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We present predictions for the static scaling exponents and for the cross-over polymer volumetric
fractions in the marginal and concentrated solution regimes. Corrections for finite chain length are
made. Predictions are based on an analysis of correlated fluctuations in density and chain length, in
a semigrand ensemble in which mers and solvent sites exchange identities. Cross-over volumetric
fractions are found to be chain length independent to first order, although reciprocal-N corrections
are also estimated. Predicted scaling exponents and cross-over regimes are compared with available
data from extensive off-lattice Monte Carlo simulations �Karayiannis and Laso, Phys. Rev. Lett.
100, 050602 �2008�� on freely jointed, hard-sphere chains of average lengths from N=12–500 and
at packing densities from dilute ones up to the maximally random jammed state. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2912189�

INTRODUCTION

The pioneering concept of scaling laws that dictate the
static and dynamic behaviors of macromolecular systems ir-
respective of their chemical constitution is widely considered
as one of the most significant and fundamental advances in
polymer science.1–3 This well established universal behavior
allows for a systematic unification of experimental and simu-
lation data by limiting the set of dominant mechanisms and
corresponding parameters. Consequently, universal scaling
laws greatly simplify the prediction of structure-property re-
lations, an objective of paramount importance for the design
of novel polymeric materials. From the theoretical point of
view, it is often required to resort to simplified descriptions
that deviate from realistic molecular models in order to
achieve mathematical tractability. The freely jointed, hard-
sphere chain is perhaps the simplest of these idealizations
which incorporates the fundamental concept of excluded
volume.

While static and dynamic scaling laws �along with the
corresponding crossover predictions� for dilute and semidi-
lute polymer systems have been proposed theoretically and
have been verified by a large number of experimental4–6 and
modeling8–12 studies, the marginal and concentrated regimes
have been comparatively less well explored. These regimes
are often introduced as those intervals of polymer volumetric
fraction or concentration where the quadratic �marginal� or
cubic �concentrated� terms in a series expansion of the
chemical potential difference predicted by the Flory–
Huggins theory become dominant.13,14 Although both inter-
esting in their own right, the marginal and concentrated re-
gimes have not received the degree of attention commanded
by the scaling and renormalization approaches valid in the
dilute and semidilute regimes. Scaling laws in the marginal

and concentrated regimes were first postulated by Edwards15

and partially confirmed by experiments.4,16 The marginal re-
gime, in particular, was absent in the original formulation by
the French school, and its very existence has even been the
subject of some controversy.4,14 Schaefer proposed an alter-
native to the scaling law approach in the marginal regime.14

On the other hand, the exploration of the marginal and con-
centrated regimes presents considerable experimental
challenges.17,18 It is remarkable that scaling laws for blob
size in all regimes have been proposed but not
always for chain size.13,14 In very recent works, Wittmer
et al. and Beckrich et al.19,20 have reviewed and extended
Flory’s ideality hypothesis.

From the computational point of view, the marginal re-
gime has been reached in only a few instances for off-lattice
models,8,21–23 while the concentrated regime has remained
inaccessible until very recently.24,25 Using a general Monte
Carlo �MC� scheme25 we were able to generate long trajec-
tories of model configurations of freely jointed chains of
tangent hard spheres at packing densities from dilute ones up
to the close vicinity of the maximally random jammed26–28

�MRJ� state ��=�MRJ�. By generating and successively
equilibrating long hard-sphere chains �for average molecular
lengths up to N=500� in the whole density range �0��
��MRJ� it is now possible to determine the static scaling
regimes, from the dilute up to the concentrated, along with
the corresponding characteristic cross-over packing densities.

Complementary to these simulations near the MRJ state
we present predictions for the scaling exponents and the
cross-over volumetric fractions in the marginal and concen-
trated solution regimes. We describe a general correspon-
dence between polymer solution configurations and hard-
sphere packings, both at the MRJ state. This correspondence
is the basis of a classification scheme employed to single out
the microscopic mechanisms of correlated fluctuations in
volumetric fraction and chain length.

a�Author to whom correspondence should be addressed. Electronic mail:
mlaso@etsii.upm.es.

THE JOURNAL OF CHEMICAL PHYSICS 128, 174901 �2008�

0021-9606/2008/128�17�/174901/11/$23.00 © 2008 American Institute of Physics128, 174901-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148653555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.2912189
http://dx.doi.org/10.1063/1.2912189
http://dx.doi.org/10.1063/1.2912189


HARD-SPHERE REPRESENTATION OF SOLUTIONS
OF FLEXIBLE HOMOPOLYMERS

Let j be the label of the jth configuration of a system of
Nsites identical hard spheres of unit volume, occupying a vol-
ume of V units at the MRJ state. Let R j be the list of the
position vectors of the centers, or “sites,” of its Nsites spheres:
R j ���i=1

Nsitesr�i��. Let S��R j� be the complete set, or en-
semble, of configurations of Nsites hard spheres at the MRJ
state. Transformations of R j by the translation, proper and
improper orthogonal, and subindex permutation groups are
excluded from S. Each R j in S then represents a physically
unique member of this ensemble.

