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Light intensity enhancement by diffracting structures in solar cells
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A simplified three-dimensional study is presented of the light confinement, that is, of the
enhancement of the Poynting vector of the electromagnetic radiation of the light inside a solar cell
absorbing the light weakly when diffracting structures are used. The model is based on the theory
of periodic radiation arrays and is easily applied to one- and two-dimensional diffraction gratings.
Realistically wide illumination bundles are considered. The extended nature of illumination severely
limits the enhancement capabilities of diffraction structures. Results are compared to those of the
more widely used Lambertian light confinement. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2960586]

I. INTRODUCTION

Some solar cells have a weak light absorption because
they are thin or, at wavelengths close to the absorption edge,
because of the indirect nature of their bandgap, as in the case
of silicon devices. Furthermore, certain solar cell types and,
in particular, the intermediate band solar cells' (IBSCs)—in
which electron-hole pairs are created out of sub-band-gap
photons by means of quantum dots? (QDs) or by alloys of
different types3’5—absorb weakly the sub-band-gap photons
because of the low density of absorbing centers (below
10'7 cm™ in the QD-IBSC). It is to be noted that most prob-
ably QD-IBSC will not be practical unless they can utilize a
good scheme of light-absorption intensification.

To enhance the absorption we can randomize the light
direction inside the semiconductor that forms the solar cell®’
hindering its exit from the semiconductor thanks to the
higher density of modes inside it, that is proportional to the
square n” of its index of refraction: rays that are not coupled
to outside modes cannot escape by the total internal reflec-
tion. This is the so-called Lambertian confinement. An alter-
native to it is the enhancement of the light intensity based on
diffraction. The use of diffraction structures was proposed
for solar cells in 1989 (Ref. 8) although the procedures to
analyze the problem numerically were developed earlier.””

The intensity enhancement produced by a diffraction
grating is often interpreted in terms of an increase in the path
of the rays inside the semiconductor and referred to as light
confinement. It can be also looked at as an increase in the
electromagnetic field when it experiences a change of direc-
tion, thus enhancing the absorption of the light.

The change of direction caused by diffraction on a plane
wave produces an increase in the strength of the Poynting
vector of the deflected beam. In effect, we represent in Fig. 1
an electromagnetic plane wave with the wave vector in the
direction of the arrow (direction unity vector u;) which is
deflected (direction unity vector u#,) when traversing a sur-
face X. The angles with the normal (u.) to the surface ele-
ment d2, of the incident wave vector and the deflected wave
vector are 6; and 6, respectively. The Poynting vectors of
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incident and deflected waves S; and S, (modules S; and )
are in the direction of the wave vectors. If all the power in
the incident wave is transmitted to the deflected wave, the
conservation of energy states that S; cos 6,d% =S, cos 6yd>
so that

cos 6;

So=35; .
07 % cos 6,

(1)
If 6, approaches 90°, the deflected wave Poynting vector
tends to infinity. This simple result introduces an exciting
concept: if we are able to deflect the rays horizontally the
Pointing vector inside the semiconductor will be infinite and
the absorption will be very much increased. Diffraction
seems a way to achieving this.

Most of the work done so far has been limited to diffrac-
tion gratings and their analysis is generally two dimensional
(2D),"" that is, confined to light propagating in the plane
normal to the diffraction grating lines, because the exact
three-dimensional (3D) treatment involves considerable
complexity. 12

In this paper we present an approximate 3D model based
on the techniques widely used in electromagnetism to study
arrays of radiators.”"® To this purpose we shall obtain the
diffraction directions with a general formalism applicable to
one-dimensional (1D), 2D, and 3D arrays of diffraction cen-
ters when they are periodic. Then we analyze the conse-

FIG. 1. A plane wave incident on a surface X with an angle 6; is deflected
when traversing it to an angle 6.
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quences of the angle-extended illumination of the solar cells,
which are excited by a bundle of plane waves, generally
incoherent, and not by a single plane wave. As we shall see
this greatly reduces the Poynting-vector-increasing potential
of this concept. Finally, we calculate the confinement en-
hancement that we can expect from these structures and dis-
cuss how this compares to the Lambertian confinement pro-
posed by Yablonovitch and Cody.7

Il. CONSTRUCTIVE INTERFERENCE DIRECTIONS
A. Diffraction by a single object

Let us assume an illumination light consisting in a plane
wave represented by the real or imaginary part of the com-
plex disturbance,

E;=Egu, exp(ik; - r—iot) ¥V w=kc/n=k/\r’gu, (2)

E; is the electric field vector, E; its complex amplitude, and
k; the wavevector, whose amplitude & is related to the angu-
lar frequency w through the light speed in the medium c/n.
Coordinate axes are taken so that the x-axis, with unity vec-
tor u,, contains the polarization vector.

