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Abstract. With the advent of modern non-destructive to-
mography techniques, there have been many attempts to an-
alyze 3-D pore space features mainly concentrating on soil
structure. This analysis opens a challenging opportunity to
develop techniques for quantifying and describe pore space
properties, one of them being fractal analysis.

Undisturbed soil samples were collected from four hori-
zons of Brazilian soil and 3-D images at 45µm resolution.
Four different threshold criteria were used to transform com-
puted tomography (CT) grey-scale imagery into binary im-
agery (pore/solid) to estimate their mass fractal dimension
(Dm) and entropy dimension (D1). Each threshold criteria
had a direct influence on the porosity obtained, varying from
8 to 24% in one of the samples, and on the fractal dimen-
sions. Linear scaling was observed over all the cube sizes,
however depending on the range of cube sizes used in the
analysis,Dm could vary from 3.00 to 2.20, realizing that the
threshold influenced mainly the scaling in the smallest cubes
(length of size from 1 to 16 voxels).

Dm and D1 showed a logarithmic relation with the ap-
parent porosity in the image, however, the increase of both
values respect to porosity defined a characteristic feature for
each horizon that can be related to soil texture and depth.

1 Introduction

Soil structure may be defined as the spatial arrangement of
soil particles, aggregates and pores. The geometry of each
one of these elements, as well as their spatial arrangement,
has a great influence on the transport of fluids and solutes
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through the soil. Fractal geometry has been increasingly ap-
plied to quantify soil structure, using fractal parameters, due
to the complexity of the soil structure, and thanks to the ad-
vances in computer technology (Tarquis et al., 2003, and ref-
erences therein). The value of fractal parameters can be de-
rived from indirect methods, such as water retention curves
or directly through image analysis (Crawford et al., 1995).

For many years, two-dimensional (2-D) images of soil thin
sections have been used in a number of endeavors to de-
scribe the spatial structure, extracting mass fractal dimension
(Dm or D0) and pore-solid interface (Brakensiek et al., 1992;
Pachepsky, 1996; Giḿenez et al., 1997, 1998; Oleschko et
al., 1997, 1998; Oleschko, 1998; Bartoli et al., 1999; Dathe
et al., 2001; Dathe and Thulner, 2005) as spectral dimension
(Anderson et al., 1996; Crawford and Matsui, 1996; Craw-
ford et al., 1999). In the field of rock pore systems, Saucier
(1992) related the effective permeability of the porous me-
dia with the entropy dimension (D1) extracted from a 2-D
image.

Several authors maintain that the exact value of the mass
fractal dimension cannot be readily calculated (Crawford et
al., 1999; Bird et al., 2006; Perrier et al., 2006). Tel and Vic-
sek (1987), for instance, proposed practical methods to com-
pute it, indicating that the standard methods for determining
fractal dimensions must be applied with some caution. The
main difficulty is that the ideal limit cannot be reached in
practice (Buczhowski et al., 1998). Moreover, there is an ef-
fect of the image manipulation onDm andD1 values (Babeye
et al., 1998).

Computed tomography (CT) has provided an alternative
for observing intact soil structure (Anderson et al., 1988;
Warner et al., 1989; Grevers and Jong, 1994; Peyton et al.,
1994; Perret et al., 1997, 1998, 1999, 2003; Rasiah and Ayl-
more, 1998a, b; Rogasik et al., 1999; Gantzer and Anderson,
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Table 1. Physical properties of selected horizons of Argissol, as per Melo and dos Santos (1996).

