
Building Accessible Flash Applications: An XML-Based 
Toolkit 

Paloma Canton , Angel L. Gonzalez , Gonzalo Mariscal , and Carlos Ruiz 

Consejerfa de Education de la Comunidad de Madrid 

School of Computing, Technical University of Madrid 

CETTICO, Facultad de Informatica. 
UPM, Campus de Montegancedo, 28660 Boadilladel Monte, Madrid, Spain 

Abstract. The use of Flash as a web-based multimedia development tool has 
spread lately. Although a big effort has gone into improving its accessibility, 
there are still accessibility gaps requiring programming or purchase from an
other supplier. This makes building an accessible Flash application an ad hoc, 
complex and time-consuming task. With the aim of lightening the accessibility-
related workload, we have implemented a toolkit that helps to create accessible 
multimedia Flash resources. This toolkit specifies the accessibility features as 
XML configuration files. It includes a library that works like a wrapper ab
stracting the logic layer of the different events and iterations from the physical 
layer. This way, new functionalities can easily be added. Additionally, it has 
been successfully used to build teaching and teaching support systems. 

Keywords: E-learning, web accessibility, flash accessibility, education. 

1 Introduction 

Multimedia tools for developing applications and contents on the Internet are in wide
spread use. Very often their use is debatable and merely ornamental. In other cases, 
though, they are indispensable, for example, to build teaching or teaching support 
systems. Multimedia resources are a key component in this kind of systems. In this 
scenario, there are several solutions, although the market is now moving towards the 
use of Flash to develop multimedia applications embedded in web pages1. 

Until 2002, using Flash to develop accessible multimedia contents was a one-off, 
tough and complex task. Additionally, the developed contents were not compatible 
with standard assistive technologies. However, the release of Flash MX marked a 
shift towards the improved construction of accessible Flash-based resources. 

Macromedia Flash MX and Flash Player 6 (Adobe bought up Macromedia at the 
end of 2005 and is now the owner of Flash) are the first accessible versions of Flash 



platforms. Developers can use Flash MX to create US guideline-compliant accessible 
multimedia applications To assure accessibility on Microsoft Windows systems, 
Flash uses the Microsoft Active Accessibility (MSAA) API. Even so, these features 
are limited and do not guarantee adequate accessibility and usability for some types of 
applications and disabilities. For example, it overlooks key aspects like the applica
tion context, scanning input methods, captioning, languages... These are elementary 
features for developing activities or support material for teaching children with spe
cial educational needs (SEN). Developers, then, are left with two alternatives: develop 
the application ad hoc to solve a specific problem or buy special-purpose libraries to 
meet those accessibility needs. The first alternative calls for specialized developers, 
increasing the cost of production and reducing reuse. The second entails the purchase 
of external libraries, supposing that they exist and meet the general and special needs. 
Generally, more than one library will be necessary to meet the application's needs. 

This raises several questions: Wouldn't it be better to have a wrapper integrating 
and abstracting accessibility needs? And to be able to easily integrate and use any 
new accessibility functionality you want to add as just another library? And even be 
able to have an external configuration specification for any Flash application defining 
the necessary accessibility requirements depending on the user profile? 

In response to these problems, we designed the Accessibility Toolkit (ATK). This 
toolkit facilitates the creation of accessible Flash applications, allowing the definition, 
configuration and use of accessibility elements in a simple and reusable manner. The 
creation of ATK is part of the framework described in . It is being applied in the 
Proyecto Aprender (Learn Project) and Internet en la Escuela (Internet at School) 
[4] projects, and works like a Flash accessibility wrapper. 

This article is organized as follows. The next section summarizes the work related 
to multimedia accessibility and Flash in order to analyse Flash's accessibility proper
ties. Then the philosophy underlying this paper and the solution implemented through 
the development of the Flash accessibility libraries is presented. Finally, we present 
the results, conclusions and future lines of research. 