An object is placed at the origin of coordinates, small as
compared to the distance of observation r. By positioning
this object, the illuminating field can be considered as un-
changed but a diffracted spherical wave will appear that ne-
glecting the near field behavior can be represented by&]3

E r) = M

exp i(kr — wt), (3)
A(r/r) is a complex vector function that gives the depen-
dence of the diffracted field on the observation direction. In
the rest of the paper the factor exp(—iwt) appearing in any
field term will be omitted.

For large r, this spherical wave behaves locally as a
transversal plane wave with wave vector k=ku,, where u,
=r/r is a unit vector in the direction of r. The following
relationships are fulfilled:

E-H=E -k=H k=0,
- 4)
E=\ueH=nH.

Let us consider the effect of displacing the diffraction center
to the position d. The diffracted field is

E,A[(r—d)/|r-d|]
r—d

E r)= exp(iklr —d|)exp(ik; - d). (5)
The factor exp(ik;-d) accounts for the phase difference of the
illuminating plane wave when the center is displaced from its
original position.

We assume now that d is small enough as to keep the
amplitude vector EgA(r/r)/r unchanged, but not small with
respect to wavelength so that the phase factor is changed.
First order approximation in d gives

Er)= Mexp(ikr)exp[— i, —k)-dl.  (6)
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It is very common that the diffraction centers are at the
interface of two different media. In each one of them the
wavelengths are different and obtained with the formulas in
Eq. (2) using the different index of refraction of each me-
dium. Furthermore, refractions and reflections take place,
producing complex field configurations for both the illumi-
nating plane wave and for the scattered spherical wave. We
assume for the moment that the scattering centers are inside
a given semiconductor.

B. Diffraction by arrays
1. 3D array of diffractive centers

Let us now consider an array of diffractive centers lo-
cated at positions a=m,a+m,a,+msa;, with my(k=1,2,3)
an integer. This forms a periodical lattice whose reciprocal
lattice is B=pB,+p,B,+p;B; (for p, integer), where B,
=(ayXas)/a;(a,Xa;) and B, and B; are obtained in the
same way by circular permutation of indices. These vectors
have the property a;-B;=4; ;. All the centers are supposed to
be found inside a homogeneous medium to which all calcu-
lations are referred.

We further assume that the diffraction centers in the ar-
ray are illuminated only by the incident wave and not by
light scattered by the other centers. In this case, and assum-
ing also that the observation point is far away from all the
diffractive centers,

E (r) = Mexp(ikr)

x 2

ml,m2,m3

exp[_ i(kur - kl) : aml,mZ,mS] . (7)

The summation is of a set of complex numbers of mod-
ule unity and random phase, thus the sum is zero except
when

When Eq. (8) applies, the phase of the terms is —27(m;p,;
+myp,+msps), that is, an integer number of 277 for any value
of the integers m,, m,, and ms, and therefore the exponentials
become unity and their sum is N, the number of diffractive
centers.

The zero sum out of the condition in Eq. (8) is fulfilled
exactly for an infinite number of diffracting centers. For a
finite number of them, it holds approximately, and ap-
proaches N when the equality in this equation is only ap-
proximate.

Let us stress that u,=BN+u; must be a unity vector to
represent a diffraction direction. There is a set of candidate
nodes of the reciprocal lattice normalized to 1/\, taking as
origin the unity vector of the illuminating plane wave. How-
ever, only those situated on the unity-radius sphere (or per-
haps, in its proximity, if the number of diffraction centers is
not very large) are direction vectors of the diffracted beams.

In the case of a very large (infinite) number of diffraction
centers only the constructive interference directions occur
and therefore the incident wave is diffracted into a certain
number of plane waves, the so-called diffraction orders. De-
spite the weakness of the spherical wave scattered by a single
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center, its ensemble can lead to a substantial part of the illu-
minating power density to be transferred to the scattered
waves.

Note that changes of the incoming beam direction dis-
place the reciprocal lattice and may change the nodes located
on the unity-radius sphere. It may happen that under certain
(or all) illumination directions, no diffraction direction is
found beside the illumination direction.

Effectively, one of the points of the reciprocal lattice is
the point (0,0,0). This means that the direction u; of the
incident light is always a possible diffraction direction. The
reason is that, by Huygens’ principle, the illuminating wave
makes all the scattering points to emit with a phase able to
reconstitute the incident flat wave.

