
A model for adapting 3D graphics based on scalable coding, 
real-time simplification and remote rendering 

Marius Preda • Paulo Villegas • Franciso Moran • 
Gauthier Lafruit • Robert-Paul Berretty 

Abstract Most current multiplayer 3D games can only be 
played on dedicated platforms, requiring specifically de­
signed content and communication over a predefined net­
work. To overcome these limitations, the OLGA (On-Line 
GAming) consortium has devised a framework to develop 
distributive, multiplayer 3D games. Scalability at the level 
of content, platforms and networks is exploited to achieve 
the best trade-offs between complexity and quality. 

Keywords 3D graphics compression and adaptation • 
On-line games 

1 Introduction 

Producing synthetic images is in general a highly demand­
ing process in terms of computation. It depends on the com­

plexity of the 3D scene and on the requirements for real­
istic rendering. It can however be facilitated by hardware 
equipment for accelerated 3D rendering, or by rendering 
scalability (switching off some rendering features makes it 
possible to obtain synthetic images on less powerful plat­
forms). 

Current games are delivered with instructions about the 
minimal hardware configuration necessary to play them. 
During their initialization phase, the hardware is profiled 
and binary selection of rendering features is performed. The 
model is even more constrained for games designed for a 
priori known platforms (game consoles). 

All the many existing representation formats for 3D 
graphics imply some balance between a more or less com­
pact set of parameters and a (respectively) more or less com­
plex software to interpret and render them. An object may 
be defined at low-level (e.g., a set of colored vertices and 
the connection between them) or by using predefined high-
level primitives (e.g., teapot, humanoid). In general, the first 
variant needs a larger amount of parameters, but it is the 
one used by graphic cards for rendering. Within an isolated 
environment (e.g., games on DVD), when storage is not an 
issue, low-level representation of the data is preferred also 
for file format. However, in on-line scenarios, when 3D con­
tent has to be transmitted over a network (sometimes a low-
bandwidth and high-latency one, as in the case of mobile 
devices) and to heterogeneous terminals, specific technolo­
gies such as compression, adaptation and high-level repre­
sentation must be used. Such technologies are the object of 
the current paper, which describes a framework for devel­
oping scalable 4D (animated 3D) game content adaptively 
streamed to a variety of terminals over heterogeneous net­
works. Thanks to the tools implemented into this frame-



work, developed within the OLGA research project, it is 
possible to render the same textured 4D content at wildly 
different qualities and frame rates, according to network and 
terminal profiles. 

Section 2 introduces the mathematical model governing 
the framework, with configurations for adaptation, coding 
and rendering. Section 3 discusses the approaches support­
ing the three key techniques for the media composing a 3D 
object: geometry, texture and animation. The optimal net­
work configuration needed for the complexity of the system 
is described in Sect. 4. Finally, Sect. 5 concludes our presen­
tation. 

2 Formal framework 

The process we are modeling is that of the visualization on 
a terminal of a 3D graphical model, possibly coming from 
a server across a network channel. This can be represented 
as a workflow involving a set of transformations. As input, 
the 3D model is defined as a set of features {F;} of very het­
erogeneous nature: vertex locations and connectivity, texture 
bitmaps and coordinates, key frames for animation... The 
output is {Pi}2D = {R{, G{, Bi,Ai], a set of 2D pixels, with 
color (RGB) and transparency (A), ready to be displayed 
into, e.g., a frame-buffer; or {Pt}

3D = {R{, Gt, Bi,At, A } , 
a set of 3D pixels containing a depth component computed 
at rendering time. The goal is then to produce either of the 
two sets [Pi}2D or {Pi}3D from the set {F;} in an optimized 
way, taking into account the constraints coming from the el­
ements in the system. 

2.1 Set of transformations: rendering, coding, 
simplification and modeling 

[Pi 

{F, 

= R({F!}), 

• = C({Fi}), 

{Fl
s} = S({Fl}), 

{Fi}=M({Mi}). 

(1) 

(2) 

(3) 

(4) 

The most straightforward transformation is that of render­
ing R, which projects the model onto planes suitable for dis­
play, thus directly converting {F;} into {Pi} as stated by (1). 
The computation of R depends on the intelligence of termi­
nal and on the nature of {F;}, which may contain a higher or 
a lower level representation. 

