, and
have an agent semantically retrieve informa-
tion by searching all the existing pages and
keeping information updated.

The Knowledge Annotator annotates onto-
logical information in HTML pages. 4

Ontology Markup Language
OML, developed at the University of

Washington, is partially based on SHOE. In
fact, it was first considered an XML serial-
ization of SHOE. Hence, OML and SHOE
share many features.

Four different levels of OML exist: OML
Core is related to logical aspects of the lan-
guage and is included by the rest of the lay-
ers; Simple OML maps directly to RDF(S);
Abbreviated OML includes conceptual graphs
features; and Standard OML is the most
expressive version of OML. We selected Sim-
ple OML, because the higher layers don’t pro-
vide more components than the ones identi-
fied in our framework. These higher layers
are tightly related to the representation of con-
ceptual graphs.

There are no other tools for authoring
OML ontologies other than existing general-
purpose XML edition tools.

Resource Description Framework
and RDF Schema

RDF, developed by the W3C for describing
Web resources, allows the specification of the
semantics of data based on XML in a stan-
dardized, interoperable manner. It also provides
mechanisms to explicitly represent services,
processes, and business models, while allow-
ing recognition of nonexplicit information.

The RDF data model is equivalent to the
semantic networks formalism. It consists of
three object types: resources are described
by RDF expressions and are always named
by URIs plus optional anchor IDs; proper-
ties define specific aspects, characteristics,
attributes, or relations used to describe a
resource; and statements assign a value for a
property in a specific resource (this value
might be another RDF statement).

The RDF data model does not provide
mechanisms for defining the relationships
between properties (attributes) and
resources—this is the role of RDFS. RDFS
offers primitives for defining knowledge

models that are closer to frame-based
approaches. RDF(S) is widely used as a rep-
resentation format in many tools and pro-
jects, such as Amaya, Protégé, Mozilla,
SilRI, and so on.

Ontology Interchange Language
OIL, developed in the OntoKnowledge

project (www.ontoknowledge.org/OIL), per-
mits semantic interoperability between Web
resources. Its syntax and semantics are based
on existing proposals (OKBC, XOL, and
RDF(S)), providing modeling primitives
commonly used in frame-based approaches
to ontological engineering (concepts, tax-
onomies of concepts, relations, and so on),
and formal semantics and reasoning support
found in description logic approaches (a sub-
set of first order logic that maintains a high
expressive power, together with decidability
and an efficient inference mechanism).

OIL, built on top of RDF(S) (see Figure
1), has the following layers: Core OIL groups
the OIL primitives that have a direct map-
ping to RDF(S) primitives; Standard OIL is
the complete OIL model, using more primi-
tives than the ones defined in RDF(S);
Instance OIL adds instances of concepts and
roles to the previous model; and Heavy OIL
is the layer for future extensions of OIL.

OILEd, Protégé2000, and WebODE can
be used to author OIL ontologies. OIL’s syn-
tax is not only expressed in XML but can also
be presented in ASCII. We use ASCII for our
examples.

DARPA Agent Markup
Language+OIL

DAML+OIL has been developed by a
joint committee from the US and the Euro-
pean Union (IST) in the context of DAML, a
DARPA project for allowing semantic inter-
operability in XML. Hence, DAML+OIL
shares the same objective as OIL.

DAML+OIL is built on RDF(S). Its name
implicitly suggests that there is a tight rela-
tionship with OIL. It replaces the initial spec-
ification, which was called DAML-ONT, and
was also based on the OIL language. OILEd,
OntoEdit, Protégé2000, and WebODE are
tools that can author DAML+OIL ontologies.

Comparison criteria
We focus on the identifying components

that can be represented in each language and
their meaning and which components can be
specified, because inference depends not
only on the language but also on the tools
that are being currently developed around the
language (which is out of the scope of this
paper).10 We will use the same set of criteria
to compare different ontology languages,
based on different representation formalisms.

Ontology knowledge can be specified
using five components: concepts (which are
usually organized by taxonomies), relations,
functions, axioms, and instances.

Concepts
Concepts can be abstract or concrete, ele-

mentary or composite, real or fictitious; in
short, a concept can be anything about which
something is said, and, therefore, could also
be the description of a task, function, action,
strategy, reasoning process, and so on. Con-
cepts are also known as classes (XOL,
RDF(S), OIL, DAML+OIL), objects (OML)
or categories (SHOE). When we evaluate
concepts, we consider several questions.

