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LOCAL NONLINEAR STABILITY OF THE STEADY STATE 
IN AN ISOTHERMAL CATALYST* 

IGNACIO E. PARRA AND JOSE M. VEGA 

Abstract. A first-order, irreversible, exothermic reaction in a bounded porous catalyst is considered, 
with smooth boundary, of one, two, or three dimensions. For small Prater and Nusselt numbers, ,3 and I>, 

and a large Sherwood number, o, two isothermal models are derived. An analysis of linear stability of the 
steady states of such models shows that oscillatory instabilities appear for appropriate values of the 
Damk6hler number if the nondimensional activation energy is larger than 7* and the Lewis number is 
sufficiently large, where y* = 4 if m = v/,8o-c 1 and y* = (m + 1)2/ m if m > 1. A local Hopf bifurcation 
analysis is carried out at neutral stability points in order to ascertain whether such bifurcation is subcritical 
or supercritical. 

Key words. nonlinear stability, Hopf bifurcation, isothermal catalysts 

AMS(MOS) subject classifications. 35B32, 35B35, 80A32 

1. Introduction. In this paper we consider a well-known model for the evolution 
of the reactant concentration u and of the temperature v in a porous catalyst, occupying 
a region fQ, in which an irreversible, first-order, exothermic reaction is taking place 
(see Aris [1]) 

(1.1 u=A/u-0 2u exp (y -y/ v) in Ql, -9= ar(1- u) on afl, 

(1.2) L1 -= Av+,8f 2u exp (y-y/v) in f, -= v(1-v) onafd. at n 
Here, n is the outward unit normal to the smooth boundary of the bounded domain 
fl ' RI (p _ 1, 2 or 3). The parameters L (Lewis number, the ratio of thermal to material 
diffusivity), k2 (Damk6hler number, a measure of the reaction rate relative to the 
diffusion rate), y (activation energy), ,B (chemical heat release or Prater number, f3L 
is the ratio of the heat of reaction to the thermal energy of the catalyst), o- and v 
(Sherwood and Nusselt numbers, the ratios of the rates of mass and heat transfer 
between the surface of the catalyst and the external unreacted fluid to the corresponding 
rates of mass and heat transfer within the catalyst) are positive constants. For non- 
dimensionalization, length is referred to a characteristic dimension of the catalyst, and 
time to the diffusion time within the catalyst, while concentration and temperature are 
referred to their respective values in the external unreacted fluid. 

We shall consider the limit 

L - xo, yl3-> 0 v - * 0, 

which accounts for the fact that the thermal diffusitivity of the solid catalyst is usually 
very high and leads to the so-called isothermal models in which the temperature does 
not depend on the spatial variables; this limit is quite realistic, as has been pointed 
out in the literature (Aris [1] and references given therein). In addition, in ?? 2-5 we 
shall assume that a is a large parameter, as is frequently the case in practice because 
the exchange of mass with the external fluid is much faster than through the pores of 
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the catalyst; nevertheless, if the size of the catalyst is sufficiently small, C may be of 
the order of unity, as will be assumed in ? 6. The results below will be valid for arbitrary 
values of y (which is frequently fairly large) and 42 (which varies over a wide range 
in practice). 

In ? 2 we shall derive two models which are appropriate for the study of nonlinear 
stability of the steady states of (1.1), (1.2) under small perturbations. If k2 is not too 
large, we shall obtain the following model, which will be referred to as Model 1 in 
the sequel 

(1.3) -=Au-42U exp(y- y/v) inQ, u=l on af, 
at 

(1.4) dv =Ag (I_v)+A4k2exp(y-y/v) Judx. 

Here, the parameters A and , are 

(1.5) A =,BL/VQ, ,U = iSn/13, 
where VQ and So are the volume and the external area of the domain Q (SQ = V0 = 2 
if fl=]-1, 1[ciR). 

If 42 iS sufficiently large, then the concentration vanishes to leading order outside 
a thin boundary layer which is close to afl, and the following model (Model 2) will 
be obtained 

(1.6) 
aU & a U_ >2 

U 
exp(y-y/v) in-oX<e<0, 

&r af2 

(1.7) U=O at6=-oo, au=l-U at{=O, 

(1.8) dv =m(1-v)+14'2exp(y-y/v) Udf 

with 

(1.9) ,, J M L= P, r 2t 9 = 

Here, tq is a coordinate along the outward unit normal to afl and U is the mean value 
of the concentration u at time r over the surface e = constant, which is parallel to afd 
and close to it ( U = u if l = ]-1, 1[ c R). Observe that Model 2 is independent of the 
shape of the domain Ql; it depends only on the volume and the external area of fl, 
through the parameters I and m. 

Models 1 and 2 may also be obtained in the limit a- - oX from the isothermal model 
posed by (1.1), (1.4), which is readily obtained from (1.1), (1.2) whenever the tem- 
perature v may be considered to be spatially uniform (as is the case, after a short time, 
under the assumptions that lead to Models 1 and 2, as will be seen in ? 2); then, (1.4) 
is obtained from (1.2) upon integration over Ql, application of Green's identity, and 
substitution of the boundary condition at o90. 

Model 1 was considered, for the slab geometry (l = ] -1, 1[ c R), by Amundson 
and Raymond [2]. In their work, it was apparently proved that the possible instabilities 
of the steady state are of the nonoscillatory type and that they appear only at those 
points of the parameter space where the number of steady states changes. A gap in 
their use of Rouche's Theorem prevents their conclusion from being true. In fact, as 
we shall see in ? 3.1, oscillatory instabilities do take place in a region of the parameter 
space. 
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Linear stability properties of Model 1 for arbitrary shapes of the domain Ql in 
two and three dimensions and of Model 2 will be considered in ?? 3.2 and 4, where 
oscillatory instabilities will be found again. Local Hopf bifurcation for Model 2 will 
be considered in ? 5. Finally, in ? 6 we shall consider the limit o-= 0(1). 

The results below also apply to some generalizations of the isothermal model 
(1.1), (1.4), such as that considered by Nielsen and Villadsen [3]. Global stability 
results for (1.1), (1.4) and: (a) more general kinetic laws and (b) arbitrary positive 
values of the Sherwood number (not necessarily large) will be considered elsewhere 
[4]. Finally, let us point out that in the (not quite realistic) limit uo -0, e-*r, 

28= 0(l), concentration (and not temperature) is lumped, and a model (Model 2 
of [2]) is obtained, which is essentially the converse of the isothermal model. This 
model exhibits relaxation oscillations, as was shown by Hastings [5]. Unfortunately, 
the analysis of relaxation oscillations for the isothermal model (1.1), (1.4) seems to 
be much more involved than that in [5] (except in the limit 4/!o- -*xo that will be 
considered in ? 6, in which the global dynamics of (1.1), (1.4) is essentially two- 
dimensional); such analysis could be of interest in explaining some numerical results 
in the literature (see [6] and references given therein), since the isothermal model is 
more realistic than the model considered in [5]. 

2. Asymptotic derivation of Models 1 and 2. In this section, we shall consider the 
limit 

L-*oo, y/3-O0, v -*, or-* X 

for the problem (1.1), (1.2), with initial conditions 

(2.1) u(x, 0) = u(x), v(x, O) = v(x) in fl, 

where the smooth functions u and v satisfy the boundary conditions at adQ. 
For the sake of brevity, only the three-dimensional case (fl c R 3) will be considered; 

the results below are also valid in one and two dimensions. Also, we shall consider 
only the case y = 0(1). If y >>1 and if the initial conditions (2.1) are such that 
y(vt- v5) = 0(1) (v, is any steady state temperature of (1.1), (1.2)), then the problem 
(1.1), (1.2) also leads to submodels of Models 1 or 2, depending on whether the 
following condition is satisfied or not 

4'2 exp (y - y/v,)<< 2 

as may be seen by means of an analysis which is similar to that given below. 
A part of the analysis follows Cohen and Poore [7] and Murray [8]. 

