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A semiclassical method is developed to calculate the energy absorption of an electronic system
located in the near field of a metal nanoparticle sustaining surface plasmons. The results are found
to be similar to those of photon absorption from ordinary transversal radiation. However, they are
affected by a geometrical factor that can increase the absorption by several orders of magnitude. As
example, we investigate ellipsoidal-shaped metal nanoparticles which, under favorable conditions,
may provide near field aborption enhancements almost as large as 104, and in many cases above 10.
© 2008 American Institute of Physics. �DOI: 10.1063/1.3014035�

I. INTRODUCTION

The radiation absorption and emission mechanisms in
the interaction between light and a material system, whose
foundations were attributed to Dirac by Fermi1 in 1932, have
been extensively presented in textbooks.2–4 This interaction
is produced between the electrons of the material system
�atom or quantum dot, for instance� and a transversal radia-
tion, that is, derived from a vector potential of zero diver-
gence �and this is an important condition5�. In addition,
boundary conditions can modify the radiation modes and,
consequently, the response of the electronic system.

Significant attention has been paid to the modifications
of the spontaneous emission6,7 as a result of confined light
since the pioneering work of Purcell8 in 1946. The possibili-
ties of suppressing or enhancing the emitted radiation in
novel structures such as photonic crystals,9,10 or more re-
cently plasmonic devices,11–15 has attracted the interest of
many workers.

On the other hand, when radiation falls on a metal nano-
particle �MNP� it excites oscillations of the free electron
plasma, whose quanta are called surface plasmon polaritons
�SPPs� since these modes are confined within the nanopar-
ticle surface.16,17 A spherical scattered wave far from the par-
ticle will appear that can be large when the frequency of the
incident wave is close to the plasma resonance
frequency.18,19 However, in the present work we are mostly
interested in the scattered near field which fulfills the bound-
ary conditions imposed by Maxwell equations for the elec-
tromagnetic field18,20 �Sec. 13.5 in Ref. 18� at the MNP sur-
face. Contrary to the incoming electromagnetic radiation,
this field is essentially �but not uniquely� a longitudinal elec-
tric field of zero curl �derived from a scalar potential� which
can be very strong near the resonance.

The interaction of this near field with the electrons of the
material, in which the MNP is embedded, cannot be solved
using the ordinary formulas of emission and absorption of
photons in the radiation modes given in the classic text
books referenced above. This is because the traditional deri-
vations only deal with the quantification of transversal fields,

and the same treatment cannot be applied, in principle, for a
longitudinal perturbation such as the case of the MNP near
field.

As matter of fact, while a lot of effort has recently been
made in the analysis of the spontaneous emission in special
structures �and of course of stimulated emission for lasers�
much less effort has been made, to our knowledge, in the
study of the energy absorption by atoms soaked in the lon-
gitudinal field around the MNP sustaining plasmonic oscilla-
tions. The formulas to apply to this case are obtained in this
paper.

To address this problem, a semiclassical approach is em-
ployed that considers the near field created by the ordinary
radiation near �but outside� the MNP as an external classic
field, not affected by the interaction with the material system
consisting of the atoms or quantum dot in the surrounding
medium. To verify this procedure, the same method is ap-
plied to the ordinary radiation �that in Fermi’s work� to as-
certain how it differs from the quantum case with electro-
magnetic field quantification and interaction of the field with
matter and vice versa. Once the semiclassical method is
evaluated, its application to the longitudinal field is solved;
and finally the action of the matter on the longitudinal field,
associated with the emission of energy into the near field, is
obtained employing detailed balance arguments.

The procedure is applied and discussed for the longitu-
dinal field sustained by the SPP modes in ellipsoidal MNPs.
This allows us to calculate the absorption improvement
which is actually strongly dependent on the radiation wave-
length and the shape of the particle.