If the conditions permitting the approximations in Eq.
(6) are not fulfilled, that is, if the distance from the scattering
centers to the point of observation is not the same, or if the
direction from which the scattering centers are seen at the
observation point is different, only a few of the centers will
contribute to the field at the observation point and therefore
the electromagnetic field does not go to zero out of the di-
rections dictated by Eq. (8). In this case there are a number
of radiation lobes around the allowed directions; these lobes
are not sharp and there may be secondary ones as well. This
situation can be found in some solar cells in which the dif-
fraction centers are very close to the active part of the cell,
for instance, in the front face of a III-V solar cell. However,
if they are at the back of the substrate the approximations
leading to Eq. (6) are rather accurate.

2. 2D array of diffractive centers and diffraction
gratings

We can describe a 2D array of diffraction centers as a
degenerate 3D array, such that the plane of scattering centers
is at the xy-plane and successive parallel planes are infinitely
separated. In other words, a;=Qu_ with ) — . If this is the
case,

a Xu,

== o
a(a; Xu,)

uZXal

: 9)

2= T
a>(u, X a)

a; Xa,

B,=——mmmm—=
3 Quz(azxal)

wu,,
with @ —0. In this situation, the reciprocal lattice points
form a set parallel lines in the z direction as represented in
Fig. 2 (once B, and B, are multiplied by \). According to
Eq. (8) the directions of constructive interference are those of
intersection of these lines with the sphere of radius unity.

In the case of an array of diffracting lines (a diffraction
grating) located in the xy-plane, they can be represented as a
3D array of points such that a;=eu, with e —0, a,=au,, and
a;=Qu_. u; and u, are a couple of orthogonal vectors lo-
cated in the xy-plane but possibly rotated with respect to u,
and u, (remember that the electric polarization is along u,).
In consequence,
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FIG. 2. The reciprocal lattice of a 2D array of diffracting centers times A\,
once displaced by u;. The intersection of the vertical lines and the surface of
the sphere of radius unity represent valid diffraction directions.
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eau X u,

} Qeau_(u; X u,)

z*

This means that B\ is very large and all the diffraction
directions associated with p; # 0 are outside the unity-radius
sphere and must be discarded. Thus the only nodes of the
reciprocal lattice to be taken into account are in the direction
u,, normal to the diffractive lines (that run in the direction
u,), separated 1/a. As seen in Fig. 3, from each of these
points emerges a vertical line formed by the successive
points along vector B, forming a continuous as in the 2D
case. To obtain the scattering directions we must locate the
reciprocal lattice multiplied by A at the extreme of the unity
vector along the illumination direction.

Diffracted .
directions Vertical
Unity radius lines
sphere /
1'\ Displaced
“ reciprocal
|attice

- Diffracted
directions

X

FIG. 3. The reciprocal lattice of an array of diffractive lines times \, once
displaced by u;. The intersection of the vertical lines and the surface of the
sphere of radius unity represent valid diffraction directions. In this drawing
the array of reciprocal lattice nodes runs parallel to the y axis implying that
the diffraction lines are in the x direction but any other horizontal direction
is equally valid.
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FIG. 4. The diffraction center lattice (solid lines) and the reciprocal lattice
(dashed lines) of a set of pyramids of triangular base engraved on the sur-
face of a solar cell.

It is clear by this construction, in the two cases dis-
cussed, that allowed diffraction is produced not only with a
normal (z) component in the direction of the illuminating
wave (transmission) but also in the opposite direction (re-
flection).

3. The effect of an interface

An important situation for solar cells is the one in which
the scattering centers are engraved on a surface. In the case
of the front surface, interesting diffraction takes place in
transmission to the substrate, so that the diffracted waves
propagate in a medium different to the one illumination is
coming from. For the back surface, on the contrary, the main
interest lies on diffraction on reflection, so that it occurs in
the same medium as the illumination since the change of
medium takes place at the front face.

In the case of diffraction with change of medium, Egs.
(5)—(7) remain valid, but now the wave is scattered in a
medium with index of refraction »n, while illumination comes
from a medium with refraction index of 1. It can thus be
stated that ¢/ w=k;=k/n, and Eq. (8) transforms into

u,=B)\+ki/k=B7\+ui/n. (11)

When the hemisphere of illumination is the same as the
hemisphere of interest for scattering, the treatment in the
preceding sections is valid, using of course the relationship
between wave vector and angular frequency corresponding
to the index of refraction of the medium involved. If the
index of refraction of the incident medium is different from
1, then n must be replaced by the ratio of n’s. Of course, the
relationship between wave vector and angular frequency for
the incident medium has to be modified as well.

C. Angle-extended illumination
1. Scattering directions in 2D arrays

To develop our discussion, let us consider a 2D array of
scattering centers consisting of triangular-base pyramids. In
Fig. 4 one of these pyramids and the lattice of scattering
centers are presented, together with the reciprocal lattice.
The unity vectors of the real space lattice are a;=(1,0,0)a
and a,=(1/2,3/2,0)a. The reciprocal lattice unity vectors
are B;=({3/2,-1/2,0)(2/a{3) and B,=(0,1,0)(2/a3).