From �chains
MRJ =�spheres

MRJ �as shown in Ref. 24� and from the
definition of the MRJ state it follows that there exists a
surjective mapping between the set of hard-sphere chain
�“polymer”� configurations and the ensemble S of single
hard-sphere configurations at the MRJ state: For every mem-
ber R j �S, it is possible to exhaustively generate a large, but
finite, set of configurations containing a total of Nsites,
and having a given volumetric fraction, or “density,” of chain
molecules �, defined as

� =
�i=2

c iNi

V
=

�i=2
c iNi

Nsites
�MRJ, �1�

where c is the number of distinct chain lengths �species�, and
the index i=1 is assigned to single spheres �“solvent”�. The
volumetric fraction, or density, of the solvent is �sol=N1 /V
=�MRJ−�. Within this set it is possible to distinguish subsets
of configurations containing a prescribed distribution of
chain lengths, i.e., Ni chains of length i, i=1, . . . ,c, such that
Eq. �1� is satisfied. Such polydisperse chain configurations at
the MRJ can be obtained from a given R j �S by tracing sets
of Nchains=�i=1

c Ni nonoverlapping paths of the prescribed
chain length distribution, that connect tangent hard spheres
in the hard-sphere MRJ configuration R j �N1, the number of
one-site “chains,” or solvent sites, is included in the sums�.
Let R jk denote �the kth� set of all path configurations that can
be obtained from R j by specifying volume fraction � and

�the kth� chain length distribution, i.e., k counts chain length
distributions, but does not distinguish individual realizations.
Let R jkl denote �the lth� set of all configurations that can be
obtained from R jk by the lth path trace, i.e., obtained solely
by altering the connectivity between sites, while maintaining
volumetric fraction and chain length distribution. l counts
individual chains �paths or graphs� that connect sites with
fixed coordinates R j that have a prescribed chain length
distribution at a given volumetric fraction.

The set S5 jk��lR jkl is then the ensemble of configura-
tions of chain molecules of prescribed length distribution,
and volumetric fraction �Eq. �1��, and constrained by
�i=1

c iNi=Nsites. Transformations of R jkl by permutations un-
der which the connectivity graph of the configuration R jkl is

invariant, i.e., chain relabeling, are excluded from S5 .

The set S̃j ��kS5 jk is the ensemble of configurations of
chain molecules that can be obtained from R j, of prescribed
volumetric fraction �1� and constrained by �i=1

c iNi=Nsites.

Finally, let �̃=� jS̃j be the ensemble of all possible paths,
that can be obtained from all R j, for all volumetric fractions
and for all possible prescriptions of chain length distribution,

with the only constraint that �i=1
c iNi=Nsites. �̃ is, from the

configurational point of view, an isochoric grand canonical
ensemble in which the number of molecules of each species
can fluctuate, subjected to the restriction �i=1

c iNi=Nsites.

�̃ splits naturally in classes of equivalence by the relation
� defined by

R jkl 	 Rmnp iff j = m �2�

�see Fig. 1�. Note that R j is also a suitable representative of

the smaller set �̃ /	 formed from �̃ by the action of �.
Each class R j comprises all physically distinct configurations
that differ only in the way Nsites sites of fixed coordinates are

connected. The surjection between �̃ and S is the mapping

between any R jkl��̃ and the class representative R j

obtained by deletion of connectivity of R jkl��̃. For large

FIG. 1. Schematic representation of ensemble �̃. Poly-
mer volumetric fraction increases from left �=0 to

right �=�MRJ. �̃ is split in equivalence classes repre-
sented by the single-sphere configuration R j. The
dashed line marks the boundary of equivalence class

R j. The dotted rectangle represents R̃ j
k, a set of configu-

rations with prescribed chain length distribution, that
share R j but differ in the connectivity.
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values of Nsites, i.e., in the macroscopic limit, the class R j is
properly parametrized by the volumetric fraction �.

Thus, given the observed equality of �chains
MRJ =�spheres

MRJ ,24

the ensemble �̃ comprises all microscopic instances of poly-
disperse solutions of athermal chain molecules in an ather-
mal solvent at all densities in the range �0,�MRJ�. In view of

the very small compressibility of liquid polymer solutions, �̃
is an adequate setting for the discussion of universal scaling
behavior of polymers in solution.29 As will be shown below,
the simplicity of the intermolecular potential makes it pos-
sible to predict static scaling exponents and cross-over con-
centrations in the marginal and concentrated regimes based
on statistical mechanical, microscopic arguments.

The surjection between �̃ and S allows the investigation
of the effect of polymer concentration �density� by continu-
ously varying �, while �MRJ=�+�sol remains constant. In
the very dilute regime N1=Nsites, whereas N1=0 in the melt.
We base our analysis on a graph-theoretical proof that static
scaling behavior can be ascertained by monitoring the micro-
scopic mechanisms of strictly local correlated fluctuations of
volumetric fraction � and chain length in a semigrand ca-
nonical ensemble. These mechanisms are especially transpar-
ent for the hard-sphere pair-wise potential at �+�sol=�MRJ

since scaling and cross-over are based on straightforward
combinatorial/graph connectivity arguments.

The basis of semigrand ensembles30,31 is a resummation
of the grand canonical partition function in terms of molecu-
lar species identities. As a starting point we take the grand
canonical partition function � for a multicomponent mixture
containing c components:

��V,T,�1, . . . ,�c� = �
N1,. . .,Nc

�



i=1

c
qi

Ni exp���iNi�
Ni!