Although the results of this paper are expected to be
applicable in different areas, much interest has recently been
raised21–26 to its implementation in solar cells. In this respect,
the authors plan to consider the application of SPPs to inter-
mediate band solar cells27,28 �IBSCs� and, in particular, to
those manufactured with quantum dots.29,30 This is motivated
by the high efficiency potential of IBSCs. In the radiative
limit, these cells show a limiting efficiency of 63.2% to be
compared to 40.7% of single gap solar cells calculated in the
same conditions. Experimental quantum dot IBSCs have al-
ready allowed the verification of the principles of operation
of the IBSC concept.31,32 However, the impact of the inter-a�Electronic mail: manuel.mendes@ies-def.upm.es.
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mediate band effects on the cell performance is still mar-
ginal, mainly due to the weak absorption of light provided by
the quantum dots.33 The absorption coefficient of below-
band-gap photons in these cells is quite small, more than one
order of magnitude lower than the one of above-band-gap
photons.30 The insertion of MNPs close to the quantum dots
is a promising way to increase this absorption. This process
has already been shown to amplify quantum dot
photoluminescence,34 similar to the well-known effect of
emission enhancement from fluorescence molecules when
placed in the vicinity of metal surfaces.35

This paper is organized as follows. We first present the
background concerning how the formulas for the absorption
and emission of phonons are obtained traditionally,1,3,36 for a
weakly absorbing medium characterized by a purely real di-
electric constant. The SI system of units is used. In Sec. III,
the semiclassical model is derived for classic radiation and
compared to the purely quantum theory. Then the model is
determined for the near field and discussed for the case of an
ellipsoidal MNP illuminated by ordinary radiation which ex-
cites the SPP resonance in the particle. A discussion of the
results is included.

Other configurations of MNP could also be of interest
besides the ones presented here �e.g., couples of MNP such
as those discussed in Ref. 12�. As such, without discounting
the interest in analyzing the selected MNP structure, the
main purpose of this paper is to provide a tool for the analy-
sis of the absorption in the presence of any �including others
possibly more advanced� MNP structure.

II. BACKGROUND

A. Quantification of the free radiation

As previously referred, the development of free radiation
into photons is well known. In the Coulomb or radiation
gauge, characterized by setting � ·A=0, the electromagnetic
field can be derived entirely from a vector potential so that
B=��A and E=−�A /�t. To simplify the reasoning we con-
sider that the radiation is confined to a volume V very large
but finite, and we restrict our treatment to nonmagnetic ma-
terials ��=1�.

The vector potential can be developed in a set of or-
thogonal functions of the space coordinates �plane waves in
our work� so that

A�r,t� = �
i=1,2,k

Âi�k,t� · �i�k�exp�ik · r� ,

Âi�k,0� =� A�r,0� · �i�k�exp�− ik · r�dr/V , �1�

where �i�k� are the polarization unity vectors that have to be
normal to k ����i exp�ik ·r��= ik ·�i exp�ik ·r�=0� as well as
orthonormal �i�k�*� j�k�=�ij. Note also that the time depen-

dence is in the Fourier series coefficients Âi�k , t�, and for

A�r , t� to be real, Âi�−k , t�= Â
i
*�k , t�.

The vector potential follows the electromagnetic wave
equation so that

�
i=1,2;k

k2Âi�k,t� · �i�k�exp�ik · ��

+ �n2/c2� �
i=1,2;k

��2Âi�k,t� · �i�k�/�t2�exp�ik · r� = 0

�2�

Hence,

�2Âi�k,t�
�t2 +

k2c2

n2 Âi�k,t� = 0 with kc/n = �,

⇒ Â�k,t� = Â�k,0�exp�− i�t� .

The energy contained in the electromagnetic field is U
= �1 /2�����0E2+��0H2�dr. When the fields are harmonic
and represented by complex vectors, the time average of the
energy is given by �U	=Re��1 /2�����0E* ·E
+��0H* ·H�dr� /2. Using the electromagnetic field expan-
sion in Eq. �1�, the average energy is �for �=1 and real �
=n2, implying weak absorption�

�U	 = �
i,k

V��n�2�0

2
Â

i
*�k,0�Âi�k,0�

= �
i,k

V��n�2�0

2

Âi�k,0�Â
i
*�k,0� + Â

i
*�k,0�Âi�k,0�

2
.

�3�

In treating the complete quantum mechanical problem, it
is useful to express the average energy �U	 in terms of the
radiation Hamiltonian given by an appropriate set of creation
and annihilation operators,

�U	 ⇒ Hrad = �
i,k

��
ai�k�ai

+�k� + ai
+�k�ai�k�

2

= �
i,k

Hrad,i�k� , �4�

where the �dimensionless� creation and annihilation opera-
tors ai

+�k� and ai�k� are noncommulative, that is,
�ai�k�ai

+�k��=1. Setting this condition is the essence of the
field quantification. The arrow means a rule of correspon-
dence.

