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By identifying the maximally random jammed state of freely jointed chains of tangent hard spheres we

are able to determine the distinct scaling regimes characterizing the dependence of chain dimensions and

topology on volume fraction. Calculated distributions of (i) the contour length of the primitive paths and

(ii) the number of entanglements per chain agree remarkably well with recent theoretical predictions in all

scaling regimes. Furthermore, our simulations reveal a hitherto unsuspected connection between purely

intramolecular (knots) and intermolecular (entanglements) topological constraints.
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Since Bernal’s pioneering work almost half a century
ago [1], a great deal of experimental, theoretical, and
simulation effort has been devoted to the investigation of
random packings of single spheres and other nonsymmet-
ric hard-body objects, especially in the vicinity of the
configuration referred to nowadays as the maximally ran-
dom jammed (MRJ) state [2–4]. MRJ is defined as the state
in which the most sensitive measure of order parameter is
minimized among all statistically homogeneous and iso-
tropic jammed structures [3]. In practice, as the MRJ state
is approached the ability of hard spheres to move (‘‘rattle’’
[3] and ‘‘flip’’ [5] for monoatomic and chain systems,
respectively) without incurring overlaps declines precipi-
tously. Regarding random assemblies of chains of hard
spheres, connectivity endows them with a rich physical
behavior. The problem of densely packed polymers is of
vital importance in thermodynamics, biology, phase tran-
sitions, glassy state, colloids, granular media, combinator-
ics, and perturbation theory. Recently, the computational
challenge of determining the MRJ state could be solved,
albeit for short chains only [5]. Thus, universal scaling, and
asymptotic behavior in the infinite chain length (N) limit,
as predicted by Edwards [6] and de Gennes [6] could only
be conjectured.

In this Letter we determine, through extensive simula-
tions, the MRJ state for strongly entangled freely jointed
chains of tangent hard spheres (where bond length is fixed
and equal to sphere diameter), deep in the asymptotic
regime. This MRJ state is determined by means of large
scale [Oð1011Þ steps], off-lattice, Monte Carlo simulations
using a suite of powerful importance sampling, chain-
connectivity altering algorithms [7] on a number of bulk
systems ranging from 100 chains ofN ¼ 12 to 54 chains of

N ¼ 1000. Preliminary tests on cells of different sizes
revealed the absence of system size effects on all calcu-
lated properties.
We show that, within statistical uncertainty, hard-sphere

chains reach their MRJ state at the same volume fraction
(’) as single spheres, ’MRJ � 0:638� 0:004, irrespective
of chain length. The question is thus settled that neither
chain length nor the tangency constraint of connectivity
hinder random packing of chains with respect to assem-
blies of single spheres. This alone is an important result,
but to understand it, we need to further analyze the under-
lying structure, i.e., chain stiffness and topology.
To achieve these additional goals we employ state-of-

the-art geometrical algorithms to extract the amount of
intermolecular (entanglements) and intramolecular (knots)
topological constraints from the atomistic configurations.
Entanglements and the corresponding primitive path (PP)
networks lie at the heart of modern theories of polymer
dynamics [6,8]. Analytical, mean field treatments have
yielded crucial insights into the physics and rheology of
polymeric fluids [9]. As a consequence of the desire to
enrich such approaches with atomistic information, start-
ing from the work of Everaers et al. [10] the development
of algorithms for the determination of entanglements is
proceeding at a frantic pace [11], with different approaches
converging to a unified picture, as discussed in [12]. We
adopt the efficient Z1 algorithm [13], which has advan-
tages compared to the original ‘‘annealing’’ approach of
[10]. The PP of a chain immersed in a sea of obstacles is
the shortest path connecting the chain ends that does not
violate the topological constraints imposed on it, and
whose length strictly and continuously decreases during
minimization. For a multichain system the PP is the short-
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est multiple disconnected path. The Z1 algorithm provides
the complete path including information about sphere in-
dex belonging to kinks (nodes), from which we extract the
PP contour length LPP, the number of entanglements (in-
terior kinks) Z, their location, and the entanglement spac-
ing Ne, defined as the number of hard spheres between two
successive entanglements. By covering, through extensive
Monte Carlo simulations, the whole density range for
random hard-sphere chain packings (0 � ’ � ’MRJ) we
are able to explore the effect of volume fraction on the
stiffness of the parent chain (through the characteristic
ratio Cn) and of the primitive path (through the step length
of the primitive path bPP). These quantities are defined as
Cn � hR2i=ðN � 1Þ=b20 and bPP � hLPPi=ðN � 1Þ, respec-
tively, where hR2i is the mean square end-to-end distance,
b0 is the bond length (equal to the sphere diameter), and
hLPPi is the mean PP contour length.