2.1. Derivation of Model 1. In the distinguished limit o-- L I-' -,8 ,,1, y- 1, 
2_ 1, the parameters A and g,, defined in (1.5), are of the order of unity. Let us 

assume that the initial conditions (2.1) and their first- and second-order derivatives 
are of the order of unity in fl. We shall seek the expansions 

u = UO+/U1?+ * * * v= vO+fv1+ * * * , 

and distinguish two time scales. For t -,, uo and vo are given by 

au0 v av0 -0 = - = Avo in Q, -= 0 on dl, 
aT aeT an 

in terms of the time variable T = A Vnt/1,. Therefore, uo = a (x) remains constant in 
this time scale and 

v0o- Vn' { v(x) dx as T -*c. 
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For t 1, u0 is given by (1.3) when the subscript 0 is dropped from u and v, while 
v0 and v, are give by 

av0 
(2.2) 0=0 inn, - =0 onafl, 

(2.3) (AVQ) -av AVI + 42uo exp (y-y/v0) in f, 

(2.4) Si, av (I y - vo) on AI,, a n 

Equation (2.2) yields v0 = vo(t). Then, integration of (2.3) over Ql, application of Green's 
identity, and substitution of the boundary condition (2.4) lead to (1.4) when the sub- 
script 0 is dropped. Observe that the appropriate initial conditions for Model 1 are 

U(O, x) = U(X), V(O) = VQl v3(x) dx, 

as comes from matching conditions with the earlier time stage. 
If the first-order type of kinetic law is replaced by a general one, &7f(u, v), then 

the analysis above stands after trivial changes. 

2.2. Derivation of Model 2. In the distinguished limit 4 - Ll/3 , v-} p-1/2 _ C, >> 

1, y 1, the parameters 1D, 1, and m defined in (1.9) are of the order of unity. In this 
limit, it will appear a thin layer, of thickness v-', beside the boundary afl. The solution 
in this boundary layer will be described in terms of the space variables e, q ', and 2, 

where o = oq and where (,q, q1I, 772) is an orthogonal curvilinear coordinate system, 
defined in a neighborhood B of each point of aCl, which is such that q is a coordinate 
along the outward unit normal to afl, and Al is the parametric surface 71 =0. Then, 
the Laplacian operator is 

2 2 

a 2 a d +p ka 

where h0i and pk (i,j k= 1 and 2) are appropriate smooth functions of 71, 7j1, and 72, 
defined in the neighborhood B. 

Let us assume that the initial conditions (2.1) are such that: (a) a2u(x), v3(x) and 
their first- and second-order derivatives are of the order of unity in the outer zone (i.e., 
outside the boundary layer), and (b) ui(4, ,q 77), j, 1, 2) and their first- and 
second-order derivatives are of the order of unity in the boundary layer. Then, we 
shall seek expansions of the form 

U=- -2U2+ e v= 
Vo+ 

+ 
*V- 

in the outer zone, and of the form 

u = a+ 1-+I - + VU v= i0+ il + 

in the boundary layer. 
Three time scales must be considered. For t - r', z1, u2, and vo are seen to 

remain constant, and t30 and 5, are given by 

a T, d2 

vi - Ai (n7 77 as -o i_ =0 at =O, 
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For t- 1, u0 is given by (1.3) when the subscript 0 is dropped from u and v, while 
v0 and v, are given by 

(2.2) Av0=0 inf, = on afl, 
a n 

(2.3) (A VQ) aVo - AV1 + 02 exp (y-y/v0) in fl, a t 

(2.4) SQ-= t,(1 -vo) on af, 
an 

Equation (2.2) yields v0 = vo(t). Then, integration of (2.3) over Q7, application of Green's 
identity, and substitution of the boundary condition (2.4) lead to (1.4) when the sub- 
script 0 is dropped. Observe that the appropriate initial conditions for Model 1 are 

u(O, x) = U7(x), v(O) = VQ J V(x) dx, 

as comes from matching conditions with the earlier time stage. 
If the first-order type of kinetic law is replaced by a general one, 02f(u, v), then 

the analysis above stands after trivial changes. 

2.2. Derivation of Model 2. In the distinguished limit k L'/3_v-l_-1/2_ T>> 
1, y 1, the parameters 4D, 1, and m defined in (1.9) are of the order of unity. In this 
limit, it will appear a thin layer, of thickness o-`, beside the boundary al. The solution 
in this boundary layer will be described in terms of the space variables , 7, and 2, 
where 6 = o-r and where (ri, r 1I 2) is an orthogonal curvilinear coordinate system, 
defined in a neighborhood B of each point of afl, which is such that q is a coordinate 
along the outward unit normal to afl, and afl is the parametric surface 7 = 0. Then, 
the Laplacian operator is 

a 2 a2 k a 
h, a 7 'ar a 

where h'i and pk (i, j, k = 1 and 2) are appropriate smooth functions of 7, ?I', and 2, 

defined in the neighborhood B. 
Let us assume that the initial conditions (2.1) are such that: (a) ao2a(x), v(x) and 

their first- and second-order derivatives are of the order of unity in the outer zone (i.e., 
outside the boundary layer), and (b) jv 7I 2 j( , , 2) and their first- and 
second-order derivatives are of the order of unity in the boundary layer. Then, we 
shall seek expansions of the form 

u = -2U2+ ... = V0+ a- IVI1+* 

in the outer zone, and of the form 

=a+ a-, _ + V = Vo+ cr el+ 
** 

in the boundary layer. 
Three time scales must be considered. For t - a-5, aO, u2, and v0 are seen to 

remain constant, and i0 and iU, are given by 
2- 

2 IL IL IL 
- o i-x< 5< 0, 

vaT (71ar1 2 )i3 -+Aki (,vi as -~oo, -=0 ate=O, 
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Then, integration of (2.10) over Ql, application of Green's identity, and substitution 
of the boundary condition (2.13) lead to (1.8) if the subscript 0 is dropped and if 

U=Sn I a} , 2 
I ) dA(f), 

S(f) 

where S(f) is the parametric surface e =constant; to obtain (1.8) it is necessary to 
take into account that if u- is large in comparison with the maximum normal curvature 
of dfl, then the parametric surfaces f = constant coincide with the surface afl in first 
approximation and, to leading order, 

f Ud =f (TS) io OdA(f)) d, f a (f1I 
io 

d{) dA- 
Finally, U satisfies (1.6) and (1.7), as is seen when (2.7) and the boundary conditions 
(2.8) are integrated over S(f). The appropriate initial conditions for Model 2 are 

U(O, 5) = SQI { U(, i?, r2) dA(4), v(0) = VQI Vi(x) dx, 
S(0) Q)'e, 

q 

as they are obtained from matching conditions with earlier time stages. 
Observe that the linearity in u of the reaction term is essential in the analysis 

above. For general kinetic laws, of the type c2f(u, v), (1.8) must be replaced by 

d- -mI(1-v) +l42S' I [| f(U, v) d] dA, 

where U = ao, because the dependence of uo on 77 and q72 does not disappear in this 
time scale. Nevertheless, even for general kinetic laws, vo is lumped after a short initial 
stage (see (2.6)); therefore, the isothermal model (1.1), (1.4) applies also in this case, 
as was seen in the Introduction. 

Finally, observe that we imposed some constraints on initial conditions to obtain 
Model 2, which imply that initial conditions are not too far from the steady state under 
consideration. If y = 0(1), a more involved asymptotic analysis would show that 
Model 2 is obtained, from the nonisothermal model, for arbitrary initial conditions. 
Unfortunately, this is not necessarily true if y >> 1, as is frequently the case in practice. 

3. Linear stability for Model 1. 
3.1. The slab geometry. Let us consider Model 1 in f=]-1, l[ c R. It may be 

seen that no properties concerning the asymptotic behavior (as t o) are lost if we 
consider the symmetric case, i.e., 

_"= 
2 -<>u exp (y-y/v) in0<x<l1, 

at ax 

-=0 atx=0, u=1 atx=1, 
ax 

dv =A,u(1-v)+2A02 exp (y- y/v) u dx. 
dt 

The steady state solutions are 

uS = cosh (Ox)/cosh 4,, vs = 1 +2,-'4. tanh 0, 

in terms of the parameter 0f, which is given by 

42= +2 exp (y/vs-1). 
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The linearized problem around the steady state has nontrivial solutions of the 
form u - us = X(x) exp (wt), v - ts = y exp (wt), if and only if w satisfies 

(3.1 ( ) (<+2+ tanh +2AA tanhl + 0 ( 2)h .) 