The immediate consequence of the preceding is that the
vector potential Fourier components are directly associated
to the annihilation and creation operators �through a constant
that respects the magnitude dimensions�,

Âi�k,0� = 
1

n
�
 2�

�V�0
�1/2

ai�k� ,

Â
i
*�k,0� = 
1

n
�
 2�

�V�0
�1/2

ai
+�k� , �5�

and that the use of the commutator relates the quantum
Hamiltonian to the number of particles operators: Ni�k�
=ai

+�k�ai�k�,

Hrad,i�k� = ���Ni�k� + 1
2� . �6�
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The eigenvectors of the number of particles operators
have important properties �Vol. I, p. 370 in Ref. 3�. Let ��k�i	
be an eigenvector of N of eigenvalue � and norm unity. In
this case, ai

+�k���k�i	= ��+1�1/2���+1�k�i	 and ai�k���k�i	
= ���1/2���−1�k�i	. Furthermore, ai�k��0k�i	=0. The values
of � are integer and they represent the number of particles, in
this case photons, in the mode k ,�i. If necessary we can
write �i�k� or �k,i.

B. Matter-field interaction Hamiltonian

If the coupling of the magnetic field with the spin is
neglected, the nonrelativistic Hamiltonian of one charged
particle in the presence of electromagnetic fields reflects the
invariance of the norm of the quadrivector energy impulsion
in presence of such a field. Once the rest mass energy of the
particle is subtracted �Vol II, p. 807 in Ref. 3�, the Hamil-
tonian is

Hparticle =
�p − qA�2

2m
+ q� 

p2

2m
−

q

2m
�p · A + A · p�

+ q� . �7�

For the case of a set of electrons, this becomes

Hmat = �
j

pj
2

2m
− e	 ,

Hint = �
j

 e

2m
�p j · A�r j� + A�r j� · p j� − e
�r j��

= �
j

Hint,i. �8�

In the first formula of the matter Hamiltonian the scalar po-
tential 	 is considered as made up of all the nuclei and elec-
trons �and can possibly be decomposed into terms 	 j follow-
ing the general methods of solid state physics�. In the second
expression of the interaction Hamiltonian, 
 is the scalar
potential corresponding to the longitudinal field around the
MNP where the SPP is excited. A is the vector potential from
the incoming radiation field.

C. Photon absorption and emission

The interaction of matter with free radiation is described
by the interaction Hamiltonian in Eq. �8� with 
�r j�=0. Tak-
ing into account that �see Vol. I, p. 175 in Ref. 3�
�px ,F�x , px��=−i��F /�x, and that A is transversal, p j ·A
−A ·p j =−i��A=0, so that A commutes with p j and Hint,j

=ep j ·A�r j , t� /m.
Let us assume an initial state �� ,�k�i	 and a final state

�� , ��+1�k�i	. The two states differ only in the electronic
state �� ,�� and in that there is one more photon in a photo-
nic mode �photon emission�. The Fermi golden rule �Vol. II,
p. 631 in Ref. 3� establishes that the probability of transition
per unit of time between these states, caused by a time-
independent Hamiltonian, is

w�,�k�i→�,��+1�k�i
=

2�

�
���,�k�i�Hint��,��

+ 1�k�i	�2��E�,��+1�k�i
− E�,�k�i

� , �9�

where  is the energy �of the matter-radiation system or of
the electron system, depending on subindices�. A similar ex-
pression is used for the photon absorption �� ,�k�i	→ �� , ��
−1�k�i	.

The vector potential of the interaction Hamiltonian must
be considered as the sum of its Fourier components including
operators proportional to the annihilation and creation opera-
tors that act on the space of photons, not on the electrons.
Taking into account that �Vol. I, p. 175 in Ref. 3�
�x ,F�x , px��= i��F /�px, we can write that �r j ,Hmat�= i�p j /m
and, for exp�ikr�1 �radiation wavelengths much larger
than the electronic wavefunctions�, the matrix element in Eq.
�9� can be written as

