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ABSTRACT An improved version of the method proposed to ACI committee 446 and to RILEM TC 
187-SOC to determine the fracture parameters of concrete is applied in this study to 
several mixtures of normal and high-strength concretes. The results are processed with 
a C + + program developed by the authors to automatise the mathematical operations 
required to obtain the bilinear softening curve of concrete from the experimental results. 
Numerical simulations of the tests are also carried out using finite elements with an 
embedded cohesive crack. The comparison between numerical and experimental results 
confirms that the experimental and numerical procedures are appropiate for normal-
strength concretes and high-strength concretes. 
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NOMENCLATURE Em = average elasticity modulus 
/p = net plastic flexural resistance 

/ p m = average net plastic flexural resistance 
ft = tensile strength 

/tm = average tensile strength 
fxs = indirect tensile strength 
GF = energy of fracture for each specimen 

Gpm = average energy of fracture 
h = thickness of the steel knife 
L = length of the specimen 
l\ = brittleness length for each specimen 

/im = average brittleness length 
P' = measured load 
Pl = corrected load 

^15% = 15% of the maximum measured load P'mia 

Pla = maximum corrected load 
i3/

55o/o = 55% of the maximum measured load P'mia 

P'max = maximum measured load 
P'R = load at the last point of the curve 
Pu = ultimate load 
Pu = effective maximum load 
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S = span of the beam 
wc = critical length of the bilinear approximation 

HJC1I = characteristic crack opening width 
WF = total fracture work 

W-^ra = average fracture work 
WQ = abscissa of the centre of gravity of the softening curve for each 

specimen 
WQm = mean value for the abscissa of the centre of gravity of the softening 

curve 
wt and a k = coordinates of the break point of the bilinear curve 

wm = C M O D values 
WMA = C M O D value for zero load 
wMR = C M O D at the last point of the curve 

I N T R O D U C T I O N 

The model introduced by Hilleborg et al. in 1976 to de­
scribe concrete progressive cracking as the fictitius crack 
and currently known as the cohesive crack model is able 
to describe the fracture of stressed concrete with a good 
precision/complexity ratio. 

The main input for the model is the softening curve, 
which presents a noticeable nonlinearity. Various sim­
plified analytical expressions have been proposed for the 
softening curve to make the mathematical formulation 
easier. One of them is the bilinear curve, which has been 
used since the 1980s and which we will refer to in this 
work. 

This article presents an updated implementation of the 
proposed experimental method described which de­
termines the four parameters necessary to define the bilin­
ear softening curve of concrete from the combination of 
the results obtained from Brazilian tests and three-point 
bending tests. A program in C + + has been designed to 
automatize the mathematical operations. It automatically 
computes the necessary parameters to define the curve, 
directly from the experimental data files, without any in­
tervention of the user other than selecting the data files 
and introducing the basic geometrical data. Such automa­
tion provides an increased traceability and reliability of 
the data reduction procedure. 

Little information exists in the literature about the abil­
ity of tests such as those analyzed in the paper to perform 
smoothly when applied to high-strength concrete, which 
is of concern as the increased brittleness and load capac­
ity of the specimens might introduce instabilities in the 
experimental system. Thus, one of the objectives of the 
present work is to assess the ability of the experimental 
method to deal, without any special tuning, both with 
ordinary and with high-strength concrete. 

A numerical analysis by means of finite elements with 
embedded cohesive crack is carried out in order to ver­

ify that the treatment given to the experimental data is 
appropriate. The behaviour of the beams is numerically 
predicted from the stress-crack opening curve obtained 
from the experimental data, which allowed us to confirm 
that the numerical method, which was known to be ap­
propriate for normal-strength concrete, is also valid for 
high-strength concrete. 

PROPOSED M E T H O D 

Tests procedures 

The tests to determine the softening curve of concrete 
are based on the combination of the results obtained after 
carrying out diametral cylinder splitting tests (Brazilian 
tests, for short) and stable three-point bending tests on 
notched beams. 

Brazilian tests are carried out on standard cylindrical 
specimens 150 mm in diameter and 300 mm in length, 
according to the standard ASTM C496, with a few im­
provements dictated by previous research, such as nar­
rower load-bearing strips and limited rate of loading. 

In the bending tests, beams of rectangular cross sec­
tion with a central notch are tested with a central load 
and a loading span equal to three times the depth of the 
beam. The tests are carried out under crack opening con­
trol (CMOD) to ensure stability. Weight compensation is 
used so that the test can be controlled until the end of the 
test without the specimen unstably falling under its own 
weight. 