Horizon Depth Consistency Density (kg dm−3) Particle Size Distribution (%)
(cm) Dry Moist Bulk Particle C. Sand F. Sand Silt Clay

A2 10–35 slightly hard very friable 1.4 2.7 62 24 3 11
AB 35–57 slightly hard friable 1.5 2.7 26 53 4 17
Bt2 98–152 slightly hard friable 1.4 2.7 21 40 4 35

Bt/Bw 150–190 slightly hard friable 1.3 2.7 18 37 10 35

2002; Pierret et al., 2002; Anderson et al., 2003; Rachmant et
al., 2005; Gibson et al., 2006). The principal benefits of CT
techniques are: reducing the physical impact of sampling,
providing three-dimensional (3-D) information and allowing
rapid scanning to study sample dynamics in near real-time
(Rasiah and Aylmore, 1998b). Because of these benefits, CT
scanning has been used to extract fractal dimensions related
to soil structure. Peyton et al. (1994) evaluated the fractal di-
mension of macropore-scale density. Zeng et al. (1996) cal-
culated fractal lacunarity in a silt loam soil. Several authors
have dedicated their attention to the appropriate pore-solid
CT threshold, before calculating mass fractal and surface
fractal dimensions (Rogasik et al., 1999; Gantzer and An-
derson, 2002; Perret et al., 2003; Rachmant et al., 2005). Re-
cently, Gibson et al. (2006) compared three fractal analytical
methods to quantify the heterogeneity within soil aggregates;
in this work, the frequency distribution of pore and solid
components was clearly dependent on thresholding, which
could not be generalized.

As far as we know, they didn’t quantify this effect onDm

andD1. The aim of the present study is to evaluate the effect
of the image thresholding value as well as the cube size on
the calculation of mass fractal dimension (Dm) and entropy
dimension (D1). To this end, soil images from four horizons,
obtained from a Brazilian Argissolo (Melo and dos Santos,
1996) were analyzed to obtain these fractal dimensions ap-
plying four different thresholds.

2 Materials and methods

2.1 Soil studied

Intact soil samples were collected from four horizons of an
Argissolo in the Brazilian Soil Classification (EMBRAPA
SOLOS, 2006), or Ultisol (FAO Soil Classification), formed
on the Tertiary Barreiras group of formations in Pernambuco
state (Itapirema Experimental Station) presenting a hardset-
ting behavior, found throughout the coastal tablelands of
northeast Brazil. The natural vegetation of the region is trop-
ical, coastal rainforest. Macromorphology and micromor-
phology, mineralogy, as well as key physical and character-
istics of this soil, have been studied, from a genetic perspec-

tive, by Melo and dos Santos (1996). Physical characteris-
tics, of relevance to the current study, are provided in Table 1.

2.2 CT imaging and image pre-treatment

The intact soil samples were imaged using an EVS (now GE
Medical. London Canada) MS-8 MicroCT scanner. Though
some samples required paring to fit the 64 mm diameter
imaging tubes, field orientation was maintained. Imaging pa-
rameters were 155 keV and 25µA.

Proprietary software (GE Medical), was used to recon-
struct the 16-bit, 3-D imagery from the sequence of axial
views. The resulting voxel size was 45.1µm. File sizes
ranged from 70 to 200 Mb, which made subsequent process-
ing of the entire volume practically impossible. Accordingly,
one subvolume was extracted from each of the four origi-
nal volumes (using GE Medical Microview); care was taken
to ensure no edged effect of the subvolume. The subvol-
umes measured 256×256×256 units, corresponding to about
16.8 million voxels. A 3-D Gaussian filter in MicroView (GE
Healthcare, 2006) was also run on each sub-volume to reduce
noise, typical of CT imagery. An example of a typical 3-D
imagery is provided in Fig. 1.

2.3 Binary thresholding of CT imagery

CT imagery of soil, like other digital imagery, typically con-
tains a large proportion of mixed-voxels (voxels whose dig-
ital number is the weighted average of more than one con-
stituent – such as a solid/air interface). To facilitate iden-
tification of constituent peaks in the grey-scale histogram,
a 3-D filter, executed in NIH ImageJ (Rasband, 2006) was
run on each sub-volume to mask voxels which differed by
more than 0.1% from the surrounding neighborhood of 124
voxels (5×5×5 unit volume). Full details of this technique
can be found in Elliot and Heck (2007). Histograms of the
unmasked voxels were subsequently ported into OriginPro
(Origin Lab Corporation, 2006); after smoothing the his-
tograms (adjacent averaging of 25 levels), peaks were iden-
tified in the Peak Fitting Module. The major peak with the
lowest mean digital number was taken to be that correspond-
ing to the void space; the next major peak was considered
to be solid material. Based on the central tendency and dis-
persions (assuming Gaussian distributions) of the two peaks,
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Figure 1. Typical grey-scale CT imagery (orthogonal planes) of sub-volumes for each of the 