VN

�� d3NR exp�− �U�R�� , �3�

with N=�i=1
c Nc, and qi are the translational and internal con-

tributions to the partition function for species i, and

Z�V,T,N1, . . . ,Nc� =� d3NR exp�− �U�R��

is the classical configurational integral. Imposing a constraint
of fixed total number of molecules N, eliminating N1, and
multiplying both sides of the sum �Eq. �3�� by exp�−��1N�,
we obtain

��V,T,�1, . . . ,�c�exp�− ��1N�

= �
N2,. . .,Nc

�

�q1
N


i=1

c � qi

q1
Ni exp����i − �1�Ni�

Ni!
VN

�� d3NR exp�− �U�R�� . �4�

The primed sum ���� implies constrained summation keep-
ing N constant. The sum over the number of molecules of
each species �Eq. �4�� can now be rewritten as a sum over the
identities of molecules, including the correction factor for
multiple counting,

� = �
identities

�

�
q1

N

N!
i=1

c � qi

q1
Ni

�exp����i − �1�Ni�VNZ�V,T,N1, . . . ,Nc� . �5�

Expression �5� constitutes the basis of a number of MC
schemes based on the strategy of allowing species to change
identity. In its original form the semigrand formalism was
used to study polydisperse mixtures of spherical �single site�
components,31,32 but it has also been applied with great suc-
cess to chain molecular systems,33–40 often in combination
with sophisticated chain connectivity-altering MC
schemes33,41,42 such as the end bridging, double bridging,
and intramolecular double rebridging moves in which chain
molecules swap identities by exchanging multisegment frac-
tions. This latter type of simulations is based on an extension
of the original semigrand ensemble in which a second con-
straint is added: Not only must the number of chain mono-
mers remain constant, but the total number of chain mol-
ecules is fixed as well, �i=2

c iNi=Nsites, �i=2
c Ni=Nchains using

the present nomenclature. While ideally suited for
connectivity-altering schemes, the doubly constrained semi-
grand ensemble does not allow an investigation of polymer
volumetric fraction effects, even in its isobaric variant.

Hence, we have chosen a singly constrained ��i=1
c iNi

=Nsites� ensemble which is more suitable to include the ad-
ditional degree of freedom represented by variable polymer/
solvent volumetric fraction. We have also taken the resum-
mation strategy �Eq. �5�� one step further by considering
identity exchanges between individual mers of the chain
molecules for all chain lengths. In particular, identity ex-
changes involving i=1 correspond to solvent particles being
transformed into chain mers and vice versa. Thus, fluctua-
tions in N1 are directly correlated with fluctuations in � and
completely decorrelated with fluctuations in the remaining
Ni,
i=2, . . . ,c,

	� = − 	� N1

Nsites
 = −

	N1

Nsites
, �6�

by virtue of the constraint �i=1
c iNi=Nsites.

A final condition is needed in order for ensemble con-
figurations to be representative of polymer solutions: A clear
separation between the molecular weight of the solvent
�i=1� and the shortest chains �i= lmin
1�. This separation
will be achieved by specifying a suitable spectrum of chemi-
cal potentials. Imposition of chemical potentials entails a
Legendre transformation of the ensemble. The �VTNsites�*�
ensemble is thus obtained by arbitrarily choosing a single
species as reference species. The solvent �i=1� will be cho-
sen for convenience. Ni is eliminated by means of the con-
straint �i=1

c iNi=Nsites, and the differential free energy is
Legendre transformed with respect to all species numbers Ni

except the reference, so that the semigrand �VTNsites�*�
thermodynamic potential is obtained,

� = A − �
i=2

c

�
i
*Ni, �7�
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d� = − SdT − PdV + �
i=2

c

Nid�
i
* + ��Nsites�dNsites, �8�

where

�
i
* = �i − i�1 �i

�Nsites� = �1. �9�

The link to the microscopic level is

� = − kBT ln �*, �10�

with the following partition function:

�*�V,T,Nsites,�i
*�

= �
site identities

�

�
q1

N

N!
i=1

c � qi

q1
Ni

exp���
i
*Ni�VN

�
1

N1!N2! ¯ Nc!
�2�mkBT

h2 3Nsites

Z�V,T,N1, . . . ,Nc� .

�11�

The constrained summation is performed over configurations

R��̃, which satisfy �i=1
c iNi=Nsites.

In this isochoric, semigrand canonical ensemble
�VTNsites�*�, total volume V, temperature T, total number of
sites Nsites, and a spectrum of chemical potentials are speci-
fied. Conjugate variables �P, U, Ni, �i

�Nsites�=�1� fluctuate. In
particular, the number of solvent sites and hence �Eq. �6��
polymer volumetric fraction can fluctuate. The average poly-
mer length distribution results from the imposed spectrum of
chemical potentials. The chemical potential of the reference
species is computed a posteriori, e.g., via a suitable semi-
grand modification31 of Widom’s insertion method.43

A simple length scale separation between solvent
and polymer can be achieved by specifying

�
i
* = �0 for i = 1, or i � lmin

� for 1 � i � lmin.
� �12�

Although the resulting distribution of chain lengths cannot
be computed exactly, it cannot differ much from the imposed
set of activities.32 Alternatively, a maximum term analysis44

can be used to determine an analytical approximation.33 This
is not required for our purposes, since Eq. �12� ensures that
short chains are suppressed, while the numbers of solvent
and chain molecules can fluctuate.45

Fluctuations in polymer volumetric fraction are related
to fluctuations in the number of solvent sites via Eq. �6�
and through

��	N1�2� = � ��N1�
���1


�,V

. �13�

In general, Eq. �13� cannot be evaluated analytically. How-
ever, in the marginal and concentrated regimes, it will be

shown that an analysis of the distribution of states R��̃ in
connectivity space yields valuable insights. Equation �11�
associates to each of the states R��̃ a probability
proportional to

exp� �
i=lmin

c

��
i
*Ni − �U�R�� , �14�

where U�R�=0, ∀R��̃. Also, since lmin
1, the average
“mer” or incremental chemical potential �mer

��i=2
c �Ni��i� / i� / �c−1� will, to excellent approximation,

satisfy

�mer = �1. �15�

Equation �15� is known to hold accurately for chemically
realistic homopolymers.46 Thus, Eq. �14� trivially evaluates

to exp��i=lmin

c ��
i
*Ni−�U�R��=1, ∀R��̃. All R��̃ are

equally probable. This result emphasizes the fact that the
entire complication of evaluating the partition function
and of sampling with probability density �Eq. �14�� are of a
combinatorial �connectivity� nature.