(3.2) y=2(Q cosh 4,+2O. sinh s5)2/ (2 ,+ sinh24.), 

for w $ 0 and for ot = O, respectively. For fixed values of y, A, and ,, the neutral stability 
points of the response curve, vs - f, are (if they exist) those corresponding to values 
of Os which are: (i) solutions of (3.2), or (ii) solutions of (3.1) for a purely imaginary 
value of to, o = iQ. Neutral stability points are sketched in Fig. 1 for fixed values of 
A and ,. 

The upper curve in the sketches of Fig. 1 is given by (3.2), and it does not depend 
on A. The function (3.2) has a unique minimum, yo, which is reached at Os =0,0 
where 040 is the unique solution of 

cosh 45(sinh2 4, + 242) + Os sinh fr 
sinh 45(cosh2 Os- 244) + 3 0 cosh 'f 

2 2 

A A A 

Os Os Os 

(a) (b) (c) 

A 

0Os 0s 
(d) (e) (f) 

I~~~~~~~~~~ A AA 

Os Os 0s 
(g) (h) (i) 

FIG. 1. Curves of neutral stability points of Model I (slab geometry) for fixed values of A and IL. (a) ,u 
arbitrary and A,u<(A,4)n1; (b) A z< s and (AA)...<AA <(AAu)13; (c) a < A and (AA)13<AU <(AA)03; 
(d) u< ,u. and (A,03 < A,t < (A,u)o01; (e) s < A, and (A )o0 < AA,< (A,u)12; (f) ,u < , and (Ay )12 < AZ, 

= g, and (AAs)... <A,u, or A > A,- and (A,u)02< All; (g) ts > pu and (A/)03 < As < (Ap)02; (h) A > p., and 
(Ap)23 < AA <(A/)03; (i) A > g, and (A5),,m < Aj <(A/A)23. 
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The following equations are obtained from the real and imaginary parts of the 
equation that results when (3.1) is multiplied by w+Okr and w is replaced by ifl 

f= (AA - _Q2) (A + 2 k. tanh Oj)2(cosh a + cos b) 
(3.3) '~~~~'= Aj2Ok(b sinh a +asin b) 

AA + 42_ 80'(a sinh a - b sin b) - (a2+ b2)2(cosh a + cos b) tanh f, 
(3Q4) 12 _ AwS 8QsIO(b sinh a + a sin b) 

where a > 0 and b ?- 0 are given by 

a2=2( +?k+&2+ 04), b2 =2(_+Ak2 + 4). 

For fl = 0, (3.3) leads to (3.2), and (3.4) yields 

(3.5) A, =442 (2O.+sinh 20J)/(3 sinh 2 , -64. -4k2 tanh 'k4. 

If AA <(AA)m = 8.889* , (3.5) has no positive solution and neither has (3.4). If 
AM > (AA)mq (3.5) has two positive solutions, O, and 'k2; for O, < , < 462, (3.4) is 
seen to define a nonnegative function 

(3.6) fl = fl(AA, Os) 

which is such that AAt, Os1) = Q(A,I1 O2)=O, fl(AM, Os) > 0 for O<, I <s < .2Q 

The lower curve in the sketches of Fig. 1, which does not exist if AM < (AM1)m, iS 

given by (3.3) with fl as given by (3.6). The coordinates of points 1 and 2 are (0,,, Yv) 
and ( 2, 'Y2), where y, and Y2 are given by (3.2) with 0, t, and 0, = 6s2, respectively. 
Point 3 (when it exists) is the unique minimum of the function k. -. y(O,,A,k, A) 
defined by (3.3) and (3.6); its coordinates must be computed numerically. 

For a fixed value of A, as A increases, the upper curve of Fig. 1 remains constant, 
4,y decreases, 0,2 increases, and any point of the lower curve moves down. The 
functions y, = y,(A9, Mu), for i = 0, 1, 2, and 3, are as plotted in Fig. 2, where y,/A, -+ 

M/5, 9Y2/fXU-*2v3/A and Y3 -*4 as A -<X. The shape of the neutral stability curves, 
y - OS V is as one of the sketches of Fig. 1, depending on the relative position of points 
0, 1, 2, and 3, which may be decided from the comparative values of A and A,.= 
6.833 ... , and from the comparative values of AM and (AM)mg (AM)13,* , as indicated 
in the caption of Fig. 1. 

As is shown in Appendix A, for (4s, y) in regions A, B, and C of Fig. 1, the 
number of roots of (3.1) with positive real parts is one, two, and zero, respectively. 
Therefore, the steady state is unstable in regions A and B, and it is asymptotically 
stable in region C. Points of the upper curve correspond to bending points of the 
response curve, v, - k. At points of the lower curve, a pair of complex conjugate roots 
of (3.1), w = ? if, crosses the imaginary axis; at these points, a Hopf bifurcation occurs. 

Now, it is easily seen that the response curve is as in one of the sketches of Fig. 3, 
depending on the region of Fig. 2 to which the point (AM, y) belongs. For example, 
if M > Mc and (AM, y) e V the neutral stability curves, y - O,, may be as in one of the 
sketches (g) or (h) of Fig. 1; in such a sketch, the response curve corresponds to a 
straight line y = constant, with max {yo, y3} < Y < y2. Hence, the response curve is 
divided into five segments: O< ks < sHI; CsHI < Os < sH2; ksH2< s < ksBI; ksBI < 

Ok3s < k.B2; and 'ksB2 < 0,1 in which the point (Os, y) belongs to regions C, B, C, A, and 
C, respectively. Therefore, the response curve is as in sketch V of Fig. 3, with two 
bending points, BI and B2, and two Hopf bifurcations points, HI and H2. In Fig. 3, 
no distinction is made in connection with the comparative values of kBI, kB2, 4kH1, 

and kH2; for example, in sketch V, three additional possibilities could be considered, 
depending upon whether 4H1 < H2 < kB2, H <H1 <kB2 < 4H2 or kB2 < HI < H2 . 
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t50- 
. 

TVl 

t40t ~ 1 S134 4 
20 / 

10 V,II 

5 t3 

10 20 5o 102 X,_ 

{a) %jA2 (A<UC) 

t 

VI IV 
20 

10 ao 

s A3 
l ff 1 a 0 I I 1 . , I , , ,*IIIf l 

10 50 102 103 104 

(b)PL11Ac= 6.8 33... 

t 30 VIVI 

t23 / III 
10 02 to 

0 
II 

5o- I3 
4 

,1 *, I ,.,, , I ,.,.,,,1 ,, 111I1 ,, 

10 20 50 103 10 

(C ) 2$: 20 (/4>jC) 

FIG. 2. Linear stability of Model 1 (slab geometry) for a fixed value of ,u. For iA < A, (respectively, 
> ,a,), diagrams are qualitatively similar to diagram (a) (respectively, diagram (c)). 

In order to get information about the size of the eight regions of Fig. 2, the 
coordinate of their vertices, as functions of ,u, are plotted in Fig. 4; observe that all 
vertices come together as , -* uc, and that region VIII disappears as ,u -e Fc from below. 

3.2. Arbitrary shapes of the catalyst. We consider Model 1 and a bounded domain, 
fl c RP (p = 2 or 3), whose boundary, dQ, is smooth and satisfies uniformly the interior 
and exterior sphere conditions: there exist two positive constants, Pi and P2, such that, 



STABILITY IN ISOTHERMAL CATALYSTS 863 

VS V5 VS 

H2 

82 

HI ~~~~HI 
0 0 0 

I II III 
VS VS VS 
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FIG. 3. Response curves for Model 1 (slab geometry) and for Model 2. Asymptotically stable 
steady states. fH Unstable steady states. 

for every point q of dfl, two hyperspheres, S1 and S2, of radius Pi and P2, are tangent 
to dlQ at q, SI is included in Ql, and S2 and nl are disjoint. 

The steady state solutions of (1.3), (1.4) are given by 

(3.7) AU,= 02U, inQl, u=1 ondQI, 

(3.8) 
Vs 

= I +/1 4 us dx = 1 +V1 lJ( d ) 
ds, 

in the terms of the parameter Os, where 

(3.9) c2=ck2 exp (y/vs - y). 