horizons studied. Dark regions correspond to less attenuating regions (pores), lighter areas to 

solid components. Z axis is vertical, with Z+ representing top of sample. Length of edge of 

cube is 11.54 mm. 

Fig. 1. Typical grey-scale CT imagery (orthogonal planes) of sub-volumes for each of the horizons studied. Dark regions correspond to less
attenuating regions (pores), lighter areas to solid components. Z-axis is vertical, withZ+ representing top of sample. Length of edge of cube
is 11.54 mm.

four threshold values were identified (Fig. 2): a) lower 3rd
standard deviation of solid (low probability containing solid);
b) central tendency for air (µCTair); c) equi-probability value
for air and solid and d) mean of the central tendencies for
air and solid. Thresholds B and C are the most commonly
used in soil science beside a subjective choice comparing the
original and binary image by the experts, which we refuse to
use in this study. Thresholds A and D were selected to have
a total of four values to clearly study their influence on the
fractal dimensions.

2.4 Mass fractal dimension

The binarized image is considered to represent two basic
phases: pores and solid. Fractal analysis (FA) in 3-D im-

ages involves partitioning the space into cubes to construct
samples and recording the number of cubes which cover the
pores phase; this is repeated for different size cubes (Perret
et al., 2003).

The cube-counting (CC), similar to the box-counting
method in 2-D, combines voxels to form larger, mutually
exclusive cubes each containing a different set of voxels.
Given anL×L×L-voxel image, partitioned to a cube size
of δ×δ×δ, the number of cubes (n(δ)) will follow the pro-
portion of line sizeδ:

n(δ) ∝

(
L

δ

)3

(1)

If δ is overly large, the resulting number of samples is lower.
At each scale (δ) the number of cubes of sizeδ with at least
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Figure 2. Graphical representation of the different thresholding criteria, used to binarize the 

frequency distribution of CT values: A) CT value corresponding to 0.01% distribution of the 

CT values distribution of solid, B) mean of CT values of air (
CTair

µ  ), C) equi-probability CT 
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Fig. 2. Graphical representation of the different thresholding cri-
teria, used to binarize the frequency distribution of CT values: A
– CT value corresponding to 0.01% distribution of the CT values
distribution of solid, B – mean of CT values of air (µCTair ), C –
equi-probability CT values of air and solid and D – average of mean
CT values of air (µCTair) and mean CT values of solid (µCTsolid).

one pixel belonging to the pore space (N(δ)) is recorded.
BeingNj (δ) the number of cubes of sizeδ with j pixels be-
longing to the pore space (with a value from 1 toδ×δ×δ):

N(δ) =

δ3∑
j=1

Nj (δ) (2)

For a fractal set a log-log plot ofN(δ) vs.δ gives:

N (δ) ∝ δ−Dm (3)

which yields a line of slope equal to−Dm; beingDm the
mass fractal dimension. It is expected that, as the object fills
the space in 3-D,Dm will approach the Euclidean dimension
(E) of three.

Given the relation (1) it is now instructive to seek bounds
on the values the functionN(δ) can take based on Bird et
al. (2006) work. We denote the fraction of the image occu-
pied by pore phase at the finest resolution (i.e. porosity) byp.