POLYMER SOLUTIONS IN THE MARGINAL
AND CONCENTRATED REGIMES

Regarding chain dimensions, the scaling theory for poly-
mers as pioneered by de Gennes and co-workers2,4–6 predicts
exponents for blob size dependence on N �see note in Ref. 7�
and �, which are regime specific. In some cases blob scaling
laws can be converted into scaling laws for radius of
gyration.13,14 In particular, in the dilute regime, ��*,semi,
where the cross-over packing fraction is �*,semi=N1−3�,
chains behave as self-avoiding random walks with �R2�
	N2� where the Flory exponent �=0.588 is accurately
known from renormalization group calculations.47 In the se-
midilute regime ����*,semi� a cross-over behavior is ex-
pected, together with a gradual decrease in the Flory expo-
nent down to �=0.5, a characteristic of dense polymer melts.
The scaling theory also predicts that in the semidilute regime
chain dimensions �squared end-to-end distance� exhibit
a density dependence of the form �R2��N�� where
�= �1−2�� / �3�−1��−0.230.

The semigrand ensemble introduced above allows a
direct examination of the universal features of the depen-
dence of chain size, e.g., �R2� or its characteristic ratio
CN= �R2� /Nb2, where b is the bond length, on polymer volu-
metric fraction. A convenient device is to consider the effect
of the fluctuations in � as the system visits ensemble states,
i.e., fluctuations caused by transitions between individual

members R jkl and Rmnp of the ensemble �̃. These transitions
obviously do not correspond to the actual dynamics of the
system. Such unphysical transitions are frequently at the
heart of efficient MC schemes, and they can be specified in

any convenient way that respects proper sampling from �̃. In
the following it is assumed that the system is ergodic �or in
terms of a MC simulation that proper configurational
sampling is guaranteed�.

Irrespective of volumetric fraction, transitions R jkl

→Rmnp are naturally classified in two disjoint, exhaustive
types as follows:
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�A� R jkl → Rmnp, j � m ,

�16�
�B� R jkl → Rmnp; j = m .

In �A� the system visits configurations that belong to separate
equivalence classes R j and Rm, while in �B� transitions take
place between configurations that belong to the same class
R j. In Fig. 1, �A� corresponds to transitions that cross the
dashed line separating equivalence class R j from other
classes Rk. Type �B� transitions correspond to a general
change in connectivity within class R j with the only con-
straint that Nsites remains constant. Polymer volumetric frac-
tion may change both in �A� and in �B� transitions. The defi-
nition of the MRJ state for single spheres, in particular, its
maximal randomness, guarantees equal statistical signifi-
cance of all configurations in set S��R j� �at zero polymer
volumetric fraction� and of all the represented equivalence
classes R j. Hence, it suffices to consider type �B� transitions
within class R j. A system transition within equivalence class
R j is tantamount to a partial or total reconstruction of the
connectivity among sites whose fixed coordinates are speci-
fied by the list Ri. Reduction to individual class R j converts
the continuous configurational problem into a discrete con-
nectivity problem. Any such connectivity reconstruction is
decomposable in a finite number of simpler moves,48 which
for our purpose can be organized into four categories, which
are shown in Fig. 2 together with some representative
graphs. Two criteria are used in this classification: Whether
or not the transition involves a volumetric fraction fluctua-
tion, and whether or not the transition causes a change in the
end-to-end distance of the chains involved. An ergodic tra-
jectory in connectivity space, in which the system visits all

states in �̃, can be constructed by specifying a microscopi-
cally reversible sequence of transitions, all of which neces-
sarily fall into one of the four categories shown in Fig. 2. The
effect of such transitions is to sample polydispersity and so
to ensure equilibration of the chain length distribution, while
allowing volumetric fraction � and Ni to fluctuate. The inter-

play between the allowed number of states and the effect of
transitions on the conformation and size of the chains in-
volved in the transition, etc., will result in the macroscopic
observable �e.g., �R2�� characteristic of each regime. Predict-
ing the outcome of this interplay is in general impossible,
since it is of a difficulty comparable to the evaluation of
averages over Eq. �11�. However, at high polymer volume
fractions partially analytical results will be obtained based on
graph theoretic arguments to be developed in the next
section.

CONCENTRATED REGIME

As a convenient starting point to obtain the universal
static scaling behavior close to the MRJ we consider the
system in the vicinity of the MRJ: R j���, ���MRJ, and
monitor fluctuations �=�MRJ−	� from the MRJ state that
involve mutation of a chain site into a solvent site �and vice
versa�. The system stays in the same R j class under such
transformations, but visits a state belonging to a different
chain size distribution, so that R jkl→R jnp, k�n. Further-
more, the final state, R jnp is in general also reachable from

other members of S5 jk, so fluctuations in 	� induce mixing48

in connectivity space.48 If we consider the set of all
individual configurations R jnp as a set of points or vertices
V= �R jnp�= �i ; i=1, ¯ � in state connectivity space, transi-
tions R jkl↔R jnp, k�n, can be represented as a set of edges
E= �e�i , j� ; i , j=1, ¯ � joining two such states, so that mutual
state accessibility is univocally mappable onto a nondirected
state connectivity graph G= �V ,E�.49 It is important to em-
phasize that vertices in the state connectivity graph represent
individual configurations of the entire system R jnp. A bond
between two vertices indicates that the transition R jkl↔R jnp,
k�n, between them is possible by a site mutation.
G= �V ,E� represents connectivity in a very high dimensional
state connectivity space. It is not the connectivity graph of
individual sites in a given configuration R jnp, i.e., it does not
describe how sites are connected to form chains.