Equation (3.7) uniquely defines a function Us = u,(Os, x), which is continuously 
differentiable in its dependence on 4, and satisfies, for all k, > 0 (see Appendix B), 

(3.10) 0<us(Os,x)<I forallxeCl, 

(3.11) dn <s+(P -1)/P2 forallxeafl. 
an 

Then,'the following inequalities are obtained from (3.8): 
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For fixed values of y and ut, (3.8), (3.9) define a C' response curve, OS (vs, 4). 
The derivatives dvsld/d and dq5/dcAs are 

(3.13) dvs 2g(vs - ds_, Os + 02 Ju dx dsa 
'uL 

do 

=s 
a_adan 

(3.14) 2/7' d = 2/ O - Yv-2 dS 

where u = ausl/a5 is the unique solution of 

(3.15) sa-4 u = 245u, in f, ui= O on afl, 

and satisfies, for all 4, > 0 (see Appendix B), 

(3.16) ii(x) < O for all x e Q, 

(3.17) a >2p4s/e[p+(2p+1)p4s] forallxeafl, 

where p = min{p,, P2/2(p - 1)}. 
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The following properties are easily obtained (3.13)-(3.17): 
(i) dvl/do, >0 for all 4, >0. 

(ii) dl/do,>0ifOsk>0and 

(3.18) Y(U -1 )/ v'sc1 

(iii) If dl/d4s > 0, then 

(3.19) y/ V2< ,ue[p +(2p + 1 )POAS/PSQ(o 2 

The linearized problem around the steady state has nontrivial solutions of the 
form u - us = X(x) exp (cut), v - vs = Y exp (cot), with Re cl) ' 0 only if (Y$ 0 and) 
Z = X/ Y and Ct satisfy 

(3.20) AZs(+ )Z = yV-202U in Q, Z =0 on adl, 

(3.21) c/A +, = | Zdx+w(vs-)/v2. 

In Appendix B, it is shown that: 
(iv) If (3.20), (3.21) has a nonreal eigenvalue such that Re c _0, or if it has a 

double real eigenvalue cv> 0, then the following inequality must be satisfied: 

(3.22) ( //V2)[?/A + ,u- _u (V _ 1)/ V2] + (- 2+ k)3/A 2O4 

where 

(3.23) k = (wpl/ V)2/P and cp = 2irxP/lpF(p/2). 

For given values of y, ,u and 45, and real values of w ' 0, (3.20) uniquely defines 
a function Z = Z(c, x), which is continuously differentiable in its dependence on cv 
and satisfies (see Appendix B) 

(3.24) Z<0, -_0 for all v 0 and all x E 1, 
&cv 

(3.25) J Z(w x)dx -0 as ow-* o. 

Then, (3.21) may be written as 

(3.26) co/A +,u = F(w), 

where the function cl -e F(cw) is continuously differentiable and satisfies 

(3.27) F'(cw))'0 forall cv?0, F(co)- yF(v - 1)/v2 as cv o-. 

Furthermore, (2vs/y )Z(0, x) =&usl/&s (since it satisfies (3.15)), and 

(go,) do 
F(O) it-(s) d4,9 

as comes out from (3.13), (3.14), (3.21). Then: 
(v) Equation (3.26) has (at least) a positive real root if the inequality (3.18) is 

not satisfied and A is sufficiently large (because then , < F(co) for c sufficiently large). 
(vi) Equation (3.26) has no real positive roots if inequality (3.18) is satisfied 

(because then j > F(co) for all Cv _ 0). 
(vii) Equation (3.26) has (at least) a positive real root if dl/do,5 <0 (because 

then , < F(0) and the second member of (3.26) is bounded). 
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(viii) Equation (3.26) has no positive real roots if d4l/do., >0 and A does not 
satisfy (3.22). To prove this property observe that, since dl/do, > 0, the first member 
of (3.26) is larger than the second member for w = 0. If A = A1 does not satisfy (3.22), 
then (3.22) does not hold for any A < AI. If, for A = 

A1, (3.26) had a positive real root, 
then for some A = A2 k 1, (3.26) would have a positive double real root (recall that F 
is bounded); but this is not possible since A = A2 does not satisfy (3.22) (property (iv)). 

Now, from properties (i)-(viii) above, the following conclusions follow: 
(A) The response curve, v, - ), is either monotonous or S-shaped (with more 

than one S possibly), as it comes out from property (i). 
(B) If y c 4 then (3.18) holds for all v, = 1 (i.e., for all 4)-0), and the response 

curve is monotonous (property (ii)). 
(C) If y >4, let v,1 and v,2 be the solutions ofthe quadratic equation y(-v -1)! v2 = 

1, let Os, and Os2 be the corresponding values of OSI, and let points 1 and 2 be the 
corresponding points of the response curve. For 0 < 4) < Os and for 0s2 < Os, inequality 
(3.18) holds and dl/d4,>0 (property (ii)); then, if the response curve is not 
monotonous, points 1 and 2 belong to the lower and upper branches of the response 
curve; furthermore, the segments 0 < 4, < OsI and O)s2 < O)s correspond to asymptotically 
stable steady states (properties (iv) and (vi)). On the other hand, in the segment 
4)sI < 4?s < ,s2, inequality (3.18) is not satisfied (and the corresponding steady states 
are unstable) if A is sufficiently large (property (v)). 

(D) Finally, from properties (iii), (iv), (vii), and (viii), it comes out that if 
inequalities (3.19) and (3.22) are not satisfied simultaneously for any positive value 
of Os, then a steady state is asymptotically stable or unstable according to whether 
d4/ dos > 0 or d4/ dos < 0 at the corresponding point of the response curve. This simple 
geometrical criterion applies, in particular, if one of the followiing inequalities is 
satisfied: 

y _ 2+ 2V11 + 16k/A2 Vn, 

A'aP2 0 + [P2A2 2 
_________ 

2__ 

AP2Sk+[P2/3+(p-1)Sj] k[H2(H,+2H2+1Hj+4H1H2-4) -27], 
-4A2y3Op2V 

A, <2kpSnj Vne[II/k p(2p+1)+1p2+ k2(2p+ 1)2], 

where 

HI = eA,VQP/kpSSQ, H2 =-Jkp(2p + 1)/p, 

as may be seen when using (3.12). 

4. Linear stability for Model 2. The steady state solutions of (1.6)-(1.8) are 

Us =exp (Pse)/(1 + D), v = [m+(1+ m)4I/m(1 +,Ds) 

in terms of the parameter 1,, which is given by 

&2 =4os2 exp (y/vs - y). 

The linearized problem around the steady state has nontrivial solutions if and 
only if 

(4.1) (w+lm)- y2m2?5(1+41,) sw-4)2+ I I2+s,) 

2[m + (1 + m)1j,]2 
(4.2) y = mM, 
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for w $ 0 and w =0, respectively. Neutral stability points are as sketched in Fig. 5, 
where the upper curve is given by (4.2). The coordinates of point 0 are 

4'o = m/(m + 1), y0 = 8(m + 1). 

When w is replaced by ifl in (4.1), the following equations result 

( a[m + (1 + M)4),]2[2lm(24)2+ a) + a(l + a)(4)2S - a2)] 

21m2)5(1 +4)5)(a - 24') 

(4.4) f(2('+ a)+ Imb(a +1) 4S(2(D4s -a) - Qb(a + ) 
(4.4) Qikb(a + 1) - lm(24?)2+ a) fQa -)2b 

where a > 0 and b _0 are given by 
a =(D 2 + Jfl2 + 4)4), b2 =2( _ +f 2 + 4f)2 + .D4) 

For 0<(s '- s,, (4.4) defines a nonnegative function 

(4.5) Q = Q(lm, Os) 

which is such that 51(lm,4(5s)=0, fk(Im, 0s)>0 for OK<(s<1s, where Ds, is the 
unique solution of the equation 

(4.6) Im = 4cF2(1 + 4s)/[1 + Ds + 2(1 +24)s)2]. 

The lower curve in the sketches of Fig. 5 is given by (4.3), with fQ as given by 
(4.5). The coordinates of point 1 are (Dsl, y,), where y, is given by (4.2), with (Ds = (s,. 
Point 2 (when it exists) is the unique minimum of the curve; its coordinates must be 
computed numerically. 