Is it possible to define partitions (sets of
disjoint concepts)? This is an important fea-
ture, especially for agents that reason with
the information in the ontology. They won’t
allow an instance to be an instance of two
concepts that belongs to a partition. For
example, concepts Table and Chair can
define a partition in a furniture ontology.

Is it possible to define the documentation of
the concept? This includes a natural language
definition for it. This is a desirable feature for
maintenance and readability purposes.

Does the language provide mechanisms to
define concept attributes? Attributes are also
known as slots (XOL), functions (OML), or
properties (RDF(S) and DAML+OIL).
Binary relations and roles (in SHOE and
OIL) can be used to specify attributes. The
following attributes have been identified:

• Instance attributes:Attributes whose value
might be different for each instance of the
concept.

• Class attributes: Attributes whose value is
attached to the concept, that is, its value will
be the same for all instances of the concept.

• Local attributes: Same-name attributes
attached to different concepts. For exam-
ple, concepts Chair and Table might have
an attribute with name color without
clashes.

JANUARY/FEBRUARY 2002 computer.org/intelligent 55

XOL SHOE OML

OIL DAML + OIL

RDF(S)

XML

Figure 1. The languages stack in the
Semantic Web.

• Global attributes: Ones in which the
domain is not specified. They can be
applied to any concept in the ontology. For
example, if we decide to create attribute
color as a global attribute, it will be
applied to all concepts in the ontology.

Instance and class attributes are commonly
used in concept descriptions. The need for
local and global attributes will depend on the
application’s representation needs.

Does the language provide the following
predefined facets for attributes at a class?

• Default slot value (used to assign a value
to the attribute in case there is no explicit
value defined for it)

• Type (used to constrain the type—also
called range—of the attribute)

• Cardinality constraints (used to constrain
the minimum and maximum number of
values)

• Slot documentation (includes a natural lan-
guage definition for the attribute)

Constraints on the type of attributes and their
cardinality are used to determine what type
of values an attribute might have and how
many values it can have when applied to a
class. For example, a Product has just one
price (which is an integer value) and from
one to five colors represented by strings. The
default values are used in case we do not have
explicit information about the value of a slot.
For example, we can assume that the dis-
count of a Product is 0 if it is not specified.

Taxonomies
Taxonomies are used to organize ontolog-

ical knowledge using generalization and spe-
cialization relationships through which sim-
ple and multiple inheritance could be
applied. We analyze whether the following
primitives are predefined in the languages:

• Subclass of (also called subsumption rela-
tionship) specializes general concepts in
more specific concepts.

• Disjoint decomposition (a partition where
all its concepts are subclasses of a common
concept) does not necessarily have to be
complete—that is, there might be instances
of this concept that are not included in any
of its subclasses. For example, the parti-
tion composed of concepts Table and Chair
is a disjoint decomposition of concept Fur-
niture, and instances of concept Furniture

can exist that are not instances of concepts
Table or Chair (wardrobes are also pieces
of furniture).

• Exhaustive subclass decomposition is a
complete disjoint decomposition—that is,
any instance of the superclass concept
must be an instance of any of the concepts
in the partition. For example, the partition
composed of concepts RISCMicroproces-
sor and CISCMicroprocessor is an exhaus-
tive subclass decomposition of the concept
Microprocessor, as there is no instance of
concept Microprocessor that is not an
instance of concept RISCMicroprocessor
or concept CISCMicroprocessor.

• Not subclass of might be used to state that
a concept is not a specialization of another
concept. This kind of knowledge is usu-
ally represented using the denial of the
subclass of primitive.

Relations and functions
Relations are an interaction between con-

cepts of the domain and attributes. In fact,
attributes can be used to define binary rela-
tions in XOL, RDF(S) and DAML+OIL.
Relations are called relations in SHOE and
OML, and roles in OIL.

Functions are a special kind of relation
where the value of the last argument is unique
for a list of values of the n–1 preceding argu-
ments. We ask the following questions:

• Is it possible to define arbitrary n-ary rela-
tions or functions? If this is not possible,
which is the maximum number of argu-
ments? Examples of n-ary relations and
functions can be, respectively, purchase (a

buyer purchases a product from a seller for
an amount of money) and getTele-
phoneNumber (given a name, surname, and
address, the function will return the person’s
telephone number).