The CMOD, the load and the mid-span deflection are 
measured during the test. The deflection is determined 
relative to a reference frame, which is held on points on 
the upper face of the specimen on the vertical of the sup­
ports, so that the measurement does not include inelastic 
deformation originating in the supports. 

In this work, a beam of 500 x 100 x 100 mm and 
with a central notch 3 3 mm in depth has been used (see 
Fig. 1). The weight compensation is obtained by means 
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Fig. 1 View of the experimental arrangement for the three-point 
bending tests. 

of two steel counter weights clamped at the ends of the 
beam. Deflection is measured with two inductive displace­
ment transducers. To measure the crack opening width, 
a clip-on gauge is placed between two steel plates that 
are fastened to the beam at both sides of the crack with 
screws. One of these plates is wide enough to protrude out 
of the beam on each side so providing a reference plane 
for the displacement transducers. The beam is supported 
by cylinders over two rigid steel plates, one of which can 
rotate around an axis normal to the loading plane to min­
imize the torsion. 

During the preparation and realization of the test, the 
beam must be kept permanently wet. The measuring in­
struments are calibrated and mounted on the test spec­
imen; next, a preload between 5% and 10% of the esti­
mated maximum load is applied. Then, the machine con­
trol is switched to CMOD and the test started, with an 
initial rate selected (from a trial test) so that the maxi­
mum load is reached between 3 and 5 min. Once the load 
reaches the maximum and decreases one third of it, the 
rate is progressively increased to keep a constant unload­
ing rate until the end of the test, which is conventionally 
reached when the CMOD equals 4/3 of the beam depth 
(1.333 mm in this case). 

Data reduction to determine the bilinear softening 
curve 

A scheme of the bilinear curve and the parameters that 
define it is shown in Fig. 2. The method used to de­
termine the bilinear approximation is fully explicit, and 
the principles supporting it are described in detail else­
where. Suffice it to say, here, that the tensile 
strength ft is estimated from the Brazilian tests, and the 
remaining parameters from the records of the Load (P) 
versus CMOD and displacement (8) of the bending tests: 
the elastic modulus E from the initial slope of the P-

Fig. 2 Scheme of the bilinear softening curve of concrete. 

CMOD curve, the horizontal intercept of the initial soft­
ening segment (w\) from the peak load, the fracture en­
ergy Gp from the area under the P-8 curve and the cen-
troid of the softening curve from the far-tail behaviour. 
From these basic values, all the remaining parameters are 
determined from simple geometrical relations. The de­
tailed steps and equations necessary to reduce the experi­
mental data are listed in Appendix 1. 

Although conceptually simple, processing the data re­
quires a large number of operations that, if carried out by 
hand, make it difficult to trace and to debug. Therefore, 
there was a desire for a tool to carry out the operations 
automatically. In order for the tool to be multiplatform, 
portable and free, it has been coded in C + + using object-
oriented programing. 

The necessary information the program needs to work 
are the geometric data of each specimen: width B, depth 
D, loading span S and notch depth ao, and the path to 
the files with the records of data obtained during the test. 
The input of data is facilitated by means of a graphic user 
interface. 

EXPERIMENTAL RESULTS 

Four types of concrete were prepared: two normal-
strength concretes (NSC), with design strength of 25 and 
40 MPa, and two high-strength concretes (HSC) with de­
sign strength of 80 and 90 MPa. For each type of concrete, 
the following specimens were made: six cylindrical speci­
mens (three for compression tests and three for the Brazil­
ian tests) and six beams for three-point bending tests. The 
dimensions of the specimens are those described in the 
section 'Test procedures'. 

The tests were stable until the end, independently of the 
concrete type; no special tuning whatsoever was required 



Table 1 Experimental results 

Series 

fc (MPa) 
ft (MPa) 
E (GPa) 
wc (mm) 
GF (N/m) 
a k(MPa) 
wk (|im) 
/i (mm) 
/ch (mm) 

NSC 

1 

28.7 
2.24 
31.6 
0.272 
68.5 
0.375 
15.6 
133 
432 

2 

39.1 
2.84 
32.5 
0.293 
86.3 
0.378 
21.8 
144 
349 

HSC 

3 

85.2 
5.82 
45.1 
0.519 
121 
0.125 
30.6 
121 
162 

4 

87.7 
6.18 
47.7 
0.863 
126 
0.042 
34.9 
136 
158 

fc = compression strength; ft = tensile strength; E = elastic mod­
ulus; wc = critical crack opening; Gp = fracture energy; (w^, a^) = 
coordinates of the kink point of the bilinear curve; l\ = Ew\/2ft = 
brittleness length; lc^ = EG{jf\ = characteristic length. 

for HSC specimens. In this respect we can conclude that 
the experimental setup is robust enough to deal with HSC. 