As in Appendix A, the argument principle shows that in regions A, B, and C of 
Fig. 5, the number of roots of (4.1) with positive real parts is one, two, and zero, 
respectively. Then, the steady state is unstable in regions A and B, and it is asymptoti- 
cally stable in region C. Points of the upper curve of Fig. 5 are bending points of the 
response curve, and points of the lower curve are Hopf bifurcation points. 

a' a' 
A A 

1B 1 

CC 

Os Os 
(a) (b) 

B A B A 

2 0 

C C 

Os Os 
(c) (d) 

FIG. 5. Curves of neutral stability points of Model 2 for fixed values of I and m. (a) (lm)01 < lm; 
(b) (Im)02 < Im < (lm)01; (c) (Im)02 < Im < (Im)02; (d) O < Im < (Im)12 - 
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For a fixed value of m, as I increases, the upper curve of Fig. 5 remains constant, 
Isl increases, and any point of the lower curve moves down. For a fixed value of m, 
the functions yi = yi(lm), for i = 0, 1, and 2, are qualitatively similar to those plotted 
in Fig. 6. The asymptotic behavior of yi and Y2 is given by: Vhmy, -> 4m/N/3 as Im -+ 0, 
y,/lm-*4(1+m)2/m as lm-coo; Y2-4 if m -1, y2 -(1+m)2/m if m>1, as lm . 
The coordinates of the vertices of the six regions of Fig. 6 are plotted, versus m, in 
Fig. 7. 

As in ? 2, the response curve is as in one of the sketches I-VI of Fig. 3, depending 
on the region of Fig. 6 to which the point (Im, y) belongs. 

4.1. The limit m-O. In the distinguished limit Iy-m2-f-lm- 0, Yo=8 is 
constant to leading order. The function (4.5) is given, in first approximation, by 

f( D2(2+q)1I I2 'I 
2 

_4(2_+__) 
. ~~Im (1 + 7)(4-2 q2- 773)' Im 2(1 + 7)(4-2772- _rq3)9 

in terms of the parameter 71, for 0O -" _ 1, where 

71 2= 2? / ((D2S +. fI2 + (D4), 

and (4.3) may be written, in first approximation, in the form 

4(m + FS)2 1+,(2 -q 2) 
(4.8) mii =+22l2, 

m V-- 7 24 + 2q +14 - 2772 _ 773' 

Then, to leading order, yi is given by 

yl = 4(v/i1/v'3 m) (ml/Jim+ v3/2)2, 

and y3 is given by (4.8), with (D as in (4.7) and m/Jim as given by 

m (Ds 4773(2+ 7j)(1 + J)(6- -72) 

N'T1_i VT'1_ 3,7 12776+27,5-56Y4 - 92 77- 16772+88iq +64f 

A plot of the linear stability diagrams of Fig. 6 in this limit is given in Fig. 8, 
where (lm)O/m2=4/3, (lm)02/m2=0.3138* * , (lm)12/m2=4/1875, YO1= Y02=8, and 

Y12 2 .262/25. 

100- 

12 XIV 
5 

1 

1 VI | I , , I I, , 

VI~~~ 
10 0 

02 

10-2 10 1 2 5 10 M.m jo2 

FIG. 8. Linear stability of Model 2 in the limit m -- 0. 
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4.2. The limit m - oo. In the distinguished limit D2 _ i _m 1, m -+ oo, (4.2) and 
(4.3) may be written, in first approximation, as 

(4.9) yl m = 2(I + (D,)2/,D" 

(4.10) y/m = a(1 +cj)[21m(2D2t+ a)+ a(l + a)(4?2- a2)]/21m4>s(a2-242). 

Therefore, to leading order, yo/ m = 8 and y1/ m is given by (4.9), with IS, = 4s,,, where 
(L is the unique root of (4.6). y2/m must be computed numerically, as the unique 
minimum of the function 4 e- y/m, defined by (4.5) and (4.10). A plot of the linear 
stability diagram of Fig. 6 in this limit is given in Fig. 9, where (Im)12 = 0.001860O > 

(lm)02 = 0.1430 * , (tm)O1 = 0.4, Y21/m = 55.63**, and y02/m = >y1/m = 8. 

5. Hopf bifurcation. Let us now consider local Hopf bifurcation at points HI and 
H2 of Fig. 3. For the sake of brevity, only Model 2 will be considered; a similar analysis 
applies to Model 1. 

1 2 t s IV / 

VI 
10- 0 

0 

5 II 

1 
_1;ttt 
.1,l......1tI I 
io-3 V2 IoT 1 2 5 10 102 

lm- 

FIG. 9. Linear stability of Model 2 in the limit m e oo. 

Let a be a parameter (to be chosen later) giving a first approximation of the size 
of the bifurcated periodic orbits, and let 4H be 'DIHy or CH2. When using O. as 
bifurcation parameter, it is expanded in the form 

Ps =4)H+Ba2+** 

Then, if (sH -)sHl (respectively, )sH = 4)sH2), the bifurcation is subcritical or super- 
critical depending on whether B <0 or B> 0 (respectively, B> 0 or B < 0). 

In order to simplify the algebra of the analysis below, we shall use y as bifurcation 
parameter. To this end, y will be expanded as 

(5.1) y= y+Aa2+a. 

If the lower curve of Fig. 5 is given by y =f(Qs) (then y, -f(ISH)),f(f .?H) is negative 
or positive depending on whether (tH = (sHI or 4 H )S H2 It is easily seen also that 
B =-A/f((Ds H). Therefore, bifurcation at 4P?H is subcritical if A <0, and it is super- 
critical if A> 0. 
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For 0< (DsH < (sH1 ,the pair of roots of (4.1) that (for varying y and fixed F. = 4,H, 

1, and m) crosses the imaginary axis of the complex plane at y = y, satisfies the 
transversality condition 

d(Re w)/dy 0, Im w = f, ?0, 

at y = y,, while the remaining roots of (4.1) have strictly negative real parts. In addition, 
the solution of (1.6)-(1.8) satisfies the smoothness hypothesis of Hopf bifurcation 
theorem (Marsden and McCracken [9], Hassard et al. [10]), as is seen by means of 
standard theory on semilinear parabolic equations (see, e.g., Hassard et al. [10], Henry 
[11]). Hence, the Hopf bifurcation theorem shows that, for y sufficiently close to yc 
(i.e., for y as given by (5.1) and a sufficiently small), there exists a periodic solution 
of (1.6)-(1.8), of period 

(5.2) T(a) = 27T/fl with flQfl + af, + aa2Q2+ * 

which may be written in the form 

(5.3) U= U,+aUo+a2Ul+a3U2+ *, v=v,+ av,+a2v2+ . 

Furthermore, bifurcated orbits are unstable if bifurcation is subcritical (A<0), and 
they are orbitally, asymptotically stable if bifurcation is supercritical (A> 0). 

The coefficients of the expansions (5.1)-(5.3) may be calculated systematically by 
means of known recursive formulae (Hassard et al. [10], Kielh6fer [12]), via reduction 
to the center manifold, that also allows us to analyze degenerate cases in which the 
transversality condition is not satisfied. Nevertheless, due to the inherent algebraic 
complexity of the problem (1.6)-(1.8), we shall use a more direct (although a less 
systematic) approach, and we shall not try to analyze degenerate cases in detail. Some 
conclusions about the nature of degenerate cases may be drawn from the results for 
neighboring nondegenerate ones, by means of simple normal forms arguments 
(Golubitsky and Langford [13], Guckenheimer [14]), when taking into account that 
the flow defined by (1.6)-(1.8) is essentially two-dimensional near a bifurcation point, 
since it may be reduced (locally) to a center manifold for sufficiently large time. 