• Might the type of arguments be con-
strained? In the purchase relation just
described, the types of arguments are, Per-
son, Product, and Number.

• Is it possible to define any kind of integrity
constraints to check the correctness of the
arguments’ value? For example, define
that the price of a product for the purchase
relation must be positive, or that the prod-
uct that is sold must have an attribute
called soldOut with value False.

• Is it possible to define operational defini-
tions to infer values of arguments with
procedures, formulas, or rules, or to define
its semantic using axioms or rules? For
example, let’s think of a function called
isUnderMinimumStock, applicable to a
Product and a Store, which returns True if
the amount of the product’s pieces is under
a minimum number, which is the value of
the product’s attribute minimumStockPer-
Store. There is a need for an operational
definition (a formula or rule) to obtain the
function’s output value.

Axioms
Axioms model sentences that are always

true and can be used for several purposes,
such as constraining information, verifying
correctness, or deducting new information.
Axioms are also known as assertions (OML).
Axioms are not widely used currently in the
context of Semantic Web applications.

56 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Table 1. Definition of concepts (+ indicates a supported feature in the language;
- indicates unsupported features, and +/- indicates features that need further

explanation).

Concepts XOL SHOE OML RDF(S) OIL DAML+OIL

General Issues
Partitions - - + - + +
Documentation + + + + + +

Attributes
Instance attributes + + + + + +
Class attributes + - + - + +
Local scope + + + + + +
Global scope + - + + + +

Facets
Default value + - - - - -
Type constraints + + + + + +
Cardinality constraints + - - - + +
Documentation + + + + + +

The need for axioms is application-
dependent. Although they are not currently
widely used, they will become an important
factor in Semantic Web applications, because
new knowledge will be deducted when look-
ing for information, inconsistencies will be
detected when processing millions of Web
pages, and so on.

We focus on the following characteristics:

• Is it possible to build axioms in first-order
logic? The order of a logic specifies what
entities ForAll and Exists might quantify
over. First-order logic can only quantify
over sets of atomic propositions (for exam-
ple, ForAll p . p => p), while second-order
logic can quantify over functions on
propositions (for example, ForAll f(p) .
g(p) => h(p)).11

• Is it possible to build second-order logic
axioms?

• Can we define axioms as independent ele-
ments in the ontology (independent axioms)?

• Can we embed axioms inside the defini-
tion of other elements, such as relations,
concepts, and so on?

Instances
Instances represent elements in the

domain attached to a specific concept. Facts
represent a relation that holds between ele-
ments, and claims represent assertions of a
fact made by an instance. All these terms are
used to represent elements in the domain. We
asked the following questions:

• Is it possible to define instances of con-
cepts? For example, Peter is an instance
of class Buyer.

• Is it possible to define instances of rela-
tions (facts)? For example, “Peter buys
Computer2.”

• Does the language provide special mech-
anisms to define claims? For example,
“John says that Peter has bought Com-
puter2.”

We will describe information in distributed
resources in the Semantic Web using
instances of concepts and relations. Claims
are also important, because in the distributed
environment of the Semantic Web, resources
will be able to make whatever claims they
want. Agents shouldn’t interpret them as
facts of knowledge, but as claims being made
by a particular instance about itself or about
other instances or data, which might prove
to be inconsistent with others.4

Results for concepts
Table 1 shows that partitions are only

definable in OML, OIL, and DAML+OIL.
XOL does not allow defining partitions,
because it uses a restricted knowledge model
taken from OKBC (which does not support
partitions). SHOE and RDF(S) do not
include it as well.

Documentation is included as a feature in
all languages. In SHOE, OML, RDF(S), and
DAML+OIL we can find more types of doc-
umentation that might be provided for a con-
cept, such as short labels in all the languages
(which are used to present the information
about the concept’s name to an agent) or
comment, in RDF(S) and DAML+OIL.