In a networked (or storage) scenario another transforma­
tion appears: the coding C, defined in (2), is the composi­
tion of encoding (compression), transmission and decoding, 
which adapts the set of features for efficient transmission. In 
general, it compacts the representation of {F;} and reduces 
the needed network bandwidth. It can also make the rep­
resentation more robust against channel errors, or provide 
scalable formats or a standardized representation. 

In many cases it is possible to simplify the set of features 
without affecting the final quality of the presented pix-map, 
because the display resolution, the viewing conditions or the 
scene allow the elimination of irrelevant information. This 
operation could be performed simultaneously with render­
ing, but it is advantageous to model it as a separate transfor­
mation, called simplification S, which provides adaptation 
to terminal and viewing constraints: see (3). 

The fourth transformation considers a previous state, that 
of the description of the model, which can be made in sev­
eral forms: human instructions, procedural primitives, for­
mal semantic representations, or some form of metadata, 
possibly standardized, e.g., MPEG-7-compliant. When the 
description is rich enough it is possible to synthesize the 
content from it , so we define the modeling transforma­
tion M as the one that turns the metadata {Mi} into a model, 
as indicated by (4). 

2.2 Processing chain and constraints 

We can now apply the defined transformations, R, C and S 
to define the processing chain that goes from the 3D model 
to the final pix-map. This chain has considerable flexibility 
in the order in which transformations are applied, as can be 
seen in the set of (5a-f). 

{Pi} = RoSoC({F}),2 

{Pi} = RoCoS({F}), 

{Pi} = C'oRoS({Fi}), 

[Pi} = CoS'oR({Fi}), 

{Pi} = S'o Co R({Fi}), 

[P,| = S'oRoC({F,)). 

(5a) 

(5b) 

(5c) 

(5d) 

(5e) 

(5f) 

Equation (5a) states a processing chain where the model is 
first encoded at the server side and transferred to the client, 
in which it is simplified and then rendered. In (5b), simplifi­
cation happens at the server side, and the model is then sent 
to the client, by which it is rendered. In (5c), the model is 
both simplified and rendered by the server, and the resulting 
pix-maps are then sent to the client for immediate display. 



Equation (5d) describes the case when the model is first 
rendered at the server side, simplified in the image/video 
domain and then encoded. In (5e), rendering is performed 
remotely, and simplification in the image/video domain is 
done by the client. And finally, (5f) is similar to (5a) in that 
simplification and rendering are done at the client side, but 
simplification is done in the image/video domain. The cod­
ing transformation for (5c-e) is named C to indicate its dif­
ferent nature, since it works in a different domain, encoding 
pix-maps instead of models (it is therefore an image/video 
codec); similarly for S' in (5d-f). 

All these configurations are in principle capable of pro­
ducing the same output, or at least outputs that are visually 
indistinguishable from each other. The decision between 
them will come from the constraints imposed by the envi­
ronment: computational power at server side, required band­
width between server and client, network latency and com­
putational power at client side. The chains represented by 
(5a-f) reflect different trade-offs between those restrictions. 
Although the relationship between them is too complex to be 
easily tractable, some heuristics can be defined. Terminals 
with very low processing capabilities will be best served by 
(5c-e), in which the client essentially limits itself to decode 
and display the pix-maps delivered by the server. Addition­
ally, if the network bandwidth is reduced, it is advisable to 
simplify the content before the transmissions (5c) and (5d). 
As the computing power of the client increases, the config­
uration may change to that of (5b), in which the rendering 
capabilities of the terminal allow sending data in the model 
domain, something that is (presumably) more bandwidth-
efficient. Still more powerful terminals could take also the 
load of simplification, thereby freeing the server from that 
task, maybe with bandwidth costs but a gain in flexibility 
(5a). In the special case in which simplification in the image 
domain is preferred (e.g., because it is hardware-accelerated 
while simplification in the model domain is not) then (5f) 
could be used. 

In a real case, those heuristics should be tested by per­
forming adequate validation of the chosen configuration, 
and through this also the determination of the right chain 
parameters (number of servers, bandwidth per client, etc.) 
could be obtained. 