2 Related Work 

SVG (Scalable Vector Graphics) is a language describing graphics and graphical 
applications that has become an alternative to Flash for rendering multimedia content 
on the web. It is a W3C recommendation based on XML and CSS that has a number 
of strengths: it is an open standard, allowing different compatible implementations; it 
is easy to edit; the graphics code can be easily searched; and one CSS can be used for 
several graphics. Although more and more browsers are including a SVG viewer and 
plug-ins have been developed, it is less commonly used than Flash. 

As regards add-on libraries containing accessibility features and operating as ex
tensions of Flash, worthy of note are Hi-Caption and Caption Component (CC) for 
Flash They manage captions and synchronize files with the respective text and 
videos in different formats. Zoomyfier can create and integrate zoom and pano
ramic applications into Flash to improve viewing for visually impaired people. 

Another notable option is AccRepair which is useful for rapidly and effectively 
verifying compliance standards set out by US Section 508. Specifically, it defines a 



test to verify accessibility properties use in objects that are included in the movie and 
have alternative names and descriptions, tabulation order, etc. 

3 Flash Accessibility Properties 

Flash offers a series of basic accessibility features through its API, allowing commu
nication through MSAA. These are: (a) define whether an object is accessible, (b) 
define an alternative text for any graphical element, (c) define keyboard shortcuts to 
controls, and (d) set a tabulation order of elements. 

Table 1 shows the accessibility needs by disability and whether they are directly 
enabled by Flash, whether they will have to be programmed or whether an external 
application will have to be used. Some of the needs are related to one or more dis
abilities, but the table has been simplified by placing them under a single disability. 
Looking at Table 1, it is clear that not all the accessibility needs can be met, not even 
by combining different functionalities to make a user need-dependent accessible Flash 
application. The answer would be a tool that can standardize the use of the available 
features and abstract the content of the Flash movie from user needs. 

Table 1. Accessibility needs by disability and availability in Flash 

Disability 
Type 

General 

Visual 

Hearing 
Motor 

Cognitive 

Needs 

Language management 
Configuration management 
Tabulation order 
Element clustering 
Document description 
Object description 
Video description 
Control description 
Font size management 
Image size management 
Captioning synchronized with audio and video 
Device-independent controls 
Other types of pointing devices (scanners) 
Context management 

Native 
Flash 

No 
No 

Partial 
No 
Yes 
Yes 
No 
No 
No 
No 
No 
Yes 
No 
No 

Through external 
applications 

Zoomifyer 
HiCaption, CC 

4 Solution: An XML-Based Toolkit for Accessibility in Flash 

The way to solve the above problems is to provide an abstraction of the different ways 
of interacting with users, irrespective of their disability and the use of assistive tech
nologies. This abstraction should produce: 

• Conceptual definition of the user actions This is an inherent definition of 
direct handling interfaces. For example, we must define the select, move, request 
help actions, etc. They must all be defined with a view in the first place to their 



meaning. The library automatically translates the user actions to the equivalent 
concept within the application. The programmer only has to deal with the defined 
concepts and not with how the user interacts. 
Mechanisms to translate the input from assistive technologies to one of the concep
tually defined actions. In the case of concept keyboards, for example, the selection 
of a keyboard concept may be associated with the selection of an element from the 
multimedia scene or a specific action like go forward or go back. This translation 
also has to be applied when the system has to communicate with the user. This is 
done thanks to the conceptual information associated with each interactive object 
and with the scene in which it appears. This information is used to send the right 
output to each assistive technology (such as, descriptive text, visual or audio ren
dering, etc.) and to the selected language. A programmer-transparent wrapper 
should take charge of this translation. 

Stage Preparation for Accessibility 

XML Interactive Object 
Specification 

XML Language 
Specification 

i 
Flash Movie Flash Player 

Accessibility API 

ACCESSIBILITY 
LIBRARY 

Logic Layer 

Accessibility Wrapper 

1 
Events Abstraction 

(Inspection^Selection^^Data InpuF 

Physical Layer 
Keyboard/Mouse~| 

- Subtitle 
- Audio description 
- Audio/visual advice 
- Alternate text 
- Context 
- Language 

Assistive Technologies 

Fig. 1. Overview of the architecture 

All the conceptual information, like the best representations and the correlation be
tween concepts, should reside outside the Flash application and will be used by the 
wrapper to do its job. To do this, we decided to define a set of XML files that could 
be used to gather this information externally. 