Most languages distinguish between
instance and class attributes and specify local
or global scopes for classes. XOL uses labels
own and template (the default is own) for
expressing class and instance attributes. Nei-
ther SHOE nor RDF(S) distinguish instance
and class attributes, and it is not possible to
establish a fixed value for class attributes. In
OML, there is no syntactic difference between
both kinds of attributes, but assertions can be
added to add a value to the class attributes and
avoid instances filling them with different val-
ues. The same applies to OIL, although the
value is fixed using the has-filler primitive. It
is also necessary to fix the cardinality of the
attribute to avoid instances adding more val-
ues to the attribute. Finally, DAML+OIL
allows defining restrictions on attributes in a
similar way to OIL, although it is not neces-
sary to fix its cardinality.

Local scope is achieved by restricting the
domain of the attributes to the specific con-
cept where they can be applied (in OML, this
is implicit, as attributes are defined inside the
definition of the class). An attribute with
global scope might be represented in all lan-
guages, except for SHOE, as an attribute or
binary relation where the domain is not spec-
ified. In SHOE, you cannot define an attribute
or relation without a domain. Hence, you must
define it for each concept in the top of all the
taxonomies of concepts, so that it is specified
for all concepts through inheritance.

Only XOL supports default values. In
OIL, fillers could be used for representing
default values, but you must be careful when
using them, as their behavior is different from
that of default values. If you create an
instance of a concept and assign a value to
an attribute that had a default value, the
default value disappears, whereas a value
included as a filler will not disappear as a
value for the attribute in the instance.

The type and documentation of attributes
can be declared explicitly in all the lan-
guages. Cardinality constraints cannot be
established in SHOE, OML, or RDF(S).

Results for taxonomies
There is just one primitive predefined in

all languages and correctly handled by them,
subclass of. Related to the rest of the primi-
tives for taxonomies, Table 2 shows that the
first languages that were created did not take
into account the suitability of partitions for
representing taxonomies. Hence, they didn’t
include primitives to model them.

Table 2 shows the exhaustive subclass
decomposition (in OML, OIL, and DAML+
OIL) of concept Book into its subclasses
Manual and GenericBook (see the “Experi-
ment” sidebar also). OIL and DAML+OIL
provide built-in primitives that allow defin-
ing these kinds of decomposition. In OML,
it is represented as a disjoint decomposition,
and an additional assertion is needed to estab-
lish its exhaustiveness. In the rest of the lan-
guages (XOL, SHOE, and RDF(S)), we can
only represent the subclass-of relationship
between the concepts Manual and Book, and
GenericBook and Book. There is a loss of
information that should be handled with care
in case we choose any of them to represent
our ontologies.

OIL and DAML+OIL are the only lan-
guages that allow representing not-subclass-
of relationships.

Results for relations and functions
Relations and functions’ arity is the first

feature that we studied. Table 3 shows that
only SHOE and OML include n-ary relations

JANUARY/FEBRUARY 2002 computer.org/intelligent 57

Table 2. Definition of taxonomies (+ indicates a supported feature in the language;
- for unsupported features, and +/- for features that need further explanation).

Taxonomies XOL SHOE OML RDF(S) OIL DAML+OIL

Subclass of + + + + + +
Exhaustive decompositions - - +/- - + +
Disjoint decompositions - - + - + +
Not subclass of - - - - + +

and functions as built-in primitives in the lan-
guage. The rest of the languages do not pro-
vide primitives for declaring them: they just
provide built-in primitives for binary rela-
tions, which correspond to the attributes for
the concepts in the ontology. Hence, n-ary
relations must be specified by means of con-
cepts whose attributes correspond to the
arguments of the relation.

Type constraints can be defined for argu-
ments in all the languages. More general con-
straints (integrity constraints) cannot be
defined, except for OML, which lets us
define general axioms that can be applied to
these arguments. OIL and DAML+OIL also
provide some rich methods for establishing
constraints on arguments, such as qualified
constraints (for example, cardinality con-
straints that are only applied when the range
of the relation belongs to a specific class).

Finally, operational definitions cannot be
defined for relations and functions in any lan-
guage. Other means of representing them
should be used that are out of the scope of
these ontology specification languages.

Results for axioms
Table 4 shows that we were just able to

represent all the axioms of the ontology in

OML. We could also represent the deductive
axiom in SHOE, using a SHOE inference
rule, as these rules allow the deduction of val-
ues for attributes.