3 R C S technologies for on-line games 

Creating compelling 4D objects and characters is a very 
time-consuming task. Several versions (from very simple to 
complex) of the same object have to be created to enable 
switching between them at run-time, according to playing 
conditions (e.g., viewpoint). Adaptation is here the discrete 
operation of switching between predefined versions. The 
switching conditions are obtained after a long and human-
resources consuming procedure when the game is played in 

all possible combinations. On the contrary, our global ap­
proach aims at producing flexible solutions to create scal­
able 4D content from scratch, or to recycle already existing 
4D content to have it be scalable. When appropriate, scal­
able (off-line) encoding is of the utmost importance to en­
able continuous adaptation (at run-time, under constrained 
system resources) of the 4D content parameters, handled in 
two manners: 

• Directly in the compressed domain, thanks to progressive 
bit-streams that can be stripped through packet selection 
mechanisms, in which only the visible portions of a 3D 
object geometry, texture and animation are transmitted 
and decoded at the appropriate quality. 

• In the spatial/temporal domain (3D model or image/video) 
by run-time trans-coding on servers. Instead of predefin­
ing discrete LODs (Levels Of Detail), by continuously 
monitoring the terminal and the network, a server can 
compute the LOD an object should have. Performing the 
adaptation through trans-coding may become a costly op­
eration in terms of server loading and network bandwidth, 
thus it will be used only for objects for which scalable 
representation is sub-optimal. 

In the first case, C and S are related (the simplification oper­
ation is done by discarding packets from the coded stream), 
whereas in the second they may be de-correlated. 

3.1 Geometry 

In 3D games there is a large variety of meshes: from objects 
with very few polygons used for decor to very large meshes 
modeling terrain or characters. The geometric properties of 
the objects are also highly heterogeneous: there are objects 
with corners (high frequencies) and smooth objects such as 
most organic shapes, animals, humans, etc. Treating all the 
objects with the same chain is clearly sub-optimal and some­
times even impossible. With respect to the geometric prop­
erties of the mesh, two processing paths are defined: 

1. For non-organic objects, server-side simplification with 
fine granularity and continuous LOD control is per­
formed. When content is to be sent from one player to an­
other, it is first sent to a processing server that is informed 
on the capabilities of the receiver. Then it decodes the 
mesh, automatically simplifies it through vertex removal 
and re-encodes it. 

2. For organic objects, wavelet decomposition with hi­
erarchical LOD is applied. Several 3ds Max plug-ins 
and exporters were implemented to enable an artist to 
semi-automatically simplify an arbitrary connectivity 3D 
mesh, optionally re-mesh it to have subdivision connec­
tivity, and code it in a plain or scalable manner. Our 
3D mesh simplification, the transform S in Sect. 2, is 
based on Garland's quadric error metrics technique 



and yields significant improvements over 3ds Max's na­
tive solution. We developed two implementations of the 
simplification algorithm: a plug-in for 3ds Max and a 
standalone software module integrated in the server and 
allowing run-time vertex removal, in the trans-coding 
scenario. 

For mesh coding, the transform C in Sect. 2, several tech­
niques were developed. For processing path 1, we devel­
oped 3ds Max exporters able to encode it thanks to two 
MPEG-4 tools: BIFS (Binary Format for Scene) and 3DMC 
(3D Mesh Coding). BIFS defines a binary encoded version 
of an extended set of VRML, trying to balance the com­
pression performances with the extensibility, ease of parsing 
and simple bit-stream syntax. However, BIFS does not fully 
exploit the spatial and temporal correlation of 3D objects. 
To overcome this limitation, MPEG defined specific tools 
like the ones contained in the 3DMC toolset The two 
corresponding decoders are integrated in the PC (Personal 
Computer) version of our player. As for the CP (Cell Phone) 
platform, only the BIFS decoder is implemented since it has 
less processing power requirements. A specific behavior of 
path 1, including remote rendering (i.e., the transform R) is 
considered for several cases: on the PC platform, for decor 
objects situated far from the camera; on the CP platform, 
for all decor objects not involved in the game play; and, on 
both platforms, for objects whose available triangle budget 
(computed by the scene manager) is less that the minimum 
required: see Fig. 1. The simplification operation performed 
by the server (Fig. 1, c) is replaced by a rendering operation 
with a view of the object mapped on a rectangle (Fig. 1, d). 