��,�k�i� e

m
�
i,k,j

p j · �i

�� Âi�k,0�exp�ikr� + Â
i
*�k,0�exp�− ikr�

2
���,��

+ 1�k�i� = 
 2

2i�n
�
 2�

�V�0
�1/2��k�i��

i,k
ai�k�

+ ai
+�k���� + 1�k�i�����

i,j
�r j,Hmat� · �i���

= 
 e

2in
�
 2�

�V�0
�1/2
E� − E�

�
���k

+ 1�1/2����
j

r j · �i��� , �10�

where we have taken care �since the sum is real� to write
only the real part of the Fourier components to ensure that
the radiation operators are Hermitian for any mode. Thus,
taking into account that for the transitions permitted by the
Dirac delta ��−�� /�=�, the photon emission rate is

w�,ik�i→�,��+1�k�i
=

�e2�

n2V�0
��k + 1�

������
j

r j · �i��,��2
��E�,��−1�k�i

− E�,�k�i
� , �11�

and for the absorption,

w�,�k�i→�,��−1�k�i
=

�e2�

n2V�0
�k�����

j

r j · �i��,��2

���E�,�k�i
− E�,��−1�k�i

� . �12�

In these formulas, the arbitrary volume V, introduced for
simplicity, appears. Since the emission does not occur in a
single photon mode but rather in a multiplicity of modes of
density per unit of energy �p. 115 in Ref. 36� n3V2 /�2�3c3,
after integration of the probability of emission on all the
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possible modes, the volume disappears �as well as the Dirac
delta�. The same can be said for the absorption, since the
matter is actually illuminated by a nonmonochromatic
bundle with a certain angular extension. Furthermore, addi-
tional integration is required by the �joint� density of elec-
tronic states per unit of volume that finally makes all these
transitions �in the limit of weak absorption� to be propor-
tional to the volume of the material system which is actually
illuminated. These details are not developed here because
they are not necessary for the purposes of this paper.

III. SEMICLASSICAL RADIATION AND EMISSION
MODELS

A. Radiation absorption and emission

In the semiclassical approach developed in this section
we consider the radiation to be described by a classical po-
tential vector, such as the one in Eq. �1�, and with a time
evolution as the one shown in Eq. �2�, harmonic for each
term that is calculated following a classical �non quantum�
pattern. In this section the method is evaluated by comparing
it with the well-established results given in Eqs. �11� and
�12� for a transversal field. Therefore, for now we only ac-
count for the interaction of matter with free radiation, that is,
the interaction-scalar potential 
 present in Eq. �8� is not
considered for the moment. Furthermore, the vector potential
is transversal so that A commutes with p j, as does each A
term. The interaction Hamiltonian is, as above, Hint,j

=ep j ·A�r j , t� /m, A now being a function of the space and
time consisting of a series of harmonic terms.

The Fermi golden rule for the case of harmonic time-
dependent operators of the type
�V exp�−i�t�+V+ exp�i�t�� /2 takes a slightly different as-
pect than that in Eq. �9�. It is �p. 559 in Ref. 37�

w�→� =
�

2�
�����V��	�2��E� − E� − ��� + ����V��	�2��E�

− E� + ���� , �13�

where only one term may be non-null. The term on the left
can be interpreted as a photon emission and the term on the
right as a photon absorption.

Let us assume an initial state �� ,k�i	 and a final state
�� ,k�i	. No mention of the number of photons is contained
in this semiclassical nomenclature, but we note that the ra-
diation corresponds to a single mode k�i. Using all of the
transformations already applied for the purely quantum case
in the previous section, we obtain for the emissions and ab-
sorptions �super indices e and a�

w�,k�i→�,k�i

�e� = w�,k�i→�,k�i

�a�

=
�e2�2

2�
�Âi�k,0��2�����

j

r j · �i����2
��E�

− E� − ��� . �14�

Note that contrary to the quantum model, the semiclassical
model absorption and emission probability are the same and
proportional to the vector potential.

Let us now relate the magnitude of the vector potential
with the number of photons in the mode. One mode filled
with �k photons has a density of �k /V photons /m3 and car-
ries a power density in the direction of the vector k of mag-
nitude �k��c /Vn. This quantity can be expressed as a func-
tion of the electric field associated to these photons by
writing the time average Poynting vector �p. 33 in Ref. 18�
�S	= �1 /2�Re�Ê�Ĥ*�, that for a plane wave is in the propa-
gation vector direction �p. 24 in Ref. 18� and takes the value

�S	= �1 /2����0 /��0�Êi�k ,0��2= �n /2�0c��Êi�k ,0��2 �the last
equality for �=1 and �=n2�. Thus,

�Êi�k,0��2 = 2�k��/Vn2�0. �15�

To calculate the value of the vector potential associated
to this photon density we take into account that for transver-
sal waves, E=−�A /�t=−i�A and obtain �S	
= �n�2 /2�0c��Âi�k ,0��2. Consequently,

�Âi�k,0��2 = 2�k�/V�n2�0. �16�

We can now write the emission probability in Eq. �14� as

w�,k�i→�,k�i

�e� =
�e2�

Vn2�0
�k�����i�

j

r j����2
��E� − E�

− h�� , �17�

which is the same as Eq. �11�, considering only the term of
stimulated emission but without the one of spontaneous
emission.