Frequently a solar cell receives the light in a cone with
semiangle ©®,,,=0.2670° that subtends the sun disk. More
common for high efficiency cells is to be illuminated by a
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TABLE I. Some data of extended illumination bundles.

Direct Ideal 1°
sun concentrator concentrator

Subtended disk semiangle (°) 0.267 0.267 1
Concentration (no secondary) 1 500 500
Concentration n,pie=1.5 1125 1125
Output angle O,(°) 0.267 5.981 22.970
Index of refraction n J11 J11 J11
Radius of projected bundle & 0.0014 0.0314 0.1177
Refracted output angle 0 (°) 0.081 1.800 6.757

concentrator whose output semiangle is ®,,. For an ideal
concentrator, the concentration factor is' C
=nf)ptics sin’@,,/sin> @,,,, where Nopiics 18 the refraction in-
dex of the optical material used to fabricate surrounding the
cell. An ideal concentrator with no secondary optics and C
=500 will have ©,,=5.981°. An ideal concentrator with the
same output angle to which a secondary with rqy;.,=1.5 has
been added will achieve C=1125, that discounting the opti-
cal losses and assuming perfect tracking might lead to an
irradiance concentration of 1000. A third case of interest is
the use of a concentrator to collect all the rays from a cone of
semiangle of 1° around the sun. This allows for manufactur-
ing inaccuracies in the concentrator and in the sun aiming.
We present in Table I a collection of useful data concerning
the three illumination bundles mentioned before. Last row
gives their semiangles once they have entered the semicon-
ductor material through a flat interface.

As indicated in Eq. (1), the more inclined the k-vector is,
the higher the Poynting vector of the diffracted wave. As
explained in Sec. II B 2, the diffraction directions under nor-
mal illumination are the vertical projections of the reciprocal
lattice times A on the unity-radius sphere. For this normal
illumination, if we make BjA=B,\=1, these projections are
on the circumference of the circle of radius unity drawn in
Fig. 5, the diffraction directions are horizontal and the Poyn-
ting vector is infinite. From another point of view, this means
that the path of the diffracted ray will never leave the cell
and the illumination light will be totally absorbed. As indi-
cated in the figure, in this way we have six horizontal dif-
fraction directions.

However, the light is coming in a cone of semiangle
®,,- The unity vectors of the illumination plane waves have
projections on the xy-plane given by p=u;-u,, g=u; u,,

:illumi nation
circle

FIG. 5. Reciprocal lattice of a 2D array of diffractive centers times A\,
unity-radius circle, illumination circle, and diffracted circles. Their centers
are on the reciprocal arrays nodes located on the circumference with unity
radius.
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FIG. 6. The O circle of Fig. 5 and the circles a-f translated into it with the
arc of unity-radius circle associated with them. The arcs are labeled with the
same letters as the circles a-f to which they cross in Fig. 5. A, B, and C are
illumination directions.

the direction cosines. The distance of these projections to the
origin is \Vp?+¢*=11-cos? #=sin 6, with 6 the angle formed
with the vertical (u.) direction. Therefore all directions have
05 ®0ut°

The reciprocal lattice node projections on the xy plane,
for rays within the illumination cone, are displaced from
their original positions by vectors situated inside circles of
radius,

o=sin O, /n =sin 6. (12)

The n divisor is a direct application of Snell’s law, for illu-
mination light inside the semiconductor (back surface dif-
fracting lattice), or is a direct application of Eq. (11) for
illumination light from outside (front surface diffracting lat-
tice). In the absence of concentrator 0., =0,,.

The condition BjA=B,\=1 corresponds in this case to
a/\N=2/3. This information (remembering that \ is the
wavelength inside the semiconductor) allows calculating an
initial proposal for the spacing of the pyramids.

A number of circles (labeled 0, a, b, c, d, e, f)
around the nodes of the reciprocal lattice are represented in
Fig. 5, according to the discussion above. Due to the proce-
dure for sizing the reciprocal lattice the small circles a-f are
partly outside the unity-radius circle and partly inside. The
reciprocal lattice points projected in the external part of the
circles a-f do not lead to any diffraction direction. This
means that for certain illumination directions not all the six
“horizontal” diffraction directions will actually take place.
On the other hand only the light diffracted on the unity circle
radius circumference is really horizontal. Other direction in
the horizontal lobes are actually very inclined but not hori-
zontal.