The results are shown in Table 1. The actual compres­
sion strengths are 28.7 and 39.1 MPa for the two NSC 
mixes, and 85.2 and 87.7 for the HSC mixes. It can be 
observed t h a t / t , Em and Gpm increase when the com­
pression strength increases, whereas /ch decreases and the 
brittleness length l\ is almost constant. The relation a ^/ft 

is low for the NSC (between 0.13 and 0.17) and very low 
for high-strength concrete (between 0.021 and 0.0068). 

The load-CMOD curves obtained in each test are 
grouped according to the type of concrete and are shown 
in Figs. 3-6. 

NUMERICAL SIMULATION AND DISCUSSION 

The tests have been numerically simulated taking as the 
input the experimental bilinear softening curves using the 
finite element program continuum oriented finite element 
(COFE) ), which incorporates a special finite element 
developed : Such elements are based on describing the 
crack as a displacement discontinuity (strong discontinu­
ity kinematics). In order to avoid the necessity of track­
ing algorithms, the element implements an original ap­
proach, which is based on the combination of a cohesive 
crack with central forces (the traction vector is propor­
tional to the crack displacement vector), and a limited 
adaptability of the crack, which can reorientate perpen­
dicular to the maximum principal stress direction while 
its opening is small (less than about 0.2 Gp/ / t ) ; this pre­
vents crack locking while keeping the formulation strictly 
local. 

Further simulations have been conducted using a highly 
accurate boundary integral method known as the smeared 

Fig. 3 Experimental Load - CMOD curves 
for normal-strength concrete. Type 1. 



Fig. 4 Experimental Load - CMOD curves 
for normal-strength concrete. Type 2. 

Fig. 5 Experimental Load - CMOD curves 
for high-strength concrete. Type 3. 



Fig. 6 Experimental Load - CMOD curves 
for high-strength concrete. Type 4. 

Fig. 7 Comparison between experimental 
and numerical Load - CMOD curves 
simulated with SplittingLab and COFE for 
normal-strength concrete, series 1. 



Fig. 8 Comparison between experimental 
and numerical Load - CMOD curves 
simulated with SplittingLab and COFE for 
normal- strength concrete, series 2. 

Fig. 9 Comparison between experimental 
and numerical Load - CMOD curves 
simulated with SplittingLab and COFE for 
high-strength concrete, series 3. 



Fig. 10 Comparison between experimental 
and numerical Load - CMOD curves 
simulated with SplittingLab and COFE for 
high-strength concrete, series 4. 

tip superposition method implemented in the SplittingLab 
program, developed by the fourth author 

In Figs. 7, 8, 9 and 10 the load-CMOD curves obtained 
from experimental results and from numerical simulations 
are compared for each group of concrete. Each experi­
mental curve is the average of the corresponding curves 
to all the specimens of the same type of concrete. From 
the comparison, we can appreciate that the simulations 
catch very well the initial slope, the peak load, the total 
area of the curve and the far-tail of the curve; this is so, 
because the data reduction method is designed so as to fit 
these features as closely as possible. The deviations seen in 
the post-peak are no doubt due to the fact that the bilinear 
approximation is a relatively rough approximation of the 
actual softening, which is smooth and does not show any 
kind of cusp. In summary, the method provides the best 
approach one can expect for a bilinear approximation of a 
softening curve, both for normal and high-strength con­
crete. One may also note that the two numerical predic­
tions (FEM with embedded adaptable crack and boundary 
integral method) give essentially identical results. 

CONCLUSIONS 

The main conclusion reached in this work is that both the 
experimental method and the numerical approximation 
based on finite elements with embedded adaptable cohe­

sive crack are robust enough to deal with H S C as well as 
with NSC. 