FIG. 2. Connectivity reconstruction
moves, classified according to the type
of chain growth/shrinkage �“accre-
tion”�, and to the volumetric fraction
fluctuation they cause. Selected
sample transitions are shown.
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Graph G contains information relevant for our fluctua-
tion analysis, in particular, the degree of mixing51 of Markov
chains on G. Our first goal is to obtain bounds for the degree
of mixing in the neighborhood of the MRJ state �concen-
trated�, ���MRJ, and far away from it �semidilute�. As a first

step in quantifying the degree of mixing, it is useful to con-
sider the Laplacian matrix L�G� of the connectivity graph.
The Laplacian matrix of a graph G containing n vertices is
an n�n symmetric matrix whose elements are defined as
follows:

L�G�ij = �# of bonds ending in the vertex, if i = j ,

0 if i � j and vertices i and j are not connected,

− 1 if i � j and vertices i and j are connected.
�

The diagonal entry L�G�ii is the degree of vertex i and counts
the number of vertices that can be reached directly from
vertex i. Figure 3 presents a highly simplified example: A
4�4 grid on which a given state R jnp, labeled �, is sur-
rounded by all states, labeled ¬, −,…, from which it can be
reached, i.e., R jkl→R jnp, k�n, by mutation of a single chain
site into a solvent site. The associated graph and its Laplac-
ian matrix L are shown to its right, both for an idealized
semidilute �top� and for a concentrated �bottom� solution. A
useful property of L�G� is that a partition of G into con-
nected graphs can be performed by computing the eigenvec-
tor �or Fiedler vector50� ���2 associated with �2, and assigning
nodes for which ���2i

�0 to one partition and nodes for which
���2i

0 to a second partition. Spectral partitioning can be
recursively carried out to greater depths by discarding one of
the partitions and repeating the process. Highly connected
systems have graphs which can be partitioned deeply, and in
which Markov chains mix rapidly �see below�. This is shown

explicitly in Fig. 3 for the graphs corresponding to the semi-
dilute and the concentrated cases. Arrows pointing to ele-
ments in ���2 indicate the partition that is discarded at each
step. Notice how in the concentrated case the partitioning
scheme correctly groups configurations belonging to the

same chain length distribution, i.e., members of the same S5 jk.
The very different degrees of connectivity of semidilute and
concentrated solutions are also obvious even on a tiny grid.

We next recall key characteristics of a Markov chain of
states �configurations� visited by the system in an ergodic
path through connectivity space as follows:

• It is time homogeneous, has a finite state space R��̃,
and has a transition matrix P= �pij�i,j�R.

• Its stationary distribution �= ��i ; i�R� is uniform.

• Microscopic balance holds: �ipij =� jpji, ∀i, j�R.

FIG. 3. Solvent/chain configurations
on a 4�4 grid. A given system con-
figuration R jkl �labeled �� can be
reached from other configurations �la-
beled ¬, −,¯� by mutation of a single
chain site into a solvent site. The asso-
ciated graph on the center, its Laplac-
ian matrix L, the eigenvalues of L, and
its �2 eigenvector quantify whether or
not these configurations are directly
accessible to each other in connectiv-
ity space. In the semidilute regime
�top� the graph can be partitioned
deeply, which indicates high accessi-
bility and rapid mixing in configura-
tion space. In the concentrated regime
�bottom�, configurations mix weakly,
which renders a purely local analysis
exact �see main text for details�.
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We formally define the underlying weighted graph asso-
ciated with such a reversible Markov chain of states by as-
signing the set of vertices V of the graph to the states of the
system R jnp, and edges e�i , j�, i, j�R, whenever the transi-
tion i↔ j is allowed. Edge e�i , j� has weight wij =�ipij

=� jpji. We now make use of the fact that a finite ergodic
Markov chain is “rapidly mixing” if and only if the
conductance51 of its underlying graph is large. The conduc-
tance of graph G is defined as

��G� = min� �
j�V−C

i�C

wij

�
i�C

�i � , �17�

where C is a cut of the vertex set V, C�V, and the minimi-
zation is over all cuts. The rate of mixing is a measure of the
deviation from the limiting distribution after t steps of the
Markov chain. A robust measure for this deviation from the
limiting distribution is the relative pointwise distance from
the limiting distribution d�t�,

d�t� = max� pij�t� − � j

� j
� . �18�

By relating the conductance to the second eigenvalue of the
transition matrix, it can be shown52 that the relative point-
wise distance d�t� to the stationary distribution is bounded by

�1 −
��G�2

2
t

� d�t� , �19�

and rapid mixing results if a suitable lower bound on the
conductance of the underlying graph G can be established. In
order to determine this bound, we have exploited the exact

surjection between �̃ and S for the hard-sphere chain/solvent
systems to enumerate accessible neighbors in connectivity
space for specific configurations at the MRJ. We used the
min-load algorithm53 to find and enumerate a large number
of sets of accessible neighbors for sample state connectivity
graphs G in the concentrated and in the semidilute regimes
taken from Refs. 24 and 25. Exhaustive ensemble enumera-
tion was not feasible, since it is an intractable #NP-hard
problem for the size of the available MRJ configurations, for
which Nsites is of the order of several thousands. It was how-
ever possible to numerically determine the following scal-
ings for the ratio of the ensemble-average vertex degrees
L�G�ii:

�L�G�ii�conc = O��ncoord�� , �20�

�L�G�ii�semi

�L�G�ii�conc
� ��sol

semi

�sol
concNsites

, �21�

where �ncoord� is the ensemble average coordination number.
Results �20� and �21� are remarkable on two accounts: Not
only is the vertex degree system-size independent in the con-
centrated regime �Eq. �20��, but it is also comparable to the
coordination number in physical space. Equation �21� shows
on the other hand the dramatic disparity in connectivities of
the underlying graphs in the concentrated and semidilute re-

gimes. Equations �20� and �21� are the desired result, since
Eq. �21� is the condition that G is dense49,52 in the semidilute
regime, while it is not dense in the concentrated regime. In
the dense case a lower bound for the graph conductance is
given directly by

��G� �
1

12Nsites
6 , �22�

�Theorem 3 of Jerrum and Sinclair52� and rapid mixing is
assured.