In Fig. 6 we draw the circle 0 and translate onto it the six
circles a-f, included in this translation the fraction of unity
circle inside them. This arc segment is labeled with the lower
case letter corresponding to the circle. The drawing helps
understanding the diffraction directions associated with each
illumination direction. For instance, the illumination direc-
tion represented by point A (in the O circle) has diffraction in
directions belonging to circles 0, d, ¢, and e, but not in
circles a, f, or b. On the contrary, for direction B in the 0
circle, diffraction directions are only possible in circles 0, a,
b, and f. For point C diffraction directions are located in

J. Appl. Phys. 104, 034502 (2008)

Reciprocal

lattice node Illumination

ccircle

S o

FIG. 7. The circle of unity radius and the illumination (0) and scattering
(a,b) circles. The scattering circle centers are located at the nodes of the
reciprocal lattice but not on the unity radius.

circles 0, b, and c. For vertical illumination there is diffrac-
tion in all the lobes 0, a, b, c, d, e, f, as discussed be-
fore.

Sizing the reciprocal lattice so that the centers of the
circles a-f are outside the unity-radius circle would leave a
region in the center of the circle of Fig. 6 where diffraction
would not be coupled to any horizontal lobe.

The preceding scheme can be used with small modifica-
tions for a 2D array of square base pyramids.

2. Scattering directions in diffraction gratings

As discussed in Sec. II B 2, the reciprocal lattice in this
case involves a linear set of nodes and B, is a vector of
module 1/a normal to the diffraction lines. When the light
comes from a cone of rays, represented by the circle 0 in Fig.
7, it will be diffracted along directions into the circles a and
b, and also along the directions in the circle 0.

For this reason, too, the centers of circles a and b, which
are on the reciprocal lattice nodes, should be located on the
circumference of the unity circle. However, for analysis pur-
poses, we admit other possible situations so that the centers
of circles a and b are at abscissas & and —h, respectively
(BA==*h). In Fig. 8 the horizontal lobe circles have been
translated and superimposed to the O circle, bringing with
them the arc of unity circumference crossing them (again
labeled a and b).

In this way, we see that the illumination in the direction
A will be diffracted toward directions in circles O or b but not
in circle a, while illumination in direction B will be dif-

FIG. 8. The O circle of Fig. 7 and the circles a and b translated onto it with
the arc of unity-radius circle associated with them. The arcs are labeled with
the same letters as the which they cross in Fig. 7. A, B, and C are illumi-
nation directions.
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wave (I=1)

lllumination
wave

¥
Confined
order

FIG. 9. Solar cell with a reflective diffraction grating at the back where an
illumination wave is diffracted. The specularly reflected wave escapes
through the front face, while laterally scattered waves suffer total internal
reflection there and impinge on the diffraction grating, exciting again the
upward-traveling modes.

fracted along directions in all the circles: 0, a, and b. llumi-
nation in direction C will be diffracted toward directions in
circles O or a, but not in circle . With the construction in
Fig. 8 illumination in the direction B would be deflected on
both horizontal lobes (plus the vertical lobe), but if 4 exceeds
the unity circle radius, region B will disappear and some
incoming directions will not be diffracted into any horizontal
lobe. However, as far as regions A and C exist, rays will be
more inclined, producing a higher increase in the Poynting
vector. Further analysis will be performed in Sec. III.

Ill. POWER CALCULATIONS
A. Confinement of diffracted modes

Let us consider a diffraction grating engraved on the
back face of a solar cell, as represented in Fig. 9. Light
impinges on the grating, that lies on the xy-plane from inside
the semiconductor. In line with the subject under study of
very weakly absorbing cells, the semiconductor is assumed
to be transparent. Perfect reflection is assumed, too. Equation
(8) for planar 1D or 2D reflection gratings is written for the
tangential (projected on the xy-plane) components of the in-
cident (u;,) and diffracted (u,,) direction vectors as

u,,=B)\+ki,/k=mlBl)\+szz7\+ui,, (13)

where only m;=0 makes sense for a 1D grating. The propa-
gating waves are those for which |u,,|=<1.

In the structure depicted in Fig. 9, the reflected waves
travel upward up to the front face; another reflection takes
place there that leaves tangential direction vectors un-
changed, so that when they reach the back face again the set
of scattered modes is left the same. In effect, let us consider
that the mode given by the numbers m; and m, impinges on
the grating after reflection. The scattered waves fulfill

J. Appl. Phys. 104, 034502 (2008)

= 4 R ’ ’
uit = url(ml,mz) = urt(m;,mé) - uil + mlBl}\ + szz)\
! ’
= ui,+ (ml + ml)Bl)\ + (m2 + mz)Bz)\ = urf(77ll+m{,m2+m£)'

(14)

It is always possible to select the indices m| and m; (positive
and negative) as to fill all the reciprocal lattice vectors situ-
ated inside the circle of radius unity that were present in the
scattered directions corresponding to the incident wave.