If p=1 the number of cubes required to cover the set is
(

L
r

)2

and this is trivially an upper bound forN (δ) whenp<1. In
order to derive a lower bound, we consider the situation in
which the cubes cover the set but no part of the complemen-
tary set. If this were to occur, then the number of cubes is

equal to
(

L
r

)2
f . In general, the cubes will cover part of the

complementary set and consequently the former number of
cubes is a lower bound forN(δ). We may now write that
N(δ) must satisfy the inequalities:(

L

r

)2

f ≤ N(r) ≤

(
L

r

)2

(4)

In terms of the log-log plot used to extract a mass fractal
dimension, these inequalities result in two parallel reference
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Figure 3. Soil porosity versus CT units of threshold for each horizon and sub-volume. Linear 

fits for each horizon represents the change of porosity per CT unit. 

 

Fig. 3. Soil porosity versus CT units of threshold for each horizon
and sub-volume. Linear fits for each horizon represents the change
of porosity per CT unit.

lines of slope−3, between which the measured data must lie.
The vertical spacing between these lines is equal to log(p).
For all images sharing a common value ofp, the cube count-
ing data will lie between these bounding lines. Analytically,
we can conclude that the higher the porosity, the closer the
boundary lines are and thenDm value will be closer to 3.

2.5 Entropy dimension

This calculation in 3-D imagery involves partitioning the
space into cubes to construct samples with multiple scales.
The cube-counting method (CC), similar to box-counting
method in 2-D, combines voxels to form larger, mutually ex-
clusive cubes each containing a different set of voxels. Given
an L×L×L-voxel image, partitioned to a cube grid of size
δ×δ×δ, the fraction of pore space (µi) in eachn(δ) cubes
(density) is calculated from:

µi =
mi

mT

=
mi

n(δ)∑
i=1

mi

(5)

wheremi is the number of pore class voxels in cubei, and
mT is the total number of pore class voxels in an image. In
this case, the pore density is the measure and the cube grid
the support. When computing the number of cubes of size
δ, the possible values ofmi range from 0 toδ×δ×δ. So,
if Nj (δ) is the number of cubes containingj voxels of pore
volume in a given grid, Eqs. (4) and (5) can then be combined
(Barnsley et al., 1988):

n(δ)∑
i=1

µi(δ) =

n(δ)∑
i=1

(
mi

mT

)
=

δ3∑
j=1

Nj (δ)

(
j

mT

)
(6)

where:mT =

δ3∑
j=1

j Nj (δ).
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Fig. 4. Log-log plot ofN(δ) versus cube size (δ) at different threshold values for each horizon and sub-volumea. Left columns shows all
the size range, right column shows fromδ=2 till δ=16 voxels. Gray line is the maximum line boundary, blue and red lines are the minimum
line boundary respectively for B and D threshold values.
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Table 2. Threshold values obtained applying different methods: A) CT value that represent the 0.1% of the CT values distribution corre-
sponding to solid; B) average of CT values corresponding to air; C) intersection point of frequency distribution of CT values corresponding
to air and solid and D) mean of average CT values corresponding to air and average CT values corresponding to solid.

Horizon Subvolume

Threshold values
Lower 3rd solid Air Air & solid Average of means for

standard dev. mean equi-probability air & solid
(A) (B) (C) (D)

A2

a 2336 2370 2681 3047
b 2126 2210 2464 2940
c 2397 2597 2682 3148

AB

a 4717 4865 4987 5466
b 4644 4737 4876 5376
c 4854 5029 5134 5639

Bt2

a 3595 3552 3855 4679
b 4193 4421 4481 5165
c 3578 3818 3842 4746

Bt/Bw

a 1916 2055 2218 2775
b 2335 2447 2589 3070
c 1825 1777 2043 2521

By using the distribution functionNj (δ) it simplifies cal-
culations and reduces computational errors (Barnsley et al.,
1988). The entropy of the system is estimated through this
dimension by the relation (Feder, 1989):

D1 = lim
δ→0

n(δ)∑
i=1

µi (δ) log[µi (δ)]

logδ
= lim

δ→0

S(δ)

logδ
(7)

The higher theD1 is, the lower the information (higher un-
certainty) we have on the distribution of pore/solid fractions
achieving a higher homogeneity. Contrary, the lower the val-
ues ofD1, the more information (lower uncertainty) we have
on this distribution and then lower homogeneity.