Although they are not considered in our
framework, we must comment that OIL and
DAML+OIL allow defining axioms about
algebraic properties of relations (symmetry,
transitivity, and so on). Studies on semantic
patterns are also available that present a way
to include these types of axioms for RDF(S).

Results for instances
Table 5 shows that instances and facts are

easily represented in all the languages. This
is not the case of claims, which are just pro-
vided as built-in primitives in SHOE, by
including definitions inside an instance def-
inition (this means that the definitions are
claims of the instance in which they are
embedded). Claims are not predefined in
RDF(S), OIL, or DAML+OIL, but their
specifications show how claims could be
defined using the language constructs.
Additionally, any agent collecting infor-
mation from a resource on the Web could
consider this information as a claim made
by the resource in which the information is
presented.

We have considered representation
and information exchange needs

and the current advantages and limitations of
each existing language. Representational
needs vary depending on the use of ontolo-
gies in applications. The terms lightweight
and heavyweight refer to two different kinds
of ontologies: those ontologies where con-
cepts (described by their attributes and are
organized in taxonomies using only the sub-
class-of relationship), relations and func-
tions, and possibly instances are the only
components that are represented, and those
ontologies that also contain axioms.

If we could measure the expressiveness of
languages from languages that allow defining
lightweight ontologies to languages that
allow heavyweight ontologies, the order
would be: XOL, RDF(S), SHOE, OML,
OIL, and DAML+OIL.

If you need to define a lightweight ontol-
ogy for your application (you are just wor-
ried about describing concepts and organiz-
ing them in taxonomies), you can use any of
the languages we presented in this article.
You can decide which language to use by
considering existing tools for editing ontolo-
gies in it, available software that handles the
language (APIs, inference engines, and so
on), familiarity with the representation for-
malism (XOL and SHOE use frames, which
might be easier to use than semantic net-
works (RDF(S)), conceptual graphs (OML),
or description logic (OIL and DAML+OIL)),
and so on.

In defining heavyweight ontologies, you
must carefully select the language—a wrong
selection could prevent the success of your
application. We recommend starting with our
framework to determine your representation
needs. Once the tables have been filled with
this information, you can compare them with
the ones provided in this article, so you can
drop languages without enough expressive-
ness capabilities for your application.

The second step should be based on the rea-
soning support needed for the application.
XOL and OML have no reasoning support
available, while inference engines for RDF(S),
SHOE, OIL, and DAML+OIL exist. In this
case, you should consider what kind of rea-
soning you need. Query services have been
created for RDF(S), SHOE, and DAML+OIL.
OIL and DAML+OIL also provide automatic
classifications for detecting inconsistencies in
the ontology and organizing concepts in the
taxonomy.

If you still have several candidate lan-

58 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Table 5. Definition of instances (+ indicates a supported feature in the language;
- indicates unsupported features, and +/- indicates features that need further

explanation).

Instances XOL SHOE OML RDF(S) OIL DAML+OIL

Instances of concepts + + + + + +
Facts + + + + + +
Claims - + - +/- +/- +/-

Table 4. Definition of axioms (+ indicates a supported feature in the language;
- indicates unsupported features, and +/- indicates features that need further

explanation).

Axioms XOL SHOE OML RDF(S) OIL DAML+OIL

First-order logic - +/- + - +/- +/-
Second-order logic - - - - - -
Independent axioms - - - - - -
Embedded axioms - - + - - -

Table 3. Definition of relations and functions (+ indicates a supported feature in the
language; - indicates unsupported features, and +/- indicates features that need

further explanation).

Relations and functions XOL SHOE OML RDF(S) OIL DAML+OIL

n-ary relations/functions +/- + + +/- +/- +/-
Type constraints + + + + + +
Integrity constraints - - + - - -
Operational definitions - - - - - -

guages, your decision should be based on
existing tools for creating ontologies and
annotating resources (creating instances and
facts). OIL and DAML+OIL are supported
by a wide range of ontology development
tools (such as OILEd, OntoEdit (only
DAML+OIL), Protégé and WebODE).
RDF(S) is not supported by any of these
ontology tools, but by more general tools for
metadata generation. There are also annota-
tors for RDF(S), which can be also used for

OIL and DAML+OIL, as instances are
stored as RDF instances. The SHOE knowl-
edge annotator allows annotating Web pages
with SHOE, but no ontology editor is avail-
able for building ontologies. Finally, the rest
of the languages are not supported by any
specific tool.