As clearly shown in Fig. 1, regarding chain dimensions
we identify four distinct scaling behaviors as ’ increases,
confirming the following theoretical expectations about the
existence and ranges of regimes [14] denoted as ‘‘dilute’’
(0 � ’ � ’�;semi, ’�;semi ’ N�0:764 [6]), ‘‘semidilute’’
(’�;marg ’ ’MRJ=2 ’ 0:32 [15]), ‘‘marginal’’ (’�;marg �
’ � ’�;conc, ’�;conc ’ 0:59 [15]), and ‘‘concentrated’’
(’�;conc � ’ � ’MRJ). The corresponding exponents and
crossover densities appear insensitive to chain length. We
find the scaling exponents for Cn in the dilute, semidilute,
marginal, and concentrated regimes to be equal to 0:0�
0:1, �0:23� 0:003, �1:0� 0:1, and 0:0� 0:1, respec-
tively. Our values are in perfect agreement with available
theoretical predictions and experimental findings of 0.0
(dilute) [6,16],�0:23 (semidilute) [6,14],�1:0 (marginal)
[15], and 0.0 (concentrated) [14–16].

Additionally, numerical estimates for the crossover den-
sities between concentration regimes (’�;marg ’ 0:32 and
’�;conc ’ 0:59) support recently derived values obtained by
monitoring the microscopic mechanisms of correlated fluc-
tuations of ’ and Cn in a semigrand canonical ensemble
via a graph theoretical proof [15]. Our present findings
constitute the first numerical determination of the static
scaling exponents, as well as of the prefactors not captured
by scaling theories, in the marginal and concentrated re-
gimes. It is remarkable how faithfully the full range of
expected behaviors is reproduced by this simplest possible
molecular model, which emphasizes its value as a statisti-
cal mechanics workbench. Figure 1, besides displaying
with unprecedented clarity the four concentration regimes
regarding the behavior of chain dimensions, provides fur-
ther information on the corresponding scaling of the under-
lying PP contour length. Here, the density dependence is
quite a bit more complicated as the marginal regime is
further split into three different subdomains. The obtained
scaling regimes and the corresponding exponents n
of bPP can be summarized as (I) 0 � ’ � ’�;semi, n ¼
0:0� 0:1, (II) ’�;semi � ’ � ’�;marg, n ¼ 0:23� 0:05,
(III) ’�;marg � ’ � 0:45, n ¼ 0:0� 0:1, (IV) 0:45�
’�0:52, n¼�0:70�0:15, (V) 0:52�
’�’�;conc, n ¼ 0:0� 0:1, and (VI) ’�;conc � ’ � ’MRJ,
n ¼ 3:4� 0:4. At low concentration, regimes I and II of
bPP coincide with the ones of Cn. However, in the semi-
dilute regime (II) the mild reduction of chain dimensions is
accompanied by a small increase in PP size as shown by
the almost opposite values of the two scaling exponents.
Interestingly, the average PP length is sharply amplified
(n � 3:4) in the concentrated regime (where chain dimen-
sions remain unaltered) closely related to the increase in
the entanglement density, as will be shown below. Scaling
behaviors for PP-related quantities have been recently
discussed for loosely to tightly entangled polymers [17].
The contour length LPP is the primary quantity charac-

terizing PPs with its definition-free statistics being also
independent of the applied topological algorithm as docu-
mented in numerous simulation works [11,12].
Consequently, the theoretical prediction of LPP statistics
has drawn considerable scientific attention. Very recently,
Khaliullin and Schieber [18] proposed an analytic expres-
sion for the cumulative probability of the primitive path
length PcðLPPÞ, based on a thermodynamically consistent
slip-link model with the parameters being the number of
Kuhn steps in the chain,NK, and � which is approximately
equal to the average number of Kuhn steps per entangle-
ment strand, hNei. Accordingly, PcðLPPÞ is defined as [18]

PcðLPPÞ¼ ferf½wðLPP�L
mp
PP Þ=Lmp

PP �þerfðwÞg=½1þerfðwÞ�;
w�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��NK=�
q

; (1)

where L
mp
PP is the most probable value for LPP and �� is

calculated through

FIG. 1 (color). Characteristic ratio Cn of chains (left axis,
filled symbols) and the step length of the primitive path bPP
(right axis, open symbols) both versus volume fraction ’. Lines
with characteristic slopes are drawn as a guide to the eye.
Inset: Zoom into the marginal and concentrated regimes of the
500-sphere chain system. Crossover volume fractions are dis-
cussed in the text part.
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�� ffi �ðLmp
PP Þ2=½2NKðhL2

PPi � hLPPiLmp
PP Þ�: (2)

Our simulation findings for PcðLPPÞ are in excellent agree-
ment with these theoretical predictions over the whole
density range as we show in Fig. 2 (inset) for the N ¼
1000 hard-sphere system. As the increase of both LPP and
bPP is nonmonotonic with ’, cf. Fig. 1, the same holds for
the distributions PcðLPPÞ. For ’ 	 0:10 the modified pa-
rameter �� oscillates around a plateau value of 1:07� 0:15
(data not visualized) which is very close to �� ’ 1 pre-
dicted in [18], and well below the random walk result, � ¼
3=2. This successful comparison demonstrates further the
predictive power of the proposed slip-link model for chain
systems from semidilute fluids to polymeric solids near the
MRJ state. In parallel, it establishes that, although the
‘‘pearl-necklace’’ model represents the simplest polymer
description, it is still able to capture, through the concept of
excluded volume, not only the scaling behavior of chain
dimensions but even the salient features of the underlying
primitive path network. This ability is further substantiated
by the data shown in Fig. 2 where the distribution of the
entanglement spacing PðNeÞ is compared against the
exponential-type master curve by Tzoumanekas and
Theodorou, based on a stochastic interpretation of entan-
glement generation in terms of a point process [11(b)]