Thus, as system size increases, the difference in state
accessibility for the semidilute and concentrated regimes di-
verges exponentially fast. Individual system configurations
in the concentrated regime have a limited number of directly
accessible neighbors �“weak mixing”�, whereas at lower
volumetric fractions, states mix rapidly.

Rapid mixing is in this context equivalent to intractabil-
ity, since an exponentially large number of graphs need to be
evaluated to ascertain the effect of a fluctuation 	� caused by
site mutation. However, for a fluctuation in the concentrated
regime, ���MRJ, solvent↔mer mutations take place in a
virtually pure chain environment, and the number of states

�members of S5 jk� from which a given mutated state R jkl

→R jnp, k�n, is reachable is a small, constant value
O�ncoord� 	�. This is in stark contrast to the general situation
at � far from �MRJ, where a given mutated state R jnp can be
reached from an exponentially large number of states. The
desired final conclusion is that as �→�MRJ purely local per-

turbations in the set S5 jk are strictly valid,52 i.e., correlated
fluctuations in chain dimensions and density can be ascer-
tained from the effect of the fluctuation in the immediate
physical-space vicinity of the mutated site.

Returning now to Fig. 2, transitions not involving a
volumetric fraction fluctuation �first row, types I and II� re-
main in the constant density subset R j��� �represented by the
dotted line in Fig. 1�. Consequently, no information regard-
ing the �R2� vs � scaling can be gleaned from them. Transi-
tions involving a density fluctuation 	��0 �types III and IV,
second row in Fig. 2� are thus key to scaling analysis. They
will, in the general case, be analytically intractable.

However, in the specific case of high concentration and
weak mixing in connectivity space, we can proceed as fol-
lows: First, chain size will scale as �R2��N due to screening,
and the ratio �R2� / �Rg

2� of �squared� end-to-end distance to
�squared� radius of gyration will be constant. Hence, scaling
arguments for �R2� will automatically be valid for �Rg

2�, and
vice versa. Furthermore, among the 	��0 transitions, type
IV mutations, which we call “end accretion,” will change
both contour length, which is proportional to N and �R2�,
whereas type III transitions, “lateral accretion” mutations,
will change the contour length N of the chain while keeping
its end-to-end distance R2 strictly constant �configuration-
wise, not ensemble average�. There is no contradiction in this
with the �ensemble average� constancy of �R2� / �Rg

2� since
lateral accretion is equally probable along the entire contour
length, and the spatial distribution of the accreted site is the
same as that of the existing chain mers, so that the radius of
gyration for the chain after accretion �N+1� sites is
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�Rg
2�N+1 =

1

�N + 1�2 �
1i�jN+1

�rij
2 � =

1

�N + 1�2� �
1i�jN

�rij
2 � + �

1iN

�riN+1
2 ��

=
N2

�N + 1�2 �Rg
2�N +

1

�N + 1�2� �
1iN

��ri − rc.o.m.N� + �rc.o.m.N − rN+1��2�
=

N2

�N + 1�2 �Rg
2�N +

1

�N + 1�2� �
1iN

��ri − rc.o.m.N�2� + �
1iN

��rc.o.m.N − rN+1�2�

+ 2 �
1iN

��ri − rc.o.m.N� · �rc.o.m.N − rN+1��� =
N2 + 2N

�N + 1�2 �Rg
2�N = �Rg

2�N + O�1/N2� .

The remaining steps are now very straightforward: Taking
into account microscopic reversibility, the probabilities of
both lateral �type III� and end �type IV� transitions are

Type III: O�1� Type IV: O�1� + O�N−1� , �23�

the O�N−1� term stemming from chain-end mutation. How-
ever, the effects of both types of transitions on R2 are quite
different,

Type III: li → li−1 + 1, 	R2 � 0 ⇒
�R2�

N
� �−1,

Type IV: li → lj + li−j−1 + 1, 	� = −
1

Nsites
, �24�

	R2 � 	N � − 	� ⇒
�R2�

N
� �0.

Hence, to first order, the overall scaling behavior in the con-
centrated regime must be

CN =
�R2�
Nb2 � �0 or �R2� � N�0, �25�

in agreement with static scaling laws.2,14 The small
O�N−1��−1 correction due to end chain site mutation vanishes
in the infinite chain limit. Thus, a simple microscopic picture
emerges from the chain length fluctuations caused by density
fluctuations: As solvent concentration increases, solvent sites
start appearing with �to first order� equal probability through-
out the system, at the cost of a decrease in chain length.
Mutation of a single mer into a solvent site accompanied by
splitting of the chain �type IV� is the mechanism that domi-
nates the �R2� vs � dependence.

It is essential to realize that the use of the �̃ ensemble
offers a quite different, but complementary, view to the usual
description of chain shrinkage at fixed chain length N, as in

the usual �NnPT�*� ensembles.33,35 In the �̃ ensemble tran-
sitions between states imply fluctuations in number average
degree of polymerization N, whereas N is strictly constant in

an �NnPT�*� ensemble.33 From the �̃ point of view, as poly-
mer volumetric fraction fluctuates away from �MRJ, chains
become shorter predominantly by “breakage” �type IV tran-

sitions�, in favor of an increase in �sol, so that the �R2�
�N�0 dependence results.