This roadmap has been successfully used in
the selection of a language for the specification
of ontologies in the IST project MKBEEM (see
the “Experiment” sidebar).

Acknowledgments
This work is supported by the CICYT project

“Metodología para la Gestión de Conocimiento,” ref-
erence TIC-980741, by the IST project MKBEEM
(1999-10589) and by a FPI grant, funded by UPM.

This article would not be possible without com-
ments and feedback from developers and users of
a wide range of ontology specification languages,
who verified our tables: V.K. Chaudhri (XOL), Jeff
Hefflin (SHOE), Ian Horrocks (OIL), Stefan
Decker (FLogic), Belén Díaz (LOOM), Yolanda
Gil (LOOM), Enrico Motta (OCML), James Rice
(Ontolingua and OKBC), and Tom Russ (LOOM).

JANUARY/FEBRUARY 2002 computer.org/intelligent 59

We used a set of ontologies as a test set to choose the most
suitable language during the first phase of the European Infor-
mation Society Technologies project Multilingual Knowledge-
Based European Electronic Marketplace. The tests implemented
the ontologies in all the languages, analyzed the information
that could be represented, and obtained guidelines on how to
implement different kinds of information in all of them. The
implemented codes of this ontology can be downloaded at
http://delicias.dia.fi.upm.es/RoadMap/ontologies.html.

The taxonomy of concepts, their attributes (Instance attri-
butes are preceded by * and class attributes are not preceded
by any sign), and the ad-hoc relations are presented graphically
(in a frame-based fashion) in Figure A.

Our aim was to build a general ontology about office mater-
ial—desks, computers, and books were included, among other
products. Computers and books are more specialized, so there
is a disjoint decomposition of computers into Unix servers and
PCs, and an exhaustive decomposition of books into manuals
and generic books (although representing generic concepts is
not a good practice in ontology modeling). We have created
this concept for the sake of having an exhaustive partition, so
there are only manuals or generic books. Several attributes

have been defined for concepts in the ontology: price in
OfficeMaterial can have at most one value (and by default 0);
platform in UnixServer and PC has value UNIX and PC; type in
Manual, and theme in GenericBook. All concepts in the ontol-
ogy have an attribute called name considered as an attribute
with global scope.

There are three ad-hoc relationships: hasManual from Com-
puter to Manual; purchases, between Buyer, Seller and Office-
Furniture, and isRecommended, from Book to Buyer.

We have also defined instances for some concepts. John and
Peter, as instances of Buyer and Seller, UnixV5 as an instance of
Manual, UnixForDummies as an instance of GenericBook, and
facts between instances, such as John purchases the manual
UnixV5 from Peter.

Finally, we have included several axioms expressing constraints
in our e-commerce platform. For example, “a computer that is
a Unix Server has a manual that is of type Unix”, and “when a
person purchases a Unix Server, he/she must also purchase a
manual of type Unix.” There is also one axiom included for
deductive purposes: “if a person buys a manual of type Unix,
he or she must be recommended other generic books with
theme computers.”

Experiment: An Ontology for an E-Commerce Platform

sc sc sc

Is Recommended

sc sc

Has Manual

sc sc

purchases

Disjoint Exhaustive

OfficeMaterial Seller

(*)price:[0]

Desk Computer

Computer

Book

Unix Server

platform: Unix platform: PC

GenericBookManual

(*)type (*)theme

Buyer

Figure A. Part of one of the sample ontologies that have been implemented in all the languages.

References

1. T. Berners-Lee and M. Fischetti, Weaving the
Web: The Original Design and Ultimate Des-
tiny of the World Wide Web by its Inventor,
Harper, San Francisco, 1999.

2. R. Studer, R. Benjamins, and D. Fensel,
“Knowledge Engineering: Principles and Meth-
ods,” IEEE Trans. on Data and Knowledge
Eng., vol. 25, nos. 1–2, 1998, pp. 161–197.

3. R. Karp, V. Chaudhri, and J. Thomere, “XOL:
An XML-Based Ontology Exchange Language
(version 0.4),” Aug. 1999, www.ai.sri.com/
~pkarp/xol (current Jan. 2002).