PðNeÞ ¼ bcðc� bÞ�1ðe�bNe � e�cNeÞ; (3)

where b and c are fitting parameters. This formula pro-
vided accurate predictions for a wide range of atomistic or
coarse-grained polymers [19]. As shown in the main part of

Fig. 2, the master curve matches with our results for the
N ¼ 1000 system at all volume fractions (this holds also
for smaller chain lengths, not shown here).
Next, we perform a geometrical analysis from a new

viewpoint based on the concept of knots [20] adopting the
technique of [21] for single chains. This technique is based
on the identification of the knot group, which is simulta-
neously more discriminating and easier to calculate than
the knot invariants used in the past. Starting from an
arbitrary projection of an embedded graph, we generate a
sequence of representations, any one of which is a full and
complete representation of the knot group. We compare the
sequence of representations of any given knot against a
previously determined lookup table [22], and if the group
of the knot is represented in this table the knot is positively
identified. Topological knot theory, however, exclusively
deals with knots in closed paths. To apply knotting meth-
odology to linear chains requires us to devise a method to
convert a linear polymer into a closed polygon, i.e., by
connecting the two ends. Two techniques for doing this are
widely used: (i) draw a straight line segment between the
two ends, or (ii) starting from the center-of-mass of the
chain, project rays outward through the two ends until they
intersect a sphere which entirely circumscribes the chain,
then connect the two rays using a great circle path between
the two intersection points. It was observed that both
methods give essentially equivalent scaling behavior of
knots. Therefore, for each multichain configuration, we
extract the individual chains and convert each one into a
closed polygon by connecting its ends with a straight line.
The knot state of each resulting polygon is determined
using the knot group algorithm [21]. The fraction of knot-
ted chains along with the population of entanglements are
displayed in Fig. 3 against packing density.
Surprisingly, both the population of entanglements and

knots are found to follow the same scaling laws at all
volume fractions. Furthermore, entanglements and knots
also exhibit identical crossover concentrations (see inset of
Fig. 3). In more detail, we observe the following scaling
regimes and corresponding exponents: (a) 0 � ’ �
’�;semi, where knots and entanglements are unaffected
(’0) by packing density, (b) ’�;semi � ’ � 0:45 charac-
terized by a scaling exponent of 0:60� 0:15,
(c) 0:45 � ’ � ’�;conc, where both topological constraints
remain practically constant (’0), and finally (d) ’�;conc �
’ � ’MRJ, where a very rapid growth of entanglements
and knots is observed characterized by an exponent of
4:0� 0:4. There is an interesting side result which de-
serves being mentioned: The shown knotting probabilities

can be cast into the form PknottingðNÞ ¼ 1� e�ðN=N0Þa ,
where (i) the parameter N0 increases with increasing char-
acteristic ratio Cn (combined Figs. 1–3) but is independent
of N, (ii) N0 � 105 at lowest volume fraction, and
(iii) a ’ 1:33 is an empirical factor suggesting a stronger
dependence of Pknotting on N for linear chains with respect

full lines: 
exponential formula
Tzoumanekas/Theodorou [11]

full lines: 
slip-link model
Khaliullin/Schieber [18]

FIG. 2 (color online). Inset: Cumulative probability of the
contour length of the primitive path PcðLPPÞ for the N ¼ 1000
system at various volume fractions (symbols, our data), appar-
ently in agreement with the predictions (lines) according to
Eq. (1). Main figure: Distribution of the entanglement spacing
Ne for the N ¼ 1000 system at various packing densities. Our
data (symbols) are excellently captured by the behavior pre-
dicted by Eq. (3) (lines).
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to ring polymers of tangent hard spheres (for which the
above form with features (i) and (ii) but with a ¼ 1 had
been reported in [23]).

Our finding about the identical scaling of entanglements
and knots from the diluted up to the MRJ state is remark-
able: although knotting is a purely intramolecular charac-
teristic, we find it to be in a very general sense equivalent to
entanglements, which are a purely intermolecular measure
of topological hindrance. It remains to be seen if the
analogy also holds for dynamical aspects of entangled
polymers. While self-entanglements are seen to play a
minor role in characterizing the PP [24], the knot measure
contains very different information. In the latter approach,
chains can slide past each other at no cost, while no-slip
and monotonic path length shrinking is essential [11,13,19]
when calculating entanglements.
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FIG. 3 (color). Average number of entanglements (left axis,
filled symbols) and knotting probability per segment (right axis,
open symbols) versus packing density. Inset: Zoom into the
marginal and concentrated regimes. Lines with characteristic
slopes are drawn as guides to the eye.
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