The lower and upper limits ofS(δ) were calculated in
function of the porosity (p) for 3-D binary images given:

3 ln

(
L

δ

)
+ ln(p) < −

n(δ)∑
i=1

µi ln(µi) < 3 ln

(
L

δ

)
(8)

the bounding functions when included on the plot of entropy
against ln(δ) again yield two parallel lines of slope 3, with
separation of ln(p). The higher the porosity, the closer the
two boundaries andD1 will approach 3.

3 Results and discussion

3.1 Thresholding methods

As indicated in Table 2, the mean of the modal values for
the air and solid distributions consistently resulted in the

largest thresholding values, followed by the equi-probability
value for the two distributions. Though the thresholding val-
ues corresponding to the other two criteria were consistently
lower than those obtained from both distributions, there was
no consistent trend between the air mean and the lower 3rd
standard deviation of the solid distributions. A variation of
specific thresholding values, among subvolumes of a given
sample, suggests the high variability in the intensity field ob-
tained from the CT scan. As indicated in Fig. 3, apparent
porosity was more sensitive to the selected thresholding cri-
teria in the Bt/Bw horizons than for the A2 and AB horizons,
which followed a more linear trend. However, Bt/Bw is less
sensitive to thresholding criteria than the Bt2 horizon.

3.2 Mass fractal dimension

For all horizons, the porosity obtained varied as a function of
the threshold method applied (Table 3). As expected, thresh-
old method D gave the higher porosity, from 24% for the A2
horizon to 28% for the AB horizon, and threshold method A
gave the lowest, from 8% for the Bt/Bw horizon to 10% for
the AB horizon. In all cases, we obtain statistically signif-
icant straight-line fits (R2>0.98) for the full range of box
sizes considered (from 1 to 256 voxels) as it is shown in Ta-
ble 3 (Dm1). The mass fractal dimensions derived from these
calculations are very close to 3, with the lowest being 2.70 for
A2 horizon using threshold method A, and the highest 2.94
for horizons AB, Bt2 and Bt/Bw, when applying method D.
Comparing among horizons (Table 3), the A2 horizon always
exhibited the lowest value inDm and Bt2 the highest value,
regardless of the thresholding method.

Nonlin. Processes Geophys., 15, 881–891, 2008 www.nonlin-processes-geophys.net/15/881/2008/
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Table 3. Average (three replicates) porosity and mass dimension (Dm) for each horizon and thresholding criteria based on a range fromδ=2
till δ=256 voxels (Dm1) and fromδ=2 till δ=16 voxels (Dm2). For all linear fits theR2 obtained was higher than 0.98.

Horizon Threshold Porosity±s.e. Dm1 R2 Dm2 R2

A2

A 8.749 0.003 2.703 0.994 2.222 0.993
B 10.013 0.013 2.734 0.999 2.670 0.995
C 13.348 0.010 2.798 0.997 2.439 0.992
D 23.966 0.014 2.900 0.994 2.202 0.993

AB

A 10.253 0.023 2.797 0.996 2.833 0.996
B 12.594 0.024 2.834 0.999 2.933 0.999
C 14.729 0.021 2.859 0.997 2.861 0.997
D 27.515 0.028 2.935 0.995 2.786 0.995

Bt

A 8.950 0.019 2.838 0.996 2.222 0.993
B 10.661 0.029 2.856 0.999 2.776 0.997
C 12.139 0.024 2.872 0.997 2.534 0.990
D 24.978 0.017 2.940 0.996 2.409 0.985

Bt/Bw

A 7.871 0.009 2.800 0.996 2.397 0.987
B 9.741 0.017 2.823 0.999 2.776 0.997
C 12.765 0.009 2.864 0.997 2.504 0.990
D 26.086 0.012 2.939 0.994 2.280 0.985
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Figure 5. Mass fractal dimension (
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D ) versus porosity for each horizon and sub-voxel. Logarithmic regression lines and 

their corresponded equation are included in each graphic. 