In order to look for 2iX-periodic solutions, we introduce the new time variable 
s = 2ifr/ T, where the period T is given by (5.2). Then, A, fki, Ui, and vi, the coefficients 
of the expansions (5.1)-(5.3), may be calculated from the set of recursive problems 
which results when the expansions (5.1)-(5.3) are inserted into (1.6)-(1.8), and the 
coefficient of each power of a is set to zero. Such problems are of the form 

(5.4) fc 2+4VSHU+lYC'I HUSV/V2=f in -oo< < , as a HUi+ 

(5.5) UQ=0 ate=-oo, 
a ui 

+U,=O at 4=0, 

(5.6) Qc d s+Hm[ly(v -1)/v2]v _F2 { Ui df = gi, 

where fo 0 and gO 0. In addition, we impose the periodicity conditions 

(5.7) Ui(0, g) Ui(2ir, (), vi(0)= vi=(2r), 

and an additional condition in order to define the parameter a; this condition, which 
is quite arbitrary, may be, for example, v(0) = vs + 2av 2/ Yc, v'(0) = 0, or vo(O) = 2v2/ yC, 
vi(0) = 0 for i ' 1; v(0) = 0 for i ?-0. 
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It is easily seen that (5.4)-(5.6) has a solution satisfying (5.7) only if the second 
members of (5.4) and (5.6) satisfy the solvability condition 

(5.8) { exp (-is)( X*fd+ Y*gi) ds=O, 
o -00, 

where 

X = 1D_H Y*(1 -exp (v/'HD+ QC ()/(1 +'/?sH + ilC))/()2H + ifQ), Y'* 0 

is a nontrivial solution of the adjoint linearized problem: 

de2 (SsH + iQS)X+ H Y* = ? in-ax < e < 0, 

X*boundedat =-oo, dX*+X*=O atS=O, 
ro ~ ~ ~ d 

ycVs2sHD USX* d6+incY*+1m[I- y (v, - 1)/vV] y* 0. 
_00 

When UO and vo are inserted into the second terms of (5.4) and (5.6), it is easily 
seen that the solvability condition (5.8) is satisfied for i - 1 only if Ql =0. Then U1 
and v1 are easily calculated; when they are inserted into the second members of (5.4) 
and (5.6), and the solvability condition for i = 2 is applied, a pair of linear equations 
is obtained to calculate f2 and A. The solution of these equations yields 

(5.9) A = y[ C1 (1 + C3) + DI 1D3]/[Im( 1 + C3) + fD3], 

where 

C-?s2 ( + El ) - El - 2 C2 -2E4] + E2 + E3( C2 + El ) + 2Ql(1 - E4), 

DI =PD2[D3(1 +E,)-2D2 +(2(p2 - E3)/2fl] 

+fl[2(E4- 1)(C2+ E,) -2E4+3E 2] + D2E3, 

C2 =(C4C5- D4D5)/( C5+ D), D2 =(C4D5 + CD4)/(C5+ D) 

C3+ iD3 =l4D3(D6- iC6)(1 + C8+ iD8)/y(1 + :1) E2 

C4 = f12[CP. + 2 ym (1 + F)Ej(E4- 1 )] + dI (C7 - 2 C8) -JD7/2 

D4= 2y(I + Fs)Y3E2(2E4- 1)/ I + 15s( D7 -22D8) + 43,fIC7/2, 

C5= 2f2['Fs - ym(l + b)E2] + e 3 fD7, D5- 4y(1 + (D )3E2l + ?3QC7, 

C6+iD6= 1+2vsI?5+iQ _______________ 

((I)p2 + in)( I + J/)2 + in) (1),( I + Is )((I) s + 8/I?2+ 

C7+ iD7 = (D,(1 + (Ds)/(1 + J(p2+2i)j4 2+2if-1, 

C8+ iD8 = Po(D +FS)/(1+Js + r + in? 1, 

4ym(1 +cP)2E2(E4- 1)+(),(3+44Ps)+4(1 +(s)C8/ 02 
1 - 1)s -2ym(1 + ps )2E2 

E2= Im(1 -3E4+3E4), E3 = Im(2E4-3)+2143/y(I +1)()E4 

E4= [m +(1 + m)4js]/ym(1 +Is). 

Here, the suffixes H and c have been dropped from 4(D, fl, and y; also y and Ql are 
given by (4.3) and (4.5). Therefore, (5.9) defines, for 0<-?s < F , a function of the 
type A = A(lm, m, F?s), which allows us to know whether Hopf bifurcation (at points 
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HI and H2) is subcritical or supercritical. Numerical computations are summarized 
in Figs. 10 and 11; in the regions IIa, * * *, Vb (respectively, I and VI) of the diagrams 
sketched in Fig. 10, the response curves are as sketched in Fig. 11 (respectively, in 
Fig. 3). Observe that the diagrams of Fig. 10 are partitions of the diagram of Fig. 6. 

The dynamic response of the catalyst in a quasi-steady operation (i.e., when the 
parameters are varied slowly enough) near a point of neutral stability, depends on 
whether Hopf bifurcation is sub- or supercritical at this point. In the supercritical 
(respectively, subcritical) case, as the steady state becomes unstable, neighboring initial 
conditions lead to oscillations of small amplitude (respectively, to some other attractor, 

ivb 
Iva 

III(. Iva 
VI IIIIVI V 

Im Im 

Im Im 

Im Im 
(c) .321... <m<349.. (d) .349.<m<.5T5... 

if~~~~FG .Hp bfraionforMdl2 

VI ~~~~~~~~VI\~IIIb/ 

Im I1m 

(e).51 ... m < .95...(fY. 5 95... < m< 1.7 36... 

a'~ ~ ~ v 
~IVbN/ 

I 

Im 

Cg) 1.736... < m 

FIG. 10. Hopf bifurcation for Model 2. 
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~~~00 ~~~~0 0 o 
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FIG. 1l. Response curves for Model 2. Asymptotically stable steady states. +1-fI-I-f Unstable steady 

states. a00-0 Orbitally asymptotically stable periodic orbits. 00000 Unstable periodic orbits. 

far away from the steady state), and the transition through the instability limit is 
(respectively, is not) smooth, as far as the dynamic response of the catalyst is concerned; 
therefore, such a response depends qualitatively on the shape of the actual response 
curve, which is as one of those sketched in Fig. 11 if it exhibits Hopf bifurcation 
phenomena. 

The analysis of the degenerate bifurcations that take place on the lines and vertices 
of the diagrams of Fig. 10 is beyond the scope of this paper. Such an analysis would 
provide predictions about the global shape of the bifurcated branches of periodic 
orbits. The following degeneracies are present in the diagrams of Fig. 10: 

(a) On the common boundary of the regions VI and Va, and of the regions I and 
Ila, two Hopf bifurcation points coalesce; since both bifurcations are supercritical 
near this line (see sketches hIa and Va of Fig. 11), both branches are connected near 
the transition, and coalesce as the line is approached from above. 

(b) On the boundary of region IV (= IVa u IVb), a Hopf bifurcation point 
approaches a saddle-node point, and the linearized problem has a double eigenvalue. 
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The (two-dimensional) universal unfolding of this (codimension two) degeneracy 
contains Hopf bifurcations and saddle loops as mechanisms leading to periodic orbits 
(see [14]); therefore, saddle loops are expected to occur near this line. 

(c) On the upper boundary of regions I and II (= Ia u lIb u IIc u IId), a (static) 
bifurcation takes place, associated with a cusp singularity. 

(d) On the points of intersection of the three above-mentioned lines, a degenerate 
bifurcation of higher codimension takes place. 

(e) On the remaining lines of the diagram, a higher-order Hopf bifurcation takes 
place, whose analysis requires us to calculate two more terms in the expansions 
(5.1)-(5.3) and provides the transition from subcritical to supercritical Hopf bifurcation 
(see [13]). 

6. The case af = 0(1). In the limit 

L -c o, ,l3 o*0, pI> Oil a=O(l) 

two isothermal models are obtained from (1.1), (1.2) by means of an analysis which 
is similar to that in ? 2. 

If 02 exp (y- y/vj) = 0(1) (v, is any steady state temperature of (1.1), (1.2)), then 
one obtains the model (1.1), (1.4). A linear stability analysis of this model leads to 
qualitatively similar results to those in ? 3. 

If 42 exp (y - y/vj) is large (i.e., 52 >> 1 if y = 0(1)), then the following model is 
obtained 

aW a2W 
(6.1) dT 2w exp (y -y/v) in -oo < ;< , a T g2 

(6.2) w=O atg=-oo, -w =1 atCg=O, 

(6.3) dv =Am(1-v)+Aexp(y-y/v) 4 wdg, 

with 

A= ,3LSQ/)2 V0, m = V/'0, T = 42t, C= 77. 

Here, 77 is a coordinate along the outward unit normal to al, and w is the mean value 
of 4u/oa at time T over the surface g = constant. Observe that (6.1)-(6.3) differ from 
the model (1.6)-(1.8) only in the boundary condition at g = 0. The new boundary 
condition makes it possible to reduce the analysis of the global dynamic behavior of 
(6.1)-(6.3) to the following two-dimensional dynamical system: 

dW 
(6.4) d- = 1- Wexp (y-y/v), 

dT 

(6.5) dv = Am(1 - v) + A W exp (y - y/ v), 

where W = w dC ((6.4) is obtained upon integration of (6.1) and substitution of 
the boundary condition (6.2)). 