For processing path 2, the coding can comply with the 
WSS tool already in MPEG-4 AFX , a.k.a. WaveSurf, or 
follow the PLTW (Progressive Lower Trees of Wavelet coef­
ficients) technique Here the C and S transforms are per­
formed in a congruent manner. The two corresponding de­
coders (MPEG-4-compliant and PLTW-based) are both inte­
grated in our software framework for the PC platform. As for 
the CP one, only the PLTW-based decoder has been ported, 
since it has less memory requirements than WaveSurf. The 
main novelty of our PLTW technique is that the resulting 
bit-stream does not impose on the less powerful decoders 
the need of building detail trees as deep as required by the 
maximum LOD encoded, because it does not follow blindly 
Said's SPIHT algorithm [6]. PLTW sends the wavelet coef­
ficients on a per-LOD basis, thus achieving "local SNR scal­

ability" within "global spatial scalability": the set of coeffi­
cients is also hierarchically traversed, but they are scanned 
in LODs, which yields a spatially scalable bit-stream. The 
decoder first receives all the coefficients corresponding to a 
LOD and, only when it has finished reading them, and only 
if it still has enough resources, it proceeds with those from 
the next. 

WSSs permit to code the shape of a 3D model in a mul-
tiresolution manner with very good compression, but require 
a large CPU overhead for a fine-grained, on-the-fly control 
of the content complexity in execution of time-regulated ap­
plications such as networked, interactive terrain fly-overs 
or 3D games. In fact, the CPU overhead to control the ren­
dering time the WaveSurf tool may be as large as the render­
ing time itself. Moreover, typical implementations of WSSs 
multiply by four the number of triangles in every subdivision 
step, which enables only very discrete LOD management, 
and therefore yields abrupt and often disturbing quality 
changes while only supporting coarse-grained adaptation to 
a target execution time. We introduced some add-ons to en­
able a low-complexity, yet efficient fine-grained quality/run­
time trade-off in execution time control. To achieve this tar­
get, the WSS mesh regions are progressively decoded in a 
continuous LOD fashion, by subdividing only the important 
regions of the geometry. The importance and order for sub­
dividing the triangles are given by their impact on the error 
to the target mesh, i.e., the triangles that decrease this error 
mostly are subdivided first. With special subdivision plat­
form mapping techniques using LOD-based moving win­
dows the complexity of the subdivision control is largely 
reduced, resulting in an overhead of only a small percentage 
in the final decoding and rendering execution time for the 
two different platforms. 

3.2 Textures 

After carrying out a preliminary comparative study between 
JPEG, JPEG 2000, and MPEG-4's VTC [9] with respect to 
the considered criteria and desired functionalities, the JPEG 
2000 technology was selected, and several tools developed. 
The system supports view-dependent texture streaming, op­
timized for both PC and CP thanks to JPEG 2000 and JPIP 
(JPEG 2000 Internet Protocol), in which a bit-stream packet 
selection mechanism takes the user's viewpoint information 
into account. Additionally, a JPEG 2000 bit-stream packet 

Fig. 1 A decor object 
simplified at different resolution 
levels: (a) 80%, (b) 60%, 
(c) 20%, visually unacceptable, 
so version (d), an image mapped 
on a billboard, is used instead 



selector has been integrated in the Simplificator module run­
ning on the server, supporting resolution scaling and bit-
plane removal. The LOD selection takes into account both 
the available bandwidth between server and terminal, and 
the terminal screen resolution. 

Let us note that textures are usually the largest part (in 
terms of data size) of a 3D model. The regular structure of 
an image allows easy control of the hierarchical represen­
tation. Thus, in our framework, textures are following the 
processing path 2, the adaptation being performed directly 
in the compressed domain. 

3.3 Animation 

Virtual characters are the most complex objects in a 3D 
game and, in order to represent compactly their animation, 
either temporal or spatial redundancy must be exploited. In 
the first case, linear or higher order interpolation is used 
to compute the value of an attribute based on key values. 
In the second, vertices are clustered and a unique value or 
geometric transform is assigned to each cluster. We used 
as a basis the MPEG-4 AFX BBA (Bone-Based Anima­
tion) toolset, which follows a traditional signal compression 
scheme by including both predictive and transformational 
encoding techniques. We considered the adaptation of an­
imated content at two levels: geometry simplification con­
strained by dynamic behavior and animation frame reduc­
tion. The dynamic behavior was expressed as constraints 
used to parameterize the quadric error metrics technique 

by introducing a weighting factor to specify how the 
bones structure influences the simplification