Let N, be the number of reflected propagating modes.
In the following, these will be labeled with a single integer
1 =/=N,,, corresponding to an allowed combination of m;
and m,, where [=1 corresponds to the nondiffracted mode
u.=u; (m=my=0), which is always present. Besides, the
polarization state denoted by w can take on two values, s and
p, depending on the magnetic or the electric vector being
contained in the plane of incidence.

Let P;, be the power flux in the direction normal to the
plane of the grating (that we assume to be the xy-plane)
carried by a plane wave (moving upward or downward, i.e.,
incident or reflected) with tangential direction vector u,
and u polarization. P, is the projection, in absolute value,
of the time averaged Poynting vector (S) along the normal to
the plane of the grating u._,

Py = (S 1) - ] = [(S(rpp)cos 6. (15)

If a plane wave with u,,(; impinges on the grating, all modes
are reflected. By 74.,)— () it is denoted the (absolute) dif-
fraction efficiency from the mode with label k£ and polariza-
tion u into mode with label [ with polarization v, i.e., the
ratio between the power fluxes,

P

ks )— (1) = (16)

Py

When only the k-labeled, u-polarized mode is incident.
The total reflected power can be expressed as the sum of the
power carried away by each mode as shown in Eq. (A3) in
the Appendix. For a perfect reflector grating such that no
power is allowed to escape, energy conservation forces dif-
fraction efficiencies to fulfill

N,

max

E 2 Do) (1) = 1 (17)

v=s,p [=1

On the other hand, reciprocity implies that the same ef-
ficiency values would apply if the wavevector directions
were reversed ' (that is, if k values were substituted by —k
and polarization states interchanged). There is a one-to-one
relationship between the modes present in both situations,
original and reversed. By labeling them with the same indi-
ces, and denoting reversed magnitudes with a prime, we have

!
P

D) (1) = = Dts)— hkep)- (18)

!
P (k1)

So that energy conservation for the reciprocal situation
means
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mdx

2 2 Moo= 2 2 Mkt = 1 (19)

p=s,p k=1 u=s,p k=1

Superscripts d and u distinguish now between waves inside
the cell that travel downward and upward, respectively. In
the downward direction, under circular polarization the (1;s)
and (1;p) modes carry half the irradiance from the external
source, P;/2; the front internal reflectance (the reflectance of
the upward wave when leaving the solar cell) for these
modes must be low because it is the reverse path for the
illumination from the sun, and it will be assumed 0. On the
contrary, the front internal reflectance for the remaining !/
# 1 orders is assumed to be 1 because, by the grating design,
the total internal reflection takes place, while no radiation
comes down from outside. Hence, in the absence of volume
absorption, the following relationships apply at the front
face:

P(l ) T Pl/2(lu’= S,p),
(20)
szk;u) = P?k;u)(k >1ipw=s.p).
The downward modes when impinging on the grating excite
the upward modes according to

NmaX

u d
Pl = 2 20 Mio—ewPli- (21)

v=s,p =1

On account of Eq. (20), Eq. (21) is as written

Nmax
Pl = > 2 M) s P12 = )y N — (ke Pil2-
v=s,p [=2 v=s$,p

(22)

This is a set of linear equations (two for every excited
mode) with the power carried by the modes as unknowns. It
is trivial to verify that, if Eq. (19) applies, the result is

P?k;,u.) = Pl/2 (23)

All modes carry the same power, irrespective of the diffrac-
tion efficiencies (provided none is exactly zero).

B. Path length enhancement

Following Eq. (A5) in the Appendix, with a perfectly
reflecting grating at the back the average energy density can
be calculated as the sum over the excited modes, each one
carrying the same irradiance P;/2,

N,
2 max P
—. (24)
¢ 1= cos(6)

2 P(l#
w=-— =-
Cin cos(6)

The factor of 2 accounts for up- and down-traveling modes.

We shall consider now that the solar cell is illuminated
by a set of plane waves that were individually considered in
Sec. II. The electric field and the magnetic field are the sum
of a large number of components in the incoming illumina-
tion cone. The coherence properties of sunlight can be al-
tered by the optical system. As shown in the Appendix, if
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these components are not coherent the collective Poynting
vector and energy density are locally the sum of the indi-
vidual ones.

