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A deeper understanding of the spatial variability of soil properties and the relationships between them is needed to 

scale up measured soil properties and to model soil processes. The object of this study was to describe the spatial scal­

ing properties of a set of soil physical properties measured on a common 1024-m transect across arable fields at Silsoe 

in Bedfordshire, east-central England. Properties studied were volumetric water content (0), total porosity (4>), pH, and 

N20 flux. We applied entropy as a means of quantifying the scaling behavior of each transect. Finally, we examined the 

spatial intrascaling behavior of the correlations between 0 and the other soil variables. Relative entropies and incre­

ments in relative entropy calculated for 0, 4>, and pH showed maximum structure at the 128-m scale, while N20 flux 

presented a more complex scale dependency at large and small scales. The intrascale-dependent correlation between 0 

and 4> was negative at small scales up to 8 m. The rest of the intrascale-dependent correlation functions between 0 with 

N20 fluxes and pH were in agreement with previous studies. These techniques allow research on scale effects localized 

in scale and provide the information that is complementary to the information about scale dependencies found across 

a range of scales. 

T SPATI/ variability of soil properties and sediments 
is due to the combined action of physical, chemical, and 

biological processes that operate with different intensities and 
at different scales (Goovaerts, 1998; Bruland and Richardson, 
2005). The significance of this variability has led scientists 
and practitioners to the realization of the need to quantify it. 
Statistics of soil or sediment properties have become essential 
components of data collection in vadose zone research (Hupet et 
al., 2004; Dyck et al., 2005; Pringle and Lark, 2006; Vereecken 
et al., 2007). The accumulation of such statistics has eventu­
ally led to the understanding that they change with the scale of 
sampling or description. Many data on soil and sediments are 
obtained from small samples and cores, monoliths, or small field 
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plots, yet the goal is to reconstruct soil properties across fields, 
watersheds, and landforms, or to predict physical properties of 
pore surfaces and the structure of the pore space. The representa­
tion of processes and properties at a scale different from the one 
at which observations and property measurements are made is a 
pervasive problem in vadose zone hydrology. 

Recently, fractal geometry has become an important source 
of scaling laws in soil hydrology. Fractal geometry focuses on 
geometric objects in which total length, area, or volume depends 
on the scale. Such objects exhibit similar geometric shapes when 
observations are made at different scales. They were termed frac­
tals by Mandelbrot (1982), who suggested that fractals rather 
than regular geometric shapes like segments, arcs, circles, spheres, 
etc., are more appropriate to approximate irregular natural shapes 
that have hierarchies of ever-finer detail. This observation marked 
the beginning of the application of fractal geometry, which has 
become very popular during last 20 yr because of its promise 
to relate features of natural objects observed at different scales 
(Gimenez et al., 1997). 

Fractal geometry characterizes and parameterizes scaling rela­
tionships across a range of scales. In theory, the wider the range 
of scales, the more reliable are the scaling parameters such as 
fractal dimensions or multifractal structure function. Depending 
on the application, the change in variability with scale may also 
be of interest for the cases in which changes in scale are not large. 
Fractal models are not meant for this type of analysis, and other 
tools of multiscale analysis have to be used. Ideally, they should 
allow one to parameterize the joint effect of small changes in 
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location and scale on variability. A search of such methods is 
currently underway. 

It has been shown (Basseville et al., 1992; Kumar, 2003) 
that multiscale signal and image analysis of dyadic trees 
of scales can be used for the fusion of multiresolution data, 
downscaling, and efficient reconstruction of missing data, in 
particular soil moisture contents. Many analyses of the spatial 
structure of soil properties have been based on spatial cross-
correlograms (Goovaerts, 1997), obtaining several parameters 
to estimate the significant spatial correlation between two vari­
ables (Kravchenko et al., 2002, 2003). This type of analysis is 
important when one of the variables is difficult or expensive to 
measure. Wavelet-based multiscale analysis has been success­
fully applied to analyze soil structure, salinity, and other soil 
properties (Lark et al., 2003, 2004; Zeleke and Si, 2005; Ding 
and Ding, 2006). Watershed analysis is yet another technique 
to perform multiscale analysis within a narrow range of scales 
(Sofou et al., 2001). The relative efficiency of these and other 
methods depends on the intended application. 