For absorptions, this model reproduces Eq. �12�,

w�,k�i→�,k�i

�a� =
�e2�

Vn2�0
�k�����i�

j

r j����2
��E� − E�

+ h�� . �18�

Therefore, the semiclassical method leads to the same results
as the full quantum method except that it neglects the spon-
taneous emission rate.

Materials are soaked in a gas of photons. The probability
of having a mode occupied is �exp� /kT�−1�−1. For photons
of 1 eV from the sun �one of the optimal band gaps in GaAs
IBSCs �Ref. 27�� at about 6000 K, this probability is 2.14%;
and for photons of 0.4 eV �another optimal band gap�, it is is
27%. In both cases the modes are rather empty and the prob-
ability of finding two photons in a mode is quite small. Thus,
�k is not much higher than one, and therefore the term ��k

+1� in Eq. �11� cannot be approximated to vk as the result of
Eq. �17�. Consequently, the semiclassical method is only ap-
plicable to absorption, and it would be erroneous to apply it
to emission.

B. Energy absorption from the SPP longitudinal near
field

1. Excitation of the SPP

To fix ideas, we consider a SPP excitation sustained by
an ellipsoidal-shaped MNP defined by orthogonal semiaxes
a, b, and c directed, respectively, in the x, y, and z axes of a
Cartesian coordinates set. To calculate the field scattered by
the ellipsoid we make use of the electrostatic approximation
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�Chap. 5 in Ref. 19� since the MNP size is taken to be much
smaller than the incoming radiation wavelength in the semi-
conductor medium where it is embedded. The MNP material
is characterized by a frequency-dependent complex dielectric
function �MNP���.

The electric field of the incoming radiation, which ex-
cites the SPP modes, is derived from a vector potential, but
within the MNP it leads to a spatially constant electric field

of modulus Êi�k ,0�, given by Eq. �15� with a harmonic time
variation. Under the electrostatic approximation, this con-
stant field can also be derived from a linearly variable scalar

potential that is given by 
�i�=−Êi�k ,0�z when the wave vec-
tor k of the incoming radiation is taken in the y direction, and
the polarization �i is in the z direction. Generally,


�i� = − Êi�k,0�r · �i. �19�

Under these conditions the scattered field is given by a
harmonic time-variable scalar potential given by �p. 144 in
Ref. 19�


�s� = 
�i��c�c��� , �20�

where �c is the polarizability of the MNP and �c��� is a
geometrical factor, function of the elliptic coordinate � de-
fined below,

�c��� =
abc

2
�

�

� dq

�c2 + q�f�q�
,

f�q� = ��a2 + q��b2 + q��c2 + q��1/2,

�c =
�� − �MNP�

� + Lc��MNP − ��
,

Lc =
abc

2
�

0

� dq

�c2 + q�f�q�
= �c�0� . �21�

The problem is expressed in elliptic coordinates �� ,� ,��.
These coordinates are defined as follows: For the case that
a�b�c,

x2

a2 + �
+

y2

b2 + �
+

z2

c2 + �
= 1, ∀ − c2 � � � � ,

x2

a2 + �
+

y2

b2 + �
+

z2

c2 + �
= 1, ∀ − b2 � � � − c2,

x2

a2 + �
+

y3

b2 + �
+

z2

c2 + �
= 1, ∀ − a2 � � � − b2, �22�

conversely,

x2 =
�a2 + ���a2 + ���a2 + ��

�b2 − a2��c2 − a2�
,

y2 =
�b2 + ���b2 + ���b2 + ��

�a2 − b2��c2 − b2�
,

z2 =
�c2 + ���c2 + ���c2 + ��

�a2 − c2��b2 − c2�
. �23�

Obviously, in elliptic coordinates,


�i� = − Êi�k,0�z = − Êi�k,0�
 �c2 + ���c2 + ���c2 + ��
�a2 − c2��b2 − c2� �1/2

.