A secondary conclusion is that, as expected, the mechan­
ical properties (stiffness, strength, toughness) and the tra­
ditional brittleness (inverse of the characteristic length 
/eh) are larger for HSC than for NSC, while the brittle­
ness length, the inverse of which measures the brittleness 
around the peak, is roughly constant for the materials 
tested in this work. 
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APPENDIX 1: Detailed data reduction procedure 

a. Compute the average tensile strength flm from the 
Brazilian tests as follows: 

a. 1. Compute the tensile strength for each specimen 
a s / t = / a = 2PU/(JTDL), w h e r e / t ) / a , P u , D 

and L are, respectively, the tensile strength, in­
direct tensile strength, ultimate load, diameter 
and length of the specimen. 

a.2. Compute/an as the mean of all the individual ft 

values. 
b. From the bending tests, determine the mean elastic 

modulus Em as follows: 

b . l . On the raising branch of the P ' -CMOD curve, 
select the test points whose measured load P 
lies between 15 and 55% of the maximum load. 

b.2. Fit a straight line to the previous set of points 
using a linear regression of C M O D versus P, 
the slope of which is taken as the initial com­

pliance of the specimen C; = Awm/AP, where 
wm denotes the CMOD value. 

b.3. Compute the elastic modulus of the specimen as 
E = 6Sa0V1(a'Q)/(CiBD2), where S, B and D 
are the span, width and depth of the beam, #o 
is the notch depth, a'0 = (#o + h)/(D + h), 
where h is the thickness of the steel knife used 
to clamp the CMOD gauge and 

Vx(a) = 0.8 - 1.7a + 2.4a2 + - ^ r y 
(1 - a)2 

4D 
+ ^ r ( - 0 . 0 4 - 0.58a + 1.47a2 - 2.04a3). 

b.4. Compute Em as the mean of the individual 
values. 

c. For each bending tests, determine the constant A 
characterizing the far-tail asymptote as follows: 

c.l. Eliminate from the record the points with 
C M O D > 4D/300. 

c.2. Record the values of the CMOD and the load at 
the last point of the curve (H?MR and P^, say). 

c.3. For each point in the record, calculate the cor­
rected load as Pi = P — P^. 

c.4. Draw the curve of Pi vs. C M O D and determine 
the C M O D value for zero load on the raising 
branch, call it H?MA-

c.5. For all the points of the tail such that Pi < 
0.05P\u, where P i u is the maximum corrected 
load, compute the auxiliary values 

X=(W/S)2[l/(wM-wMA)2-l/ 

O M R - WMA)2] 

c.6. Plot the values of Pi versusX and perform a curve 
fitto the equationPi =X(A + KX). Record the 
resulting value o£A to three significant digits. 

d. For each bending test, determine the net plastic flex-
ural strength fp as follows: 

d.l. For each specimen, calculate the effective maxi­
mum load as Pu = P l u + A/(WMR - J"MA)2 

d.2. For each specimen, calculate the net plastic flex-
ural strength a s / p = PUS/[2B(D - a0)

2]. 
e. For the bending tests, determine the mean energy of 

fracture Gpm as follows: 

e.l. For each specimen, plot he corrected load Pi ver­
sus the deflection S and determine the deflec­
tions 5A and 5R (in the loading and unloading 
parts, respectively) corresponding to zero load. 

e.2. For each specimen, compute the measured frac­
ture work as the area enclosed by the curve 
Pi — S and the S axis. 

e.3. Compute the total fracture work as W-% = 
WFm + 2A/(SR - 5A). 



e.4. Compute the energy of fracture for each speci­
men as GF = WF/[B(D - «0)]. 

e.5. Compute Gpm as the mean of the individual val­
ues. 

f. Compute the mean value of the abscissa of the centre 
of gravity of the softening curve WGm as the mean of 
the individual values computed for each specimen 
as zvG = 4A/(BSGF) 

g. Determine the parameters of the bilinear approxima­
tion of the softening curve as follows: 

g.l. Compute the brittleness length for each speci­
men as 

where x =ftm/fp, and m, c\ and cj are con­
stants which depend on the span-to-depth ra­
tio (S/D); for S/D = 3,m = 1.7, cx = 11.2 and 
c2= 2.365. 

g.l. Compute l\m as the mean of the individual values 

h-
g.2. Compute the parameter w\ for the concrete as 

wi = 2ftmlim/Em 

g.3. Compute the characteristic crack opening wch as 

Wch = GFm//tm 

g.4. Compute the critical length of the bilinear ap­
proximation as 

g. Compute the coordinates (<7t, wt) of the kink 
point of the bilinear curve as: 