The model (6.4), (6.5) may be obtained also from the equations of a continuous 
stirred tank reactor without cooling (see, e.g., [6]) in the limit of large Damkohler and 
Lewis numbers. Also, model (6.1)-(6.3) (and, hence, model (6.4), (6.5)) may be 
obtained from (1.6)-(1.8) in the limit lIc_o, ?2 =42exp(y-y/v ) - oo (42 _oC if 
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y = 0(1)); a simple singular perturbation analysis shows that, after an initial time 
stage, U(f, r) and v(zr) are given by (6.1)-(6.3), with 

A =l1/D2, (De, T=P2T, W= FU. 

Model (6.4), (6.5) has a unique steady state, 

W=exp[-y/(m+1)], v=1+1/m, 

that is linearly asymptotically stable if y _ (m +1)2/ or if y> (m +1)2/rm and 

Am[ym/(m + 1)2_ 1] < exp [y/(m + 1)], 

while it is unstable otherwise. At neutral stability points, there is a Hopf bifurcation, 
which is subcritical if m < 9 - 26? 0.515 and max { y-, y*} < y < y+, where 

Yf = (m + 1)[m + 3 ?Jm2_ 18m +9]/2m, ye - (m + 1)2/ m, 

while it is supercritical if 2 < m < 9 - \2 and ye < y < y_, or if 0 < m _9 - 2V6 and 
y > y+, or if m > 9 - 2v'6 and y > y*, as is easily seen. These results do match with 
those obtained in ? 6 for D2 = p2 exp (y-y/ v,) - l- oo. 

It is easily seen also that as A-> cx, the system (6.4), (6.5) exhibits relaxation 
oscillations provided that y> y>, (i.e., provided that its unique steady state is unstable 
as A--oo). 

7. Concluding remarks. Two isothermal models have been derived from the non- 
isothermal model (1. 1), (1.2). They are appropriate for the analysis of nonlinear stability 
of the steady states of (1. 1), (1.2) under small perturbations in the limit y, -> 0, v - 0, 
L -->X, oa -> c. If, in addition, y = 0(1), then they are also valid in studying global 
stability properties. 

The linearized stability of the steady states for Models 1 and 2, and local Hopf 
bifurcation for Model 2, have been considered in ?? 3-5. Some remarks about the 
results are in order: 

(a) For a fixed value of g, the linear stability diagram of Model 1 for the slab 
geometry is as one of those in Fig. 2. Oscillatory instabilities appear in a region of the 
response curve if and only if A,t > 8.889 and yl/ < y < Yc2, where Yc, 
min { y1, Y2, 73} and Yc2 =max {y1, Y2}- 

(b) For arbitrary shapes of the catalyst in two and three dimensions, it has been 
shown in ? 3.2 that oscillatory instabilities do not appear if A, is sufficiently small or 
if y is sufficiently small or large (for fixed values of A and A), while they do appear 
in a region of the response curve if y > 4 and A is sufficiently large (for fixed values 
of y and p). This result makes it reasonable to conjecture that for arbitrary shapes 
of the catalyst, linear stability diagrams are qualitatively similar to those obtained in 
? 3.1 for the slab geometry. 

(c) For a fixed value of m, the linear stability diagram of Model 2 is as that in 
Fig. 6, which is plotted in Figs. 8 and 9 in the limits m -* 0 and m -> oo, respectively. 
Oscillatory instabilities appear in a region of the response curve if and only if y > y, - 
min {yi, Y2}. 

(d) It has been shown for lumped chemically reacting systems and conjectured 
for distributed systems (Ray and Hastings [6]) that a given steady state of the lower 
or upper segments of the response curve is stable or unstable according to whether 
the Lewis number is smaller or larger than some bifurcation value (that can be infinite). 
This conjecture is true for Model 1 in the slab geometry and for Model 2. In fact, for 
Model 1 for example, the instability bounds, 4sHI and PsH2, are such that O'sHI decreases 
and 0,H2 increases as A increases (for fixed values of y and tL), as seen from the 
monotonous dependence on A of the lower curve of Fig. 1. 



STABILITY IN ISOTHERMAL CATALYSTS 877 

(e) In the limit lI-ao, m = 0(1), it is easily seen that the lower curve of Fig. 5 
has two distinguished parts. For 4), - 1, it is given by 

y = [m + (m + 1)4)?]2/Mr4)S(1 + )() 

in first approximation, while for 1 << 4), < ),I = 2ml + 0(1), it is given by 

y=(m+1)2/m+(m+1)2)2/n2l 

Hence, if m<1 and 4<y<(m+1)2/m, then 

4)sH2- [y-2(m + 1)+y(y-4)]/2[(m+ 1)2/m -y] as l-c, 
while 4)sH2+o as lcx if y?(m+l)2/m (if m '1 and 4 <y< (m+l)2/m, then every 
steady state is linearly stable and the point H2 does not exist). Therefore, there exists 
a critical value of the activation energy, yy* = (m + 1)2/rm, such that if y '- y* then the 
upper instability bound, OH2, iS such that OH2 -ooX as l-* oo (for fixed values of y and 
mi). The same type of behavior is found for the isothermal model (1. 1), (1.4) in arbitrary 
domains, for finite values of a and for more general kinetic laws (see [4]). 

(f) In the limit 4) -e ox, Model 2 is reduced globally to a two-dimensional dynamical 
system that exhibits relaxation oscillations as 1/4)2 _ CX if y> y* = (M + 1)2/m, as was 
shown in ? 6. We may ask whether Models 1 and 2: (i) possess a two-dimensional 
global attractor, and (ii) exhibit relaxation oscillations as A - 0x or 1 - x whenever 
every steady state becomes unstable in that limit. Although it may be proved that 
Models 1 and 2 possess a finite-dimensional global attractor by using results for more 
general reaction-diffusion problems, finding precise bounds on the dimension of the 
attractor is not an easy task (see [15] and references given therein). It seems that the 
answer to the second question requires an involved multiple time scales analysis that 
would be much facilitated if an answer to the first question were available. 

The above-mentioned dynamical system is obtained also for o- = 0(1) if k2 iS 

sufficiently large, as was seen in ? 6. This system is a submodel of the widely used 
model of continuous stirred tank reactor without cooling, but differs quantitatively 
from the system that one would obtain by means of lumping procedures (see, e.g., 
[1]), as could be expected. 

Appendix A. Let 1i be an analytic function inside and on a closed contour F of 
the complex plane, without zeros on F. The argument principle (see e.g. Ahlfors [16]) 
provides the number of zeros of i inside F, as N = AI arg 1/2 IT, where Al arg / is the 
change in value of the argument of 1/ when F is transversed once in the positive sense. 
In order to calculate the number of roots of (3.1) in the right-hand side of the complex 
plane, we write (3.1) in the form 

(A.1) *(c) + Hw2+ + K [(tanh q5)/ k, - (tanhJw+dX)/1w+1 ] =0 

where 

(A.2) H = Ayt - K(tanh k3/j/3, K = 2Ayt2 y4/(F( +20, tanh 0k)2, 

and consider a contour F consisting of four segments: r,: a = R exp (i@), for -7T/2 < 
0 < 7T/2; [2: w = ifl, for R ' Ql-' r; F3:w = r exp (i@), for !/2 > O > -T/2; and F4: w = 

ifl for -r ' fl-Q'-R. Any root of fr such that Re w >0 is inside r if r is sufficiently 
small and R is sufficiently large. 

From the asymptotic behavior of 1i as lwI-)-0 and as Iw I-, it is easily seen that 

(A.3) Al, arg 4i=2IT+E1, A1l- arg 1 = -IT+E3, 

where Er-0 as R-*cx and E3-*0 as r-+0. 
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In order to calculate A arg qi on r2 and r4, let us consider the functions fl -) J, (fl) 
Re qif(ifl) and fl-*J2(fl) = Im 4i(ifk), which are given by 

(A.4) J1(CQ) = -_f2+ K[(tanh ck)/ ), -2(a sinh a + b sin b)/(a2+ b2)(cosh a +cos b)], 

(A.5) J2(Qf)- Hfl+2K(b sinh a-a sin b)/(a2+b2)(cosh a +cos b), 

where a+ib=2f 02+ifl, as in ?3.1. 
Since J, is an even function of fl, and J2 is an odd function of fl, it is clear that 

(A.6) Al-, arg li# = 
Al4 arg q'. 