2.65

2.70

2.75

2.80

2.85

2.90

2.95

5% 10% 15% 20% 25% 30%

porosity

D
0

a

b

c

0.1971Ln(x)+3.1871

R2=0.98

  

A2 

2.65

2.70

2.75

2.80

2.85

2.90

2.95

5% 10% 15% 20% 25% 30%

porosity

D
0 a

b

c

0.1284Ln(x)+3.1081

R2=0.98

 

AB 

2.65

2.70

2.75

2.80

2.85

2.90

2.95

5% 10% 15% 20% 25% 30%

porosity

D
0 a

b

c

0.1012Ln(x)+3.0839

R2=0.99

 

Bt 

2.65

2.70

2.75

2.80

2.85

2.90

2.95

5% 10% 15% 20% 25% 30%

porosity

D
0 a

b

c

0.1204Ln(x)+3.1058

R2=0.96

 

Bt/Bw 

Fig. 5. Mass fractal dimension (Dm) versus porosity for each horizon and sub-voxel. Logarithmic regression lines and their corresponding
equation are included in each graphic.
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Figure 6. Entropy fractal dimension (
1

D ) versus porosity for each horizon and sub-voxel. Logarithmic regression lines and 

their corresponded equation are included in each graphic. 
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Fig. 6. Entropy fractal dimension (D1) versus porosity for each horizon and sub-voxel. Logarithmic regression lines and their corresponding
equation are included in each graphic.

In order to closely examine the relationship between
porosity and mass fractal dimension, a bi log plot ofN(δ) and
δ is shown in more detail (Fig. 4). It is now apparent that soil
porosity is mainly affecting the smallest voxels from length
sizeδ=2 to 16 that influence theDm value obtained. If we
reduce our estimation ofDm to this size range (Dm2) values
are lower and show more variation (Table 3). From now on,
we will use onlyDm1 and named it asDm.

At the highest porosity values (Table 3), the differences in
Dm among the horizons are much smaller than at the lowest
values. Moreover, it was observed that, for each horizon, the
trend was not linear, but rather showed several increments
that can be fitted by a logarithmic curve. To study this obser-
vation closer, several plots were done to see the variation of
Dm versus porosity for each horizon and sub-voxel (Fig. 5).
What can easily be seen is that for a certain horizon it didn’t
matter what the porosity for each sub-voxel and threshold
was, all of them follow a pattern. This pattern is different de-
pending on the horizon. In the case of the horizon AB, sub-
voxel c is different from the other two, highlighting a possi-
ble problem in the image due to a beam hardening effect that

was verified. For this reason, we didn’t include sub/voxelc

in the logarithmic regression for this horizon.
Comparing these results to the particle size distribution

(PSD) and depth for each horizon (Table 1), it can be ob-
served that the most superficial one (A2) and with higher
coarse sand percentage (62%) presents the steepest curve
with respect to porosity (Fig. 5). Next horizon, AB, reduces
the curve convexity as it shows a reduction to 26% of coarse
sand and its depth (lower than 35 cm) protect it from any
tillage practice. With the last two horizons, the clay per-
centage increases to double (35%) and has a low percent-
age in coarse sand. The curves ofD0 versus porosity are
quite close and show the lower coefficients values multiply-
ing Ln(porosity).

3.3 Entropy and correlation dimension

After calculatingS(δ) for all binary images, it was plotted
against log(δ); a clear linear pattern was observed in all plots
(data not shown). The same comments that we have made
for Dm could be applied here too. Table 4 shows the results
obtained from function of soil horizon and threshold applied.
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Fig. 7. Mass fractal dimension (Dm) and entropy fractal dimension
(D1) versus porosity for each horizon. Horizon AB is represented
only by sub-voxelsa andb.