For extended illumination, the infinitesimal power car-
ried in a given direction is Rd(), with R the radiance
(W cm™ s rad™!) and d() the differential of solid angle. This
substitutes for the average Poynting vector in Eq. (15) so that
Eq. (24) reads

RdQ

c

dw =

(25)

Let (p,q,r) be the direction cosines of a wave vector; p
=sin(f)cos(p)=u,-u,, g=sin(O)sin(¢p)=u,-u,, and r
=cos(0)=u.-u,. In addition,

dpdq =[9(p,q)!9(0, $)]d0d ¢ = sin O cos 6dOd P
=cos 0d(). (26)
By slightly varying the direction of the incident wave (sub-

indices i) in Eq. (13), the following is obtained for the dif-
fracted wave (subindices r):

d€); cos 6;=dp;dq; =dp,dq, =

That proves that the étendue (dpdq) conservation'*
cable to diffraction.

From Eq. (23) and remembering that Rd() cos #=P, it is
concluded that the radiance in lobe [ is the same as in the
illumination bundle,

Rl:Ri' (28)

dQ), cos 6. (27)
is appli-

The sum over both polarization states is included in the pre-
vious formula. The energy density due to the bundle / of
diffracted rays is

2
w;= _J fR]dQl (29)
c o)

The integral extends to the solid angle (), of the diffracted
lobe. Making use of Eq. (28) and considering that R; is con-
stant in the incoming bundle, we have

f f dpdq
wy=— =>w
\/ C]

de lTI ax 2R dpdq
- 3- J[ (0)
\!

Extended to the region of the p, g plane where the diffraction
directions are found (i.e., where |u,|=1). w stands for the
total energy density.

Light confinement is usually quantified by the path
length increment, defined as the average length of the rays

inside the cell L relative to the thickness W. It is found that'®

wce
CIE Fia (31)

= |t

where w is the average energy density, ¢ the speed of light in
the medium, and P; the illumination irradiance. From Eq.
(30) and the illumination irradiance P;=R;fcos 6 sin 6d0d ¢
=R;m sin(©,)?, we obtain
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50 o N

(h-1)/sin(©)

FIG. 10. Path enhancement factor for a single lobe for different illumination
conditions as a function of 4—1. h=1 corresponds to normal illumination
being diffracted horizontally. (a) direct sun illumination; (b) 500X ideal
concentrator; (¢) 500X, 1° acceptance concentrator; (d) for A=0, vertical
diffraction, Cjp=2.

N ff dpdq
M1-p -

r sin(0,)?

(32)

It is apparent that the more lobes are diffracted with equal
tilt, the higher the path enhancement, so that a 2D grating
can perform better than a 1D grating.

If no grating is placed at the back, but a planar perfect
mirror instead, we would have only the /=1 lobe,

_ 4[1 -cos(6,)]
o= sin(0,)?

As defined in Sec. II C, we denote by / the tangential com-
ponent of the diffraction direction for normal incidence, &
=u,,(6;=0). The result of evaluating C; for the ®, values in
Table I is given in Fig. 10. There is a maximum for h=1
—0.655 sin(0®,) - Cyy, for those thin beams, is approximately 2
as it corresponds to a double pass across the wafer. In case
more than one order is diffracted the values of C; should be
added as seen in Eq. (32).

(33)

IV. DISCUSSION AND CONCLUSIONS

The infinite value involved for horizontal scattering in
Eq. (1) has been the origin of overoptimistic statements con-
cerning the potential of diffraction schemes for light confine-
ment. Once the extended nature of the bundles used in solar
energy is recognized, they are seen to be subjected to the
general limits to light confinement.

The case considered here is a special one in that the
diffracted lobes other than the zeroth order are completely
confined by total internal reflection at the front, and the lobes
do not overlap each other. In other cases, Eq. (23) would not
be fulfilled and the energy density would be lower, decreas-
ing the confinement.

From our analysis it can be concluded that the confine-
ment is better if the diffracted lobes are more tilted and if
more lobes are diffracted so that more area in the projected
unit sphere is covered, hence favoring 2D versus 1D line
gratings. This may enter into conflict with the requirements
explained in the preceding paragraph. Besides, conditions
vary with wavelength: as this is decreased, the tilt of dif-
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fracted rays changes (with the effect that can be appreciated
from Fig. 10 and commented later on), more lobes and more
closely packed are produced, but escaping rays may be ex-
cited.

For very short wavelength (with respect to the grating
pitch) diffraction would proceed along all directions and the
Lambertian case’ is predicted (as in geometrical optics).
Note that Lambertian structures using surfaces engraved with
large motifs are widely used in the industry, for instance,
anisotropically etched (1,0,0) crystals follow accurately the
Lambertian behavior.'’

According to this concept the theoretical limit of con-
finement is C,=4n?, independently of wavelength and the
illumination bundle (assuming all directions within the criti-
cal angle are allowed to escape). For the value used of n
= /11, this gives C;=44. Under the more realistic condition
of having a dielectric at the back face, of index of refraction

Nopiics= 1.5, and an absorber at the end of it, we would get
C= 4n2/(1+nopncg) 13.5. As we shall see below, this is less
than what can be obtained with a nonconcentrator cell track-
ing the sun, but in this case no tracking is required and the
result is independent of the wavelength.