For this purpose, we defined the Accessibility Library (AL), built into the ATK. 
This library can externally define and manage the accessibility needs of the Flash 
application. This improves reuse and provides effective profile-based tailoring of the 
application. Figure 1 shows an overview of the AL's operation and composition. As 
illustrated in Figure 1, the configuration parameters and the conceptual description of 
the scene are established at an earlier stage of the design process. On the other hand, 
the AL interprets the files defined earlier on and defines the logic of the multimedia 
scene. In the following we will describe each component in more detail. 



4.1 Preparation for Accessibility 

Before starting to program a multimedia scene, a scene preparation process is enacted 
during the design stage. At this point, the accessibility parameters can be configured 
depending on the type of user that is going to use the application. At this stage, we 
will also add the conceptual information associated with each interactive object and 
the relations between objects, and we will allocate the different alternative representa
tions of the concept (image, text, speech, etc.) that can be used during scene execu
tion. Finally, concepts have to be defined for the actions that the user or the system 
can take. These actions can be triggered by user interaction with the system or by 
system-generated events. These are the conceptual actions that programmers have to 
deal with when they implement the scene. All this information is defined through a 
web-form-based application that is part of the ATK. The web forms are used to gen
erate a set of XML files. The configuration parameters can be preset or modified at 
run time. This way, it is possible to tailor the behaviour of the library. This will de
termine how to interact with the application, that is, everything related to scene acces
sibility and usability. Library behaviour is programmer transparent. 

4.2 Accessibility Library (AL) 

Strictly speaking the Accessibility Library will automatically interpret the information 
generated during the preparation stage to tailor navigation and interaction with the 
objects that are part of the application. Additionally, it will provide the necessary 
support for programmers to specify the logic of the scene. With a view to developers, 
AL contains the Accessibility API. This API has been built as a Flash MX accessibil
ity functionality wrapper and add-on designed to meet all the described needs. It is 
implemented through OOP in the Flash programming language: ActionScript v2.0. 
The AL is divided into four components: 

1. Configuration Manager. Interprets the configuration file defined in the prepara
tion stage and automatically establishes some parameters for the application. 

2. Input/Output Manager. Provides mechanisms to translate: the input from an as
sistive technology (or standard input device) to one of the conceptually defined 
actions, and a conceptual representation to the respective output of an assistive 
technology (or standard device output). The application will be independent of 
the input/output device in use (keyboard, mouse, screen, assistive technologies). 

3. Context Manager. Provides mechanisms to inform users whereabouts they are in 
the Flash movie. For example, it informs users of the scene they are viewing and 
what actions they should take. 

4. Language Manager. Allows different languages to be used or the language in 
use to be tailored. 

4.3 Accessibility Wrapper 

As already mentioned, all the finer points that make programming tough are left out of 
the Flash application and placed in a series of XML files. All developers have to do is 
follow the guidelines established in the ATK manual focusing on the logic layer of ab
straction without having to bother about all the little accessibility details involved in 
making an accessible Flash application. The logic layer of abstraction uses functionalities 



provided by the configuration manager, input/output manager and language manager. 
Among other things, its job is to manage the logic of navigation within the application, to 
tailor language and set the language used. 

4.4 Abstraction Model 

The abstraction that we propose for simplifying the actions in response to user events 
is based on the model described in Figure 2 shows a simplification of this 
model that will be used as a basis for building the AL. The above model puts all the 
devices into two major input or output categories. A device can belong to both catego
ries and offer the respective input and output services. As shown, the input devices 
are wrapped by an interface divided into three main categories. It is the interface that 
allows the user actions to be given standard treatment. The user actions are trans
formed into events that will be properly processed by the events manager. 