The higher the threshold value (from A to D), the higher the
porosity andD1 increases approaching the value of 3 and the
s.e. decreases. At threshold D allD1 are higher than 2.90,
pointing out a high homogeneity. As we did for mass di-
mension, we plottedD1 for each horizon versus the poros-
ity of the soil at that threshold value (Fig. 6) realizing again
that each sub-voxel differs in the porosity andD1 associated,
the three of them variesD1 similarly when the threshold is
pushed forward. For example, this trend for horizon A2 is
much more linear forD1 case than forDm values. At the
same time, AB shows a big difference in sub-voxelc with
respect to sub-voxela andb.

Once these fractal dimensions versus porosity have been
analyzed, all the horizons are plotted together forD1 and
Dm (Fig. 7). In both it is clear that A2 shows a very distinc-
tive trend more than the other three horizons pointing out the
influence of a high percentage of coarse sand and being the
most superficial horizon that can be affected by tillage prac-

Table 4. Entropy dimension (D1), average of each horizon based
on the three replicates applying four different threshold values.

Horizon Threshold D1±s.e.

A2

A 2.699 0.033
B 2.739 0.036
C 2.809 0.021
D 2.910 0.011

AB

A 2.876 0.076
B 2.904 0.060
C 2.920 0.051
D 2.969 0.016

Bt2

A 2.915 0.013
B 2.921 0.016
C 2.929 0.007
D 2.958 0.003

Bt/Bw

A 2.846 0.057
B 2.859 0.066
C 2.898 0.037
D 2.957 0.015

tices. Horizon Bt2 shows the minimum slope in variations of
Dm andD1 versus the porosity and therefore, versus thresh-
old, similarly with low content in coarse sand, low content
in silt and 35% in clay. AB and Bt/Bw are inside the area
marked by the other two horizons. Bt/Bw has the lowest con-
tent in coarse sand (18%), a higher content in clay (35%) as
Bt2 but higher content in silt compared with the rest of the
horizons (10%).

4 Conclusions

3-D CT images from undisturbed soil samples were obtained
from four horizons and three adjacent positions, having a to-
tal set of 12 samples. In order to describe the porosity struc-
ture, four threshold values were applied to convert each im-
age into binary and then calculateDm andD1 as a quantifi-
cation of soil morphology.

The sensitivity of each horizon to the threshold value on
porosity was revealed indicating the differences in the CT
unit values histogram among horizons although with these
types of analyses, results cannot reflect the space arrange-
ment of pores.

Linear scaling was observed over all the cube sizes for
both fractal dimensions, however depending on the range of
cube sizes used in the linear regression, the values obtained
changed. For example, in one of the imagesDm could vary
from 3.00 to 2.20. Observing the log-log plots to estimate the
dimensions, we conclude that threshold influenced mainly
the scaling in the smallest cubes (length of size from 1 to 16
voxels).
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Dm andD1 showed a logarithmic relation with the appar-
ent porosity in the image for the 12 samples studied. Plotting
all the data of porosity and itsDm or D1 independently of the
threshold applied, the increase of both with respect to poros-
ity defining a characteristic feature for each horizon that indi-
rectly differentiate their structures. These differences can be
explained based on the texture and depth of each horizon.
TheseDm variations are in agreement with the functional
box-counting concept presented by Lovejoy et al. (1987) to
extract the multiple dimensions of multiscale fields. Further
research is necessary to present a wider variability in soil tex-
ture and applying this type of analysis so a statistical analysis
can be made in order to estimate these relationships. How-
ever, from these results we can conclude that the higher the
porosity, the harder it is to differentiate the differences inDm

andD1 among horizons.
This indicates that fractal/multifractal analysis of the CT

unit values could be applied to be able to choose an opti-
mal thresholding as it is already used in many areas of geo-
science.

Acknowledgements.Second author acknowledges the Canadian
Foundation for Innovation and Ontario Innovation Trust for
providing funding to acquire the micro-CT scanning system, as
well as EVS (now GE Medical) of London, Canada for designating
micro-CT laboratory as Luminary Site. The funding of Madrid Au-
tonomous Community (CM) under projects number M070020163
and M0800204139 is greatly appreciated.