With a back diffraction grating, from Fig. 10 it can be
appreciated that, with six lobes at optimum tilt (plus the zero
order), we would get C;=320 under direct sun illumination
and C;=40 with an easy-to-make concentrator. Unlike the
Lambertian approach, here the dependence with the wave-
length is important. For a given grating, changes of wave-
length lead to changes of & by the same relative amount.
From Fig. 10, we see that, to get 90% of the maximum C;
value, &, and therefore N, should be within 10% of the opti-
mum for the 1° acceptance angle concentrator, 3% for the
ideal concentrator, and 0.1% for direct sun. These results
would indicate that intensification by diffraction is a narrow-
band phenomenon. Note, however, that if lobes with differ-
ent tilts are present the figures will be different since some
lobes will work away from the optimum / value.

The advantage that in this study can be achieved by dif-
fraction confinement against randomized, Lambertian ap-
proach, at least for certain wavelength ranges, is due to the
fact that the excitation of escaping rays outside the illumina-
tion cone but within the critical angle can be avoided in the
former case, while it cannot in the latter one. The improve-
ment relies on the limited angular extent of illumination
bundles: for isotropic illumination, Lambertian surfaces
achieve the upper limit of confinement and any further en-
hancement is forbidden by the second law of thermodynam-
ics.

Asymmetrical grating lines have been proposed to be
better than symmetrical ones because of reduced coupling to
the zero order, escaping lobe after reflection at the front."
The approximate character of our analysis makes the results
independent of the shape of the diffracting elements and is
not able to reveal these advantages, that will perhaps show
up when absorption and reflection losses are included.

To obtain the results above, our paper uses a methodol-
ogy widely used for the study of arrays of coherently radiat-
ing objects. We think that it is presented in a synthetic and
general way for application to diffracting elements and al-
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lows understanding easily the effect of the changes of the
illuminating wave in the 3D case, as well as handling non-
coherent bundles of rays that will drastically limit the advan-
tages of the horizontal scattering.
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APPENDIX

Inside the cell volume, for a given wavelength, the field
consists in a summation of plane waves,

E= 2 EOmeXp(ikm : r), H-= E HOmeXp(ikm : r)7 (Al)

k,, E,, and H,, fulfill the relationships (4). Waves inside
the cell may exhibit different degrees of coherence. Dif-
fracted orders at the surface grating will be highly coherent
among themselves and with the incident wave, but waves
coming from different illumination directions, or after reflec-
tion at another face if the substrate is thick, will not be cor-
related.
The average Poynting vector is obtained as

(S(r)) = %Re[E X H']

S S+ S S Re[E,

2n:#m m

X Hzn exp(i(k,, —k,) -r)]
|E0m|2km
= % e

k
+ ¢mnx) + anyuy COS((km - kn) r+ ¢mny)
+ anzuz COS((km _kn) r+ (;bmnz)),

where (S,,) pertains to a single wave and is spatially uniform.
For m # n, interference terms arise that produce a spatially
modulated vector with sinusoidal variation in the direction
k,—k,. V.. and ¢,,  are defined as the amplitude and phase
of the x component of the mn interference term. If the inter-
fering waves are not coherent, the random phase destroys
interference, so that only single-wave Poynting vectors sur-
vive. However, interference among diffracted orders with
high mutual coherence must be retained.

The average power flux P per unit area through an arbi-
trary surface with normal vector u is calculated as

+ 2 2 (anxux COS((km - kn) r

n#¥m m

(A2)
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P:limlffu-(S}dA:Eu-(Sm}:EPm. (A3)
A A m m

Ao

Given the oscillating nature of interference Poynting vectors,
their contribution to net flux disappears. This justifies the
treatment given to diffracted power flux in Sec. IIT A.

Similar considerations apply to the energy density. The
local electromagnetic density wy,. for a set of plane waves
depends on position,

Wioer) = {(eE - E" + uH - H")

= E wl‘n + E E le‘l COS[(km _kn) r+ wmn]’

n<m m
(A4)
_ 8|E0m|2 _ M
m= 7 = c

where w,, for a single plane wave is uniform. The interfer-
ence terms show the same spatial modulation as the Poynting
vector components and are written as cosine functions with
C,., amplitude and #,,, phase at the origin. Again, uncoher-
ence translates into random phase terms that suppress inter-
ference.

The average electromagnetic density w considered in
Sec. III B is defined as

1
w= hm_J ffwloc(r)dv=2wm.
V*)OOV 1% m

So that crossed terms disappear on spatial averaging.

(A5)
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