�24�

2. Absorption of energy from the SPP scattered
field

In this case the perturbation Hint,j appearing in Eq. �8� is
Hint,j =−e
�s��r j , t�; that is, the electric near field potential
sustained by the SPP. It is a time-dependent perturbation
given by 
�s��r , t�=
�s��r ,0��exp�−i�t�+exp�i�t�� /2. For a
material system with several electrons Hint=−e� j


�s��r j , t�.
Using our semiclassical treatment described in the previous
section, we apply to this Hamiltonian, given by a longitudi-
nal time-dependent perturbation, the Fermi golden rule to
determine the radiation absorption. The resulting transition
rate is

�25�

Using the expression of Êi�k ,0� given by Eq. �15�, and
also Eq. �20� we obtain

�26�

This result differs from the absorption rate of Eq. �18� only
in the extra factor �c�c��i� in the integrand of the matrix
element, a factor that comes from the field scattered by the
MNP �Eq. �20��. This scattering factor can increase the prob-
ability of transition by several orders of magnitude in the
medium surrounding the nanoparticle.

C. Detailed balance energy emission to the SPP
longitudinal near field

We have seen that the semiclassical approach to the ra-
diation absorption probability rate is correct within the ap-
proximations used, but the same is not verified for the case
of the emission rate obtained with Eq. �17�. A detailed bal-
ance approach will now be employed to calculate the radia-
tion emission.

Let us consider the electronic state ��	 of higher energy
that decays to the electronic state ��	 of lower energy. For
thermal equilibrium, the emission rate is r�→�= f��1
− f��w�,k�i→�,k�i

�e� , where f�= �exp���−F� /kT�+1�−1 with �

and F the energy level of the state and the Fermi level,
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respectively; and similar formulas for the state �. The ab-
sorption rate can be written in the semiclassical frame as
r�→�= f��1− f��w�,k�i→�,k�i

�a� .
In thermal equilibrium the absorption rate equals that of

the emissions, thus f��1− f��w�,k�i→�,k�i

�e� = f��1− f��
�w�,k�i→�,k�i

�a� . Taking into account that vk= �exp����� /kT�
−1�−1 and that �−�=��, we obtain

w�,k�i→�,k�i

�e�

w�,k�i→�,k�i

�a� =
f��1 − f��
f��1 − f��

= exp��E� − E��/kT� =
�k + 1

�k

�27�

so that

w�,k�i→�,k�i

�e� =
�e2���k + 1�

Vn2�0
�����i�

j

r j�c�c��i���	�2

���E� − E� + ��� , �28�

which matches Eq. �11� for emission of radiation photons,
apart from the scattering factor �c�c��i� in the integrand of
the matrix element similar to the case of energy absorption
from the MNP field.

IV. DISCUSSION

Table I presents data for MNPs of several shapes. We
consider ellipsoids whose orthogonal semiaxes �a ,b ,c� are,
respectively, in the direction of the magnetic field �H�, the
propagation vector �k�, and the electric field �E�, as indicated
in the second column. The quantities of interest shown are
the geometrical depolarization factor Lc=�c�0�, which is di-
mensionless and depends on the shape of the MNP but not on
its size, and the maximum absolute values of the polarizabil-
ity �c and of the quantity ���c�����c�0��2, that corresponds
to the absorption enhancement factor caused by the MNP
scattering effect close to its surface.

The polarizability �c determines the dipole formed in
the MNP when it is illuminated by the radiation. In the metal,
the MNP dielectric function has a frequency-dependent
imaginary part. For our purpose it is well approximated by
the Drude–Zener model �p. 638 of Ref. 38; nomenclature
modified�

�MNP��� = 1 +
i�P

2 �

��1 − i���
, �29�

where �P=�nee
2 /m�0 is the plasma frequency �ne density of

electrons available for conduction� and � is the scattering
time of the conduction electrons. For silver �P=11.72
�1015 s−1 and �=2.85�10−15 s �adjusted from data on p.
621 of Ref. 18�. As for the medium dielectric constant, the
value �=11 �GaAs� is taken. The absolute value of �c is
represented in Fig. 1, as a function of the wavelength in
vacuum, for several values of Lc; as well as the maximum
absorption enhancement factor ���c�����c�0��2. The position

TABLE I. Near field parameters for several MNP shapes. The values of semiaxes a, b, and c are normalized by
the largest dimension of the ellipsoid.