Edited by: Q. Cheng
Reviewed by: X. Deyi, K. Oleschko, and two other

anonymous referees

References

Anderson, S. H., Gantzer, C. J., Boone, J. M., and Tully, R. J.: Rapid
nondestructive bulk density and soil-water content determination
by computed tomography, Soil. Sci. Soc. A. J., 52, 35–40, 1988.

Anderson, A. N., McBratney, A. B., and FitzPatrick, E. A.: Soil
Mass, Surface, and Spectral Fractal Dimensions Estimated from
Thin Section Photographs, Soil. Sci. Soc. A. J., 60, 962–969,
1996.

Anderson, S. H., Wang, H., Peyton, R. L., and Gantzer, C. J.: Es-
timation of porosity and hydraulic conductivity from x-ray CT-
measured solute breakthrough, in: Applications of X-ray Com-
puted Tomography in the Geosciences, edited by: Mees, F.,
Swennen, R., Van Geet, M., and Jacobs, P., p. 135–149, Geo-
logical Society of London Spec. Pub. 215, Geological Society of
London, London, 2003.

Barnsley, M. F., Devaney, R. L., Mandelbrot, B. B., Peitgen, H.
O., Saupe, D., and Voss, R. F.: The Science of Fractal Images,
edited by: Peitgen, H. O. and Saupe, D., Springer-Verlag, New
York, 66–67, 1988.

Bartoli, F., Bird, N. R., Gomendy, V., Vivier, H., and Niquet, S.: The
relation between silty soil structures and their mercury porosime-
try curve counterparts: fractals and percolation, Eur. J. Soil Sci.,
50, 9–22, 1999.

Baveye, P., Boast, C. W., Ogawa, S., Parlange, J. Y., and Steen-
huis, T.: Influence of image resolution and thresholding on the
apparent mass fractal characteristics of preferential flow patterns
in field soils, Water Resour. Res., 34, 2783–2796, 1998.

Bird, N., D́ıaz, M. C., Saa, A., and Tarquis, A. M.: A Review of
Fractal and Multifractal Analysis of Soil Pore-Scale Images, J.
Hydrol., 322, 211–219, 2006.

Brakensiek, D. L., Rawls, W. J., Logsdon, S. D., and Edwards, W.
M.: Fractal description of macroporosity, Soil Sci. Soc. Am. J.,
56, 1721–1723, 1992.

Buczhowski, S., Hildgen, P., and Cartilier, L.: Measurements of
fractal dimension by box-counting: a critical analysis of data
scatter, Physica A, 252, 23–24, 1998.

Crawford, J. W. and Matsui, N.: Heterogeneity of the pore and solid
volume of soil: distinguishing a fractal space from its non-fractal
complement, Geoderma, 73, 183–195, 1996.

Crawford, J. W., Baveye, P., Grindrod, P., and Rappoldt, C.: Ap-
plication of Fractals to Soil Properties, Landscape Patterns, and
Solute Transport in Porous Media, in: Assessment of Non-Point
Source Pollution in the Vadose Zone, Geophysical Monograph,
108, edited by: Corwin, D. L., Loague, K., and Ellsworth, T. R.,
American Geophysical Union, Wahington, D.C., p. 151, 1999.

Crawford, J. W., Matsui, N., and Young, I. M.: The relation between
the moisture-release curve and the structure of soil, European J.
of Soil Sci., 46, 369–375, 1995.

Dathe, A., Eins, S., Niemeyer, J., and Gerold, G.: The surface frac-
tal dimension of the soil-pore interface as measured by image
analysis, Geoderma, 103, 203–229, 2001.

Dathe, A. and Thulner, M.: The relationship between fractal prop-
erties of solid matrix and pore space in porous media, Geoderma,
129, 279–290, 2005.

Elliot, T. R. and Heck, R. J.: A comparison of 2D and 3D thresh-
olding of CT imagery, Can. J. Soil Sci., 87(4), 405–412, 2007.

EMBRAPA SOLOS: Sistema de Clasificačao de Solos, 2a Edičao,
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