4. S. Luke and J. Heflin, SHOE 1.01 Proposed
Specification, SHOE Project, Feb. 2000.
www.cs.umd.edu/projects/plus/SHOE/spec1.
01.htm (current Jan. 2002).

5. R. Kent, Conceptual Knowledge Markup Lan-
guage (version 0.2). 1998. www.ontologos.
org/CKML/CKML%200.2.html (current Jan.
2002).

6. O. Lassila and R. Webick, “Resource Descrip-
tion Framework (RDF) Model and Syntax
Specification.” W3C Recommendation, Jan.

1999, www.w3.org/TR/PR-rdf-syntax (current
Jan. 2002).

7. D. Brickley and R.V. Guha, “Resource
Description Framework (RDF) Schema Spec-
ification,” W3C Proposed Recommendation,
Mar. 1999, www.w3.org/TR/PR-rdf-schema
(current Jan. 2002).

8. I. Horrocks et al., “OIL in a Nutshell,” Proc.
ECAI ’00 Workshop on Application of Ontolo-
gies and PSMs, Berlin, Germany, 2000, pp.
4.1–4.12.

9. I. Horrocks and F. van Harmelen, Reference
Description of the DAML+OIL Ontology
Markup Language, draft report, 2001,
www.daml.org/2000/12/reference.html (cur-
rent Jan. 2002).

10. O. Corcho and A. Gómez-Pérez, “A Roadmap
to Ontology Specification Languages,” 12th
Int’l Conf. Knowledge Eng. and Knowledge
Management, Lecture Notes in Artificial
Intelligence, Springer-Verlag, Berlin, Oct.
2000, pp. 80–96.

11. J. Barwise, “An Introduction to First-Order
Logic,” Handbook of Mathematical Logic, J.
Barwise, Amsterdam, 1977, pp. 5–46.

60 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

T h e A u t h o r s
Asunción Gómez-Pérez is an associate professor in the Computer Science
School at Universidad Politécnica de Madrid, Spain. Her research interests
include theoretical ontological foundations, methodologies for building and
merging ontologies, ontological reengineering, uses of ontologies in appli-
cations related with e-commerce and knowledge management, and the
Semantic Web. She received a BA in computer science, an MSc in knowledge
engineering, and a PhD in computer sciences from the Universidad Politéc-
nica de Madrid, Spain. She also received an MSc in business administration
from the Universidad Pontificia de Comillas, Spain. Asunción is author of
Ontological Engineering and is chairing the EKAW-2002 conference. Con-
tact her at Facultad de Informática, Universidad Politécnica de Madrid, Cam-
pus de Montegancedo s/n, Boadilla del Monte, 28660, Madrid, Spain;
asun@fi.upm.es.

Oscar Corcho is an invited professor at the Universidad Pontificia de Sala-
manca. His research interests include ontology languages, the ontology trans-
lation problem, and the Semantic Web. He received his BA in computer sci-
ence and his MSc in Software Engineering from the Polytechnic University
of Madrid, and is a PhD student in Artificial Intelligence there. He belongs
to the Ontology Group of the Artificial Intelligence Laboratory at the Com-
puter Science School. Contact him at Facultad de Informática, Universidad
Politécnica de Madrid, Campus de Montegancedo s/n, Boadilla del Monte,
28660, Madrid, Spain; ocorcho@fi.upm.es.

RELAUNCHED IN

JANUARY 2002!

Distributed Systems Online
will supplement the coverage

in IEEE Internet Computing
and IEEE Pervasive Computing.

Each monthly issue will include
links to magazine content and
issue addenda such as source

code, tutorial examples,
and virtual tours.

To keep up with all that’s happening
in distributed systems, check out

To get regular updates, e-mail
dsonline@computer.org

IEEE Distributed Systems Online
brings you peer-reviewed

features, tutorials,
and expert-moderated pages
covering a growing spectrum
of important topics, including

❐ Dependable Systems

❐ Mobile and Wireless

❐ Distributed Agents

❐ Security

❐ Middleware
❐ and more!

DS Online will feature a new
design, and it will continue to
provide news, research from the
trenches, book reviews, and more.

dsonline.computer.org