In our case, the events manager will be the listener system defined by Flash. The 
events will be gathered and translated to their conceptual representation, if any. The 
programmer will only have to bother about the notices of appearance for actions, like, 
for example, capture information, move (either around the screen or through select
able elements), select, request help, irrespective of what device the user uses to take 
the action, be it a qwerty keyboard, concept keyboard, pointing device, etc. This proc
ess will be programmer transparent and carried out by the library. 

i .type. 
Constraint Interface «. Event Management 

• type. 
Input 

^ 

Interactive object «type» 
Output 

l<H-. Service Request 

Element Services Request 

Information Capturei Movement Selection Single information item ^ Compound information item \ 

Fig. 2. Device Abstraction 

As regards the output, programmers have to work with concepts that represent the 
information that they want to transmit to the user. The information to be displayed 
will be gathered externally in XML files created in the previous stage. The media to 
be used to display the information will be specified depending on the selected con
figuration. In this way, an output telling users how to take an action could produce 
captioned output, an audio description, an animation, etc. All this will be synchro
nized, and, at the end of the output, the programmer will be notified by an event. 
Additionally, these outputs could be displayed in a developer-transparent manner. 

5 Results 

The results presented in this paper are the fruit of a line of research that kicked off by 
defining a methodology for making accessible Flash movies The methodology 
was applied in Proyecto Aprender, and the results were moderately successful. From 



this experience, we learned that the production process needed to be improved and 
simplified. This is what the Accessibility Toolkit (ATK) has managed to do. 

Table 2 shows how the development effort got smaller as we developed our ap
proach further. The first two columns (ad hoc and II) correspond to the first phase of 
the Proyecto Aprender. Several development teams divided into two groups worked 
on this phase. The first group developed the application ad hoc, whereas a second 
group prepared a smaller version of the AL, which it then applied to develop the ac
tivities. Although the second group fell behind the first group at the start, as the num
ber of scenes to be developed grew, it gradually caught up again, and it managed to 
finish ahead (development time was 25% less). The ATK described in this paper was 
developed in the second phase. In this phase, the AL was integrated and extended 
with a toolkit to facilitate the tasks to be performed in the earlier stage. These new 
resources were used to develop the second phase of the 'Proyecto Aprender: Atten
tion deficit, autism and behavioural patterns'. The use of the toolkit and the proposed 
methodology led to a 50% increase over II in the time required for the Preparation 
Stage, whereas there was a sizeable drop in the development time for the next stages. 
In actual fact, there was an overall improvement of 50% over the ad hoc implementa
tion, and development time was more than 30% shorter than using II. 

Table 2. Table of times for applying accessibility in a Flash application 

time (hours) 
Stage 1 Accessibility: Stage Preparation 
Stage 2 Accessibility: Accessibility Development 
Scene Development 

TOTAL: 
Improvement over ad hoc development 

ad-hoc 
0 
14 
20 
34 
-

11 
2 
8 
15 
25 

26.47% 

ATK 
4 
2 
10 
16 

52.94% 

Accessibility was not evaluated according to a standard evaluation methodology, 
as, according to Nielsen [11], the four basic ways of evaluating user interfaces are 
automatically, empirically, formally, and informally. Surveying the current state of 
the art, there are no fully automatic methods. Additionally, formal methods are very 
difficult to apply and do not scale up well to handle larger user interfaces. Also none 
of them is directly applicable for assessing software accessibility In this case, 
experts from CNICE (National Centre of Educational Information and Communica
tion) and educators observing the behaviour of learners with SEN working with the 
system evaluated accessibility for compliance with ISO DIS 9241-171 

6 Conclusions 

Although first Macromedia and then Adobe have tried hard to make it possible to 
create accessible web-embedded Flash applications, the truth of the matter is that 
making accessible Flash movies is still hard work today. 

ATK provides a tool that helps developers to create accessible web-embedded 
Flash applications in an easy way. Another noteworthy point is that ATK has evolved 
into a flexible framework that can be easily extended by adding new modules and 
developer utilities. 