Furthermore an estimation of the cross-over concentra-
tion from concentrated to marginal can be made by realizing
that the mechanism summarized in Eq. �24� must cease to be
dominant when type IV transitions become increasingly rare
due to the lower bound in chain length set by the length scale
separation �or equivalently, chemical potential spectrum�.
Regardless of the details of the distribution this must happen
at a solvent volumetric fraction �sol=1−�*,conc where indi-
vidual solvent sites cease to be entirely surrounded by chain
sites. A reasonable first-order value for infinite chain length
is

�sol
*,conc

=
1

ncoord
�MRJ � 0.046 ⇒ �

�
*,conc

= 0.59, �26�

where ncoord is the average coordination number of a site in a
R j configuration �at MRJ, ncoord=14�.24 It is possible to ob-
tain a correction to this estimate, by considering a solution of
number average chain length N at its cross-over concentra-
tion �*,conc�N�. Consider a fluctuation 	N to a new, higher
value N�=N+	N. The occurrence of this fluctuation implies
that type IV transitions, which had ceased to be dominant at
�*,conc�N�, will regain statistical weight until the new, larger
average N� at the corresponding �*,conc�N�� is reached. Since
chains are, on average, larger in this fluctuation �N��N�, the
number of states available in which type IV transitions are
possible will necessarily also be larger, i.e., the fluctuation to
a larger molecular weight N� carries the system in a region of
configuration space where type IV can again take place.
Hence, the system with larger molecular weight must find
itself farther away from the cross-over concentration than the
short-chain configurations. The implication is that Eq. �26�
should be modified to

�*,conc�N� � �
�
*,conc�1 + O�N−1�� . �27�

While the numerical prefactor in the O�N−1� correction can-
not be predicted, it must however be strictly positive, that is,
the transition concentrated↔marginal must take place at
higher � �lower �sol� the shorter the chains are.

The above discussion is based on fluctuations away from
�MRJ, where transitions reduce N. Needless to say the reverse
argumentation in which N grows by mutation of solvent sites
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into chain sites, is equally valid since microscopic reversibil-
ity is taken into account in Eqs. �23� and �24�.

MARGINAL REGIME

At ���*,conc type III transitions �lateral accretion� be-
come the dominant mechanism for density fluctuations so
that the expected scaling will now be

CN =
�R2�
Nb2 � �−1 or �R2� � N�−1. �28�

In the constant-N view, a chain undergoes collapse as � is
increased. The decrease of R2 at fixed N results in �R2�
�N�−1. In the �̃ view, a chain grows by “side accretion” of
solvent sites without changing its end-to-end distance: Sol-
vent volume fraction is converted in polymer volume frac-
tion at constant chain size, hence, the same �R2��N�−1 re-
sults. From this perspective, one can grasp very intuitively
how chain collapse can also be viewed as a “thickening” of
the coil by accretion �identity change� of surrounding solvent
sites at constant end-to-end distance. While equivalent to
other semigrand ensembles in the thermodynamic limit, the

advantage of �̃ is that volumetric fraction and size fluctua-
tions are correlated quite transparently.

The volumetric fraction at the cross-over from marginal
to semidilute can be estimated by considering that type III
transitions cease to be dominant when alternative pathways
involving more than one solvent site become highly prob-
able. This can be estimated to happen at a �*,marg at which
individual chain molecules are separated from each other on
average by a solvent site.54 From a geometric point of view,
at �*,conc����*,marg, it is highly probable that solvent sites
will be in a �double or multiple� tangency position to chain
molecules, and therefore in a configuration favorable for be-
ing incorporated into an existing chain in a type III transi-
tion. An estimate of �*,marg can again be based on a simple
geometrical condition: Packing tubelike, fractal or not, ob-
jects in three-dimensional space so that they are separated,
on average, by the size of a solvent site suggests

�
�
*,marg � 1

2�MRJ = 0.32. �29�

An argument entirely similar to the one presented above for
the concentrated regime leads to a following correction:

�*,marg�N� � �
�
*,marg�1 + O�N−1�� . �30�

In analogous fashion, the numerical prefactor in the O�N−1�
correction must be strictly positive, and the transition
marginal↔semidilute must take place at higher � for shorter
chains. Both corrections to the cross-over concentrations also
imply that the transitions at �*,marg�N� and �*,conc�N� become
more diffuse for low N.

The two estimates Eqs. �26� and �29� are satisfyingly
dual in the sense that they represent limiting cases of a sol-
vent site being surrounded by chain sites �Eq. �26�� and a
chain site surrounded by solvent sites �Eq. �29�� �see Fig. 4�.
It is interesting to note the correspondence of Eqs. �26� and
�29� with standard thermodynamic arguments: �

�
*,marg

is de-
fined to lie at the volumetric fraction at which quadratic
terms in the Flory–Huggins expansion become dominant.13

The prevalence of the quadratic term corresponds to the on-
set of chain-chain binary interactions, which in microscopic
terms starts when chains are separated on average by one
solvent site. Similarly, �

�
*,conc

is associated with “higher
order terms becoming dominant,”13 which is a roundabout
way of stating that binary solvent-solvent interactions cease

to be important. The �̃ ensemble offers a more symmetric,
microscopic point of view: �

�
*,conc

is found where binary
solvent-solvent interactions acquire statistical importance as
volume fraction decreases. The basic geometrical difference
between the dimensionalities of solvent and polymer is ulti-
mately responsible for there being two cross-over transitions
at high concentrations: A chain molecule surrounded by sol-
vent molecules at �

�
*,marg

and a solvent molecule surrounded
by chain molecules at �

�
*,conc

. As size and shape differences
between solvent and polymer decreases, so must the sharp-
ness of the transitions at �

�
*,marg

and �
�
*,conc

decrease as well.
Several simplifications used in the previous sections de-

pended on the simplicity of the hard-sphere interaction po-

tential and on the exact surjection between �̃ and S. To what
extent then do the predicted static scaling laws and cross-

FIG. 4. Qualitative representation of conditions in semidilute, marginal, and concentrated regimes.
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over volumetric fractions reflect universal behavior? On one

hand, the surjection between �̃ and S allows the formaliza-
tion of some arguments, but is not essential. MRJ states are
multicontact, mechanically isostatic packings, which implies
a large number of tangencies between individual spherical
sites,56 as well as extremely high chain flexibility. In real
polymer solutions, chain flexibility and average coordination
number between solvent and chain sites will be lower. Both
will depend on molecular geometry and on chemical details.
However, these will not alter the fundamental difference be-
tween lateral and end accretion mechanisms in correlated
density-chain length fluctuations. Hence, Eqs. �25�, �27�,
�28�, and �30� should be valid for general flexible
homopolymer-solvent systems. Furthermore, the chemical
similarity between solvent and chain sites implicit in
Eq. �15� cannot hold exactly in general. Specific solvent-mer
interactions may alter prefactors, narrow or even suppress
the marginal regime in extreme cases. While these effects
will necessarily be reflected in the numerical values of the
characteristic ratio, they should not modify scaling as in
Eqs. �25�, �27�, �28�, and �30�. Finally, the very natural as-
sumption of solvent-polymer length scale separation is
clearly essential: None of the predictions made above can
possibly hold if the lengths of polymer and solvent
molecules do not differ significantly.

COMPARISONS WITH MC RESULTS

The results of a large set of MC simulations at different
densities24,25 are summarized in Figs. 5 and 6 for systems of
freely jointed chains of hard spheres characterized by aver-
age molecular lengths of N=12, 24, 250, and 500. Thanks to
the efficient MC scheme these simulations explore the entire
density range 0����MRJ. Despite their simplicity, hard-
sphere chains undoubtedly display four clearly distinct scal-
ing regimes of universal scaling for �R2� on N and �, from
dilute to melt. The results shown in Figs. 6 and 7 leave little
room for doubt about the observability of marginal and con-
centrated regimes. After the dilute and semidilute regimes,
where previously observed18 scalings are confirmed, the mar-

ginal regime appears at approximately �*,marg�0.3, charac-
terized by a scaling law �R2�	N�−1. This transition is quite
sharp. Schaefer’s claim that chain flexibility suppresses the
marginal regime14 is not supported by these results. Above
�*,conc�0.58 a concentrated regime behavior characterized
by �R2�	N�0 is shown in the linear-log plot of Fig. 7. As
Fig. 5 shows, Flory’s exponent for long chains is identical to
0.5 within very small statistical error bars throughout the
marginal and concentrated regimes.

The estimates for the cross-over volumetric fractions
�Eqs. �26� and �29�� are unreasonably accurate, certainly due
to large chain flexibility, and to the high coordination number
in packings of hard-sphere chains. Cross-over volumetric
fractions for more realistic systems will undoubtedly depart

FIG. 5. Flory scaling exponent as a function of logarithm of packing density
� from MC simulations. Lines mark �*,semi �transition from dilute to semi-
dilute� from Ref. 2, for different chain lengths.

FIG. 6. Log-log plot of characteristic ratio CN as a function of density � for
several chain lengths. Straight lines with slopes given by the expected scal-
ing exponents are drawn as an aide to the eye �except in the concentrated
regime, where �0 scaling is predicted, see Fig. 7�. Arrows mark �*,semi

�transition from dilute to semidilute� from Ref. 2, and also cross-over den-
sities �*,marg and �*,conc predicted by Eqs. �29� and �26� for N→�, at which
semidilute scaling �R2�	�−0.23 changes to marginal scaling �R2�	�−1,
and marginal changes to concentrated scaling �R2�	�0, respectively.

FIG. 7. Logarithm of the characteristic ratio log�CN� as a function of pack-
ing density � as obtained from MC simulations focusing on the marginal
and concentrated regimes. Predicted �0 scaling is clearly observable above
�*,conc. Also shown are the theoretically predicted cross-over densities �for
N→�� for the transitions �i� semidilute↔marginal ��*,marg� and �ii�
marginal↔concentrated ��*,conc�.
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from these values. The chain length corrections �Eqs. �27�
and �30�� are qualitatively correct: Concentrated and mar-
ginal cross-overs shift to lower volumetric fractions, and the
corresponding regimes widen as chain length increases. It is
not possible to reliably verify the exponent in the correction
terms in Eqs. �27� and �30�, although it seems not to be too
different from the predicted −1.

CONCLUSIONS

The use of a semigrand ensemble has enable predictions
for universal scaling of chain dimensions on polymer volu-
metric fraction and of cross-over to marginal and to concen-
trated regimes. These predictions are based on graph theoret-
ical arguments that identify those microsocopic
configurational transitions that contribute to density-chain
length fluctuations. Both cross-over volumetric fractions are
found to be chain length independent to first order, although
weaker N−1 corrections are also predicted. These predictions
are confirmed by an extensive set of MC calculations cover-
ing the full � range. Thus, it seems that the hard-sphere chain
model contains all the essential physics that determine the
statics of long chain molecules both in solution and in the
melt. Hence it has continued value as foundation for pertur-
bation theory and as statistical mechanics
workbench.
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