The objective of this work was to propose and apply two 
simple parameters to document scale-dependent changes in spa­
tial variability and to test methods to find these parameters with 
data on soil properties along a transect. We used two such param­
eters—relative entropy and the intrascale correlation coefficient. 

Multiscale Analysis 

Our analysis was based on the scaling behavior of coarse­
grained measures derived from data distributed on a geometric 
scale. In the context of this study, we had a set of positive soil 
property values x,, sampled at equal intervals across a transect. A 
coarse-grained measure is defined by (Feder, 1989) 

M§) : 2 ^ j=(i- X; ;=( i-l)8+l J 

yL X; 
[1] 

expressed relative to that arising from a uniform and structureless 
measure (Bird et al., 2006). This relative entropy (E) is given by 

^(6) = -£u , (6) logu, (6)+log- [3] 

Entropy as a Measure of Multiscale Heterogeneity 

Plotting relative entropy against the resolution of observation 
6 reveals how structure in the measure evolves with increasing 
resolution, and by calculating increments, we may quantify struc­
ture at successively smaller scales. 

Moving from scale or resolution 26 to the finer resolution 6, 
a value of the measure |l (26) is resolved into two adjacent values, 
|i2i_i(S) =Pi,\\^pS) and |l2i(6) =^2^(26) , where both represent 
the distribution of the initial measure, 1-̂ (28), in two intervals pi j 
and/> 9> the two percentages in which |l (26) is dividing (p., + 

p, 9 = 1). Thus we may rewrite Eq. [3] as 

1/8 2 
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This, in turn, may be rewritten as 

if (6) = 

1/8 

*(28)-£ M.i(28)£>i,yl°g/ ,ij -log2 
[5] 

The incremental change in relative entropy then becomes 

A£(8) 

= E(2b)-E(b) [6] 

£ M . i ( 2 8 ) £ / ' i j l ° g / , i j •log 2 

for values of 6 = 2 where k = 1, ..., n, and L = 2" is the total 
number of sampling points in the transect. Thus the measure |l (8) 
is created by placing a partition mesh of size 8 on the transect and 
aggregating the values within each partition cell i. 

The measure thus created forms the basis of multifractal anal­
ysis, used to characterize data sets when scaling symmetries are 
present in the data (Bird et al., 2006). Entropy (5) is defined as 

«(8) 

S(S) = -£u,(6)ln[u,(6)] [2] 

where w(6) is the number of intervals in the transect of length 
6 and S(8) is the entropy at scale or resolution 6. This is one of 
many resolution-dependent quantifications of heterogeneity that 
arise in multifractal analysis. 

While this form of analysis is usually used to identify simple 
logarithmic scaling behavior, it has equal merit when such behav­
ior is absent. Entropy evaluated at different resolutions then 
reveals the scale-dependent nature of heterogeneity in the data. 

To be well placed to detect structure, especially when this 
is not pronounced, we used relative entropy, which is entropy 

The increment of E now describes the structure revealed in the 
data at scale 6. In particular, we have a sum of local entropies 
weighted by |l (26), describing structure at scale 6 revealed in a 
window of observation of size 26. Maximum structure, corre­
sponding top i i = l, Vi yields A£(8) = log 2. No structure (local 
uniformity), corre- sponding top., =p 2 = 0.5, Vi yields 
AE(S) = 0. Thus we have 

0 < A J £ ' ( S ) < l o g 2 [7] 

and a record of AE(b) across scales 8 provides a succinct record of 
scale-dependent structure within the original transect measure. 

A special case occurs when p,, and p, 2 are independent of 
both i and 6. Then, from Eq. [6], 

A £ ( 6 ) = ( A l o g A + / 2 l o g / 2 ) + log2 [8] 

is constant. This corresponds to a multifractal measure generated 
by a multicascade model (see Fig. 1), and entropy and relative 
entropy scale logarithmically as 



5(5) = -D log (5/1) 

£ ( 6 ) = ( l - J D ) l o g ( 6 / Z ) 

[9] 

[10] 

From Eq. [9], we can define D as the slope of entropy against 5, 
which is given here by 

D--
{pl\ogpl+p2\ogp2) 