The potential future improvements that we are weighing up are the possibility of 
using templates to make it easier to change standard activities, that is, templates in 
which teachers specify what concept families or groups they want to teach pupils, and 
the toolkit selects the best elements from each family to build the activity. In this case, 
rules would have to be entered to define special cases, like "at least one from this 
group" or "two elements from group B for every one element from group A", etc. 
Finally, functions could be added to ease integration into e-learning or blended learn
ing systems by providing calls out to SCORM-compliant systems in the API. 

References 

Macromedia Flash MX Accessibility FAQ. Is the Macromedia Flash authoring tool 508 
compliant?, 
h t t p : / / w w w . a d o b e . c o m / m a c r o m e d i a / a c c e s s i b i l i t y / f e a t u r e s / f l a s h 
/ f a q . h t m l # i t e m A - 5 (lastvisit01-11-2007) 
Canton, P., Gonzalez, A.L., Mariscal, G., Ruiz, C : Towards a methodology for educating 
students with special needs. In: 5th Conference and Workshop on Assistive Technology 
for People with Vision and Hearing Impairments, CVHI 2007, Granada, Spain (2007) 
Canton, P., Gonzalez, A.L., Mariscal, G., Ruiz, C : Developing pedagogical multimedia 
resources targeting children with special educational needs. In: Miesenberger, K., Klaus, 
I , Zagler, W., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol.4061, pp. 536-543. 
Springer, Heidelberg (2006) 
Gertrudix, M., Galvez, M.C., Alvarez, S., Galisteo, A.: Design and Development of Digital 
Educational Content Institutional proposals and actions. In: Computers and Education, pp. 
67-76. Springer, Netherlands (2007) 
W3C. Scalable Vector Graphics (SVG). XML Graphics for the Web, 
h t t p : / / w w w . w 3 . o r g / G r a p h i c s / S V G / (lastvisit 15-10-2007) 
HiSoftware. HiCaption Studio, http://www.hisoftware.com/hmcc/index.html 
National Center for Accessible Media (NCAM). Caption Component (CC) for Flash, 
h t t p : / / n c a m . w g b h . o r g / w e b a c c e s s / c c f o r f l a s h (last visit 05-11-2007) 
Zoomify for Flash. Zoomify Inc., h t t p : / / w w w . z o o m i f y . c o m / f l a s h . h t m (last 
visit 12-12-2007) 
HiSoftware. AccRepair, h t t p : //www. h i s o f t w a r e . c o m / a c c e s s / r e p a i r . h tml 
(last visit 1-11-2007) 
Gonzalez, A.L.: Modelo para la Generation y Gestion en Tiempo de Ejecucion de 
Procesos de Interaction Hombre-Maquina a Partir de un Lenguaje de Especificacion de 
Relaciones con el Usuario. PhD Thesis dissertation, Technical University of Madrid 
(2003), http://oa.upm.es/87/ 
Nielsen, J.: Usability inspection methods. In: Conference companion on Human factors in 
computing systems, Boston, Massachusetts, United States, April 24-28, pp. 413^-14 (1994) 
Hideki, E., Bim, S., Vieira, H.: Comparing accessibility evaluation and usability evaluation in 
HagaQue. In: CLIHC 2005. ACM Int. Conference Proceeding Series, vol. 124, pp. 139-147 
(2005) 
ISO DIS 9241-171. Ergonomics of human-system interaction - Part 171: Guidance on 
software accessibility. Draft International Standard. ISO (2006) 
Sharable Content Object Reference Model (SCORM), 
h t t p : / / w w w . a d l n e t . g o v / s c o r m (last visit 22-11-2007) 

http://www.adobe.com/macromedia/accessibility/features/flash
http://www.w3
http://www.hisoftware.com/hmcc/index.html
http://wgbh.org/webaccess/ccf
http://www.zoomify.com/flash.htm
http://oa.upm.es/87/
http://www.adlnet