Axes Along Sphere HE-dish k-cigar EK-dish Hk-dish E-cigar

a H 1 1 0.1 0.1 1 0.1
b k 1 0.1 1 1 1 0.1
c E 1 1 0.1 1 0.1 1
Lc=�c�0� 0.333 0.070 0.490 0.070 0.861 0.020
�max �nm� 772 2015 567 2015 267.7 4227.1
��a max� 30.02 42.67 34.87 42.67 107.15 77.15
���a max��c�0��2 100.14 8.82 291.84 8.82 8507.2 2.45

(a)

(b)

FIG. 1. �Color online� �a� Absolute value of the polarizability ��c���� for
different LC values as a function of the vacuum wavelength. �b� Plot of the
absorption enhancement factor ���c�����c�0��2.
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and intensity of the maximum points are indicated in Table I.
The polarizability �c is independent of r, therefore, this

factor in the matrix element can go outside the integration in
Eq. �26�. The function �c��� depends on r, therefore, in gen-
eral, cannot be set as a factor. However, if the MNP size is
taken to be much larger than the wavelength of the electron
wavefunctions in the surrounding medium, then �c��� can be
considered constant and also taken outside the matrix ele-
ment integral. This is a reasonable assumption since the larg-
est dimension of the MNP may be, in practice, some 100 nm;
whereas the electron wavefunctions in semiconductors are
typically below 1 nm. For electron wavefunctions associated
to quantum dots,39 with dimensions of several tens of nm, it
may not be accurate to take �c��� outside the matrix ele-
ment.

The function �c��� /LC is plotted in Fig. 2 versus �1/2 to
compare its actual extension �e.g., along the y axis, y= �b2

+ � �1/2� for the selected MNP shapes. The horizontal axis is
in units of the largest ellipsoid semiaxis. Figure 2 shows that
the spherical MNP is the one with the largest absorption
enhancement reach.

For a spherical MNP we can expect an absorption in-
crease of 100 in the vicinity of the particle in the range of the
near IR spectrum, and this can be useful for many applica-
tions. With elongated shapes in the direction of the incoming
radiation �k-cigar�, with a bigger ��c,max�, the gain is higher
and the resonance is displaced to the visible but the distance
at which the effects are noticeable is reduced. For a disk
normal to the propagation vector �HE-dish� the shape factor
becomes smaller and the gain is also smaller; in this case the
resonance is displaced further into the IR. All the three cases
discussed are insensitive to the light polarization.

The highest gain in the table corresponds to a disk nor-
mal to the electric vector �Hk-dish�. The gain can be very
high with the resonance displaced to the UV. However, it is
high only for the light properly polarized and it affects only
those particles close to the disk.

V. CONCLUSIONS

Using a semiclassical approach we have deduced the ex-
pressions for transference of energy from a longitudinal field,
such as the near field around a MNP sustaining a SPP, to a
nondissipative �weakly absorbing� electronic system. This is
compared to the absorption of ordinary transversal radiation.

The approach considers the near field as unaffected by
the electronic system in the surroundings, although the per-
turbation of this near field is later deduced from detailed
balance arguments. Our approach is verified by applying it to
ordinary transversal radiation and comparing the results with
the well-established photon absorption and emission rules.

It is found that in both expressions, the absorption of
transversal radiation and of the longitudinal near field are
closely related. For MNP that are much larger than the elec-
tronic systems the matrix element is just the same as for
radiation multiplied by a factor that under favorable condi-
tions, may be very large, almost 104 with incoming polarized
UV light. However, this enhancement value is highly depen-
dent on the MNP shape and radiation wavelength. For prac-
tical cases, with a spherical MNP or one elongated in the
direction of the propagation vector of the incoming radiation,
the absorption increment can be well above 10 in the visible,
and higher for the shorter wavelengths. For the absorption of
longer wavelengths the SPP near field is still effective. Col-
lective interaction with several MNP �Ref. 12� or maybe
some other MNP shapes might be even more effective.

As mentioned in the introduction, to significantly im-
prove the absorption of below-band-gap photons in quantum
dot IBSCs a enhancement factor of at least one order of
magnitude is necessary. Therefore, the near field amplifica-
tion factors obtained here reveal that the described method is
quite promissing to increase the photogenerated current in
these cells.
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