[11] 
log2 

Bivariate Analysis to Detect 
Scale-Dependent Correlations 

Our bivariate analysis also exploits the scaling properties 
of coarse-grained measures, but now we cannot use entropy 
because this only provides a quantification of the degree of 
structure in the data. We consider two measures, |l (5) and 
3 (5), where 8 (5) can be defined, based on a set of positive soil 
property valuesy., as 

P,-(6) = 
2^;-=(,-i)6+i^;' 

[12] 

First, we consider the measure |l (25) at resolution 25. As dis­
cussed above, at resolution 5, each measure is resolved into 
two components, p. ,|i(25) and p2|i(2S), where p., + />-2

 = !• 
Similarly for the second measure, we resolve 8 (28) into q- ,8 (25) 
and ^ 28 (28), where/) , and/> 2 represent the distribution of the 
initial measure, |3.(28), into two subintervals, and |3. l + | 3 . 2 = 1. 

We now construct a sum of local covariances between the 
two measures, each covariance corresponding to a window of 
observation 26 viewed with resolution 8: 

C(5) = 

1/28 2 

EE pi,jM2f>)-
M-i (26) 

^ i / i (28)-
P,(28) [13] 

This simplifies to 

C(6) = 

Z/26 L/_Z0 / 1 
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FIG. l . Multiscale cascade model where p1 and p2, the two per­
centages into which the measure is divided (p1 + p2 = 1), are 
independent of the scale (6). 
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Defining the following functions 

XWP(6) = E^(6)P,(6) 

XM41(6) = E^(6X(6) 

Xpp(8)^EP.(8)3i(8) 

we finally write 
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which may be written as 

1/26 
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C(6 ) = X w P ( 6 ) - - X w P ( 2 6 ) [17] 

From this we define the intrascale-dependent correlation 
function: 

* (6) : 

2 X , p ( S ) - X , p ( 2 S ) [18] 

A/[2Xw(5)-Xw(25)][2Xpp(5)-Xpp(25)] 



This function provides us with a way of recording correlations at 
different scales 8, based on coarse graining the measure. This func­
tion is equivalent to a Haar wavelet correlation function, which 
arises from the simplest form of wavelet analysis using the Haar 
wavelet function (see, e.g., Percival and Walden, 2000). 

Equation [18] seems to be quite close in form to the cross-
correlogram function; however, a cross-correlogram will define 
the correlation existing between |l (8) and P,(8) values or between 
1 (̂26) and ^(26) values separated by a lag distance 6, 26, 36, ..., 
etc., but not the correlation at different scales 6. 

We applied these analyses to a set of transect data recording 
intrascale-dependent variation of soil properties. 

Materials And Methods 

Case Study 

The data used here were collected in a survey on a transect 
across arable fields at Silsoe in Bedfordshire, east-central England. 
The data have previously been described by Lark et al. (2004). The 
first sample point on the transect was at UK Ordnance Survey 
(OS) coordinates 508570, 235605, and the soil was sampled at 
256 locations at 4-m intervals on a line running on a bearing 
of 188° relative to UK OS grid north. The data selected from 
this survey for analysis here were porosity (([>), volumetric water 
content (9), pH, and N 2 0 flux. 

The values of all these variables are shown in Fig. 2. The 
mean, standard deviation, and asymmetry (skewness) of the four 
variables (measures) are described in Table 1. 

Relative Entropy and Bivariate Analysis 

Relative entropy and increments in relative entropy were cal­
culated using Eq. [4] and [6], respectively, for each soil variable. 

Entropy and relative entropy were calculated by selecting 
the first point of the transect as the origin for the partition mesh 
that was used to coarse grain the transect data. Other origins 
could be chosen, yielding different values for entropy, but thus 

would require an assumption of spatial periodicity beyond the 
endpoints of the transect to allow the partition mesh to extend 
beyond these endpoints. 