On the other hand, for a fixed value of 0,, the equations J, = 0 and J2 = 0 define 
two functions, 

K =fi(Q), H/K =f2(0), 

respectively, which are easily calculated from (A.4), (A.5), and are seen to be 
monotonously increasing. Furthermore, f1(O) = K, f2(0) - H//K., where 

1645 cosh2 . Hm 2> -s - sinh 2Os 
3 sinh 24, -64) _-442 tanh , Km 44 cosh2 4) 

and fi -e 00, f2 -e 0 as fl -- ocx. Therefore, the curve H =f1(fl)f2(Q7), K =f1(f7), 0 < fl < , 
is as the upper curve of the sketch of Fig. 12, and consists of points (H, K) for which 
(A.1) has a pair of purely imaginary roots, w = ?ifZ. For points of the lower curve of 
Fig. 12, which is the straight line K/H = Km/ Hm, (A.1) has w = 0 as a double root. 
Now, A arg e/ along F2 is easily calculated, for (H, K) in regions A, B, and C of Fig. 
12, from the shape of the graph of the function fl -> F(Q) Im 4f(i1f1)/Re ef(iil) 
J2(fl)/J,(17), for 0 < < oo. 

If (H, K) belongs to region A, two cases must be considered. If K _ K_, then 
F >0 for 0 <fl< co, F - oor as fl-*0 and F -+0 as fl-+oo. If K > K., then JJ(l) = 0 

for a certain Cl, such that 0 < fl < oo, F < 0 for 0 < f < fl, F > 0 for fl < f < o, 
F-*-oo as fl -0 and as fl -W, F-*+cc as fl -* fl and F 0 as fl a. Therefore, 
in both cases 

(A.7) A1,,arg4'=vr/2+E2 for(H,K)eA, 

where E2 0 as R-o*o and r -0. 

K 

A K M 

Hm H 

FIG. 12. Roots of (3.1) in the right-hand side ofthe complex plane. 
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If (H, K) belongs to region B, then F(l,) = J2(1 1) = J1(i12) = O for certain fl, and 
f12 such that? < fl1< 2<oo, F>0 for 0<fl< fl and forl> f12, F<O for fl <fl< 
f12, F-> +oo as fl - 0 and as Q ->fl+, F- -0 as fl ->f - and F 0 as fl- oo. Therefore 

(A.8) AF2 arg i = 3i/2+E2 for (H, K) E B, 

where 82->0 as R -*o and r-*O. 
If (H, K) belongs to region C, two cases must be considered. If K _ Ki, then 

F->-oo as fl->0, F->0 as fl->oo, and either F<0 for 0 < <Xo (if H0-O) or F<0 
for 0< Q < fl and F>0 for fl > fl, for a certain fl, such that 0 fl< oo (if H<0). 
If K> Kmin then Jl(QI)=0 for a certain flI such that 0< fl <oo, F- +oo as fl -0 and 
as Qil->flj, F- -co as fl - fQ1, F ->0 as f - oo, F>0 for 0< Q < fl and either F<0 
for ,< Ql < o (if H _0 ) or F < 0 for fl1< l < Q2and F>0 forfl > Q2, for a certain 
fQ2 such that fl <f12 < 00 (if H < 0). Therefore, in both cases 

(A.9) AF2 arg qi = -IT/2+ E2 for (H, K) E C, 

where, again, 62 ->0 as R-> oo and r -> 0. 
Now, from (A.3), (A.6)-(A.9), we obtain 

Alrarg f=2iir+E, Ararg i=41T+E, Ararg f=0+E, 

for (H, K) in regions A, B, and C respectively, where ?e -0 as R ->oo and r 0. Then, 
by taking R-' and r sufficiently small, it turns out that the number of zeros of (A. 1) 
in the right-hand side of the complex plane is one, two, and zero, for (H, K) in regions 
A, B, and C of Fig. 12, respectively, or for (40, y) in regions A, B, and C of Fig. 1, 
respectively, which are mapped in their homonyms of Fig. 12, through the functions 
(A.2). 

A completely similar analysis applies to (4.1) of ? 4. 

Appendix B. In this Appendix we derive some technical results which are used 
in ? 3.2. Maximum principles (Protter and Weinberger, [17]) will be widely used in 
the sequel. 

Inequalities (3.10) and (3.16) are obtained by standard arguments, using maximum 
principles. In order to obtain (3.11) and (3.17), let q be any point of 41, let SI and 
S2 be the hyperspheres, of radius p, and P2, to which the interior and exterior sphere 
properties refer, and let x2 be the center of S2. Standard maximum principles applied 
to (3.7) show that 

(B.1) uS(x)>exp[8(P2-r)] forallxefl, 

where r =x2 and 3 = Os + (p - 1)/p2. From (B.1), inequality (3.11) is readily obtained; 
in addition, us satisfies: u5(x) > exp (-1) if r - P2 < 1/8. Then, if SO is the hypersphere, 
of radius 

(B.2) po = min { p1, 1/28} = min {Pl, p2/2(p - 1 + P205)} 

which is tangent to af at q and satisfies Soc Qk, we have: u,(x)> l/e for all x e So. 
Therefore, if xo is the center of So and if r = xox, standard maximum principles applied 
to the solution of (3.15) in So show that 

u(x) < (2/e4s){exp [80(r2 -_p2)] - 1} for all x E S0, 

where O= 02 /2(p+p00,). Hence 

(B.3) Bali > 2pO(7 r e(p +poos). 

From (B.2) and (B.3), inequality (3.17) readily follows. 
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In order to prove property (iv), let w be an eigenvalue of (3.20), (3.21), and let 
Z be the corresponding eigenfunction. If b = Imw $ 0, then a = Re w, ZR = Re Z and 
Z, = Im Z/ b satisfy 

(B.4) AZR- (a + 02)ZR + b2Z1 = yVJ2p2u, in fl, ZR= 0 on dQ1, 

(B.5) AZ, -(a+2)ZI-ZR=0 inQf, Z,=0 onQfl, 

(B.6) a/A+A=js ZRdx + (vs - 1)/ 1) l /A = j' ZI dx. 

If w is- a real double eigenvalue of (3.20), (3.21) and Z is the corresponding (real) 
eigenfunction, then (B.4)-(B.6) hold with ZR= Z, Z= = &Z/Ow, a = w, and b = 0. There- 
fore, to prove property (iv), we only need to show that inequality (3.22) holds if 
(B.4)-(B.6) have a solution for some a ?0 and b =0 

Integration over Ql of the product of Z1 by (B.5) yields 

(B.7) JIvz I2dx + (a + 2) z2 dX=J ZRZJ dX 

where V is the gradient operator. Similarly, integration over fl of the equation, 
which is obtained when (B.4) is multiplied by -(ZR+ aZ,), (B.5) is multiplied by 
[aZR -b2Z1 + yV)2?2(u- 1)], (3.7) is multiplied by -yV-242Zj, and the resulting 
equations are added, leads to 

(B3.8) yv'7244{ZRdx+(a++b2) f Z,dx] +j' IVZR2 dx+ks { R dx_O. 

On the other hand, Poincare inequality (see, e.g., Gilbarg and Trudinger [18]) 
and Schwarz inequality yield 

(B.9) k 4Rdx f IVZR2 dx, k ZI dx? {VZ1V dx, 

11~ ~ ~ ~~~~~-/ -1 /2 

(B.10) ZRZ,dX 4 ZRdxJ ZIdxI 1 /dx2 {Zd 

where k is given by (3.23). Substitution of (B.9), (B.10) into the second equation (B.6) 
and into (B.7), and multiplication of the resulting equations lead to 

(B.ll) { z2 dx? (+k)2/A2Vp4V. 

Finally, substitution of (B.6), (B.9), (B.11) into (B.8) yields the inequality (3.22). 
The inequalities (3.24) are easily obtained when maximum principles are applied 

to (3.20). Property (3.25) comes out from the inequalities 

<(c 2{ Z(w, x) dxyv - u[dx, 

which are readily obtained, upon integration of (3.20), when taking into account that 
aZ/an >0 for all x E Qfl and all to _ 0, as it comes out from (3.24). 
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