Values for intrascale correlation R(§) were calculated using 
Eq. [18], using the combinations of 9 with <j), pH, and N 2 0 . 
Confidence limits for this R(§) were computed using Fishers z 
transforms (Piegorsch and Bailer, 2005): 

;(6) = 0.5Z 
l + i?(6) 
l -*(6) 

[19] 

The transformed estimate of R(8) is approximately normal, with 
a sample variance of l/(w - 3), where the correlation is derived 
from n independent observations. Therefore, the confidence 
limits were calculated as usual on z(§) for a = 0.05 and then 
transformed into R(S) limits by 

* (6 ) = 
exp[2z(8)]-l 

[2,(8)]- •1 
[20] 

In our case, we followed the work of Whitcher (1998), consider­
ing that the number of independent observations was 

N_ 

V 
[21] 

with;' = 1,2, ..., 6 and TV =256. 

TABLE 1. Statistical description of the variables studied: volumetric 
water content (0), total porosity (4>), pH, and N20 flux. 

Measure 

Average 

SD 

Min. 

Max. 

Skewness 

e 
3 

m m 
0.38 

0.05 

0.23 

0.54 

0.04 

<l> 
-3 

0.57 

0.06 

0.36 

0.71 

-0.85 

PH 

7.20 

1.00 

5.20 

8.30 

N2Oflux 

Hgkg _ 1d~ 

54.61 

54.52 

0.00 

319.00 

1.59 

FIG. 2. Original data of 
the soil variables: (a) 
total porosity, (b) volu­
metric water content 
(VWC), (c) N20 flux, 
and(d)pH. 
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FIG. 3. Entropy study: (a) relative entropy, E(8), of porosity, (b) increment of relative entropy, AE(8), of porosity, (c) relative entropy of volu­
metric water content, and (d) increment of relative entropy of volumetric water content. 
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FIG. 4. Entropy study: (a) relative entropy, E(8), of N20 flux, (b) increment of relative entropy, AE(8), of N20 flux, (c) relative entropy of pH, and 
(d) increment of relative entropy of pH. 
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FIG. 5. Bivariate analysis through intrascale correlation function, 
R(6), of volumetric water content and: (a) porosity, (b) N20 flux, 
and (c) pH. The plus marks are the upper and lower limits of the 
confidence interval (95% confidence level). 

Results and Discussion 

Relative Entropy 
Relative entropies and increments in relative entropy calcu­

lated for the four variables are shown in Fig. 3 and 4. Volumetric 
water content, <j), and pH show similar scaling trends, with maxi­
mum structure revealed at scale 6 = 32, corresponding to 128 m 
in the transect. This coarse-scale structure corresponds well with 
the wavelet analysis of the same transect by Lark et al. (2004), 
who attributed structure in the data at these scales to changes 
in underlying parent material. The N 2 0 data reveal a different 
and more complex scale dependency with structure, apparent 
at both large and small scales. This is not unexpected for a soil 
process with complex dependencies across a range of different 
soil properties. 

Bivariate Analysis to Detect Scale-Dependent Correlations 

The intrascale-dependent correlation functions are shown in 
Fig. 5. Figure 5a reveals that 9 and <j) are negatively correlated 
at fine scales up to 6 = 2, corresponding to 8 m. This we may 
attribute to the presence or absence of cracks and other air-filled 
macroporosity in otherwise similar media, which has opposing 
effects on the values of the two variables. At larger scales, the two 
variables become uncorrelated as we aggregate the data values. 

Figure 5 b shows no significant correlations between 9 and 
N 2 0 emissions at any scale. Again, this is not surprising given 
the complexity of the denitrification process and its dependency 
on a range of soil properties. 

Figure 5c shows positive correlations at intermediate scales 
between 9 and pH, suggesting that both variables are responding 
in a like manner to changes in underlying parent material. 

Conclusions 
During recent years, the concepts of fractals and multifractal 

measures have been increasingly applied in the analysis of spatial 
variability of processes and properties in soil. In terms of model­
ing, it is important to characterize the multiscale heterogeneity 
of soil properties in a useful way, not only restricted to the study 
of multifractal behavior. 

Relative entropy and the intrascale correlation coefficient 
were used in this work. Both parameters have general applicabil­
ity and do not require the presence of scaling symmetries or any 
other prior assumptions as to the structure of the data. 

The proposed approach provides information about space 
and scale dependencies that are localized both in space and in 
scale. It provides information that is complementary to the 
information about scale dependencies found across a range of 
scales. Space- and scale-localized features are also revealed with 
the wavelet analysis. Establishing a relationship between these 
two localization methods presents an interesting avenue for the 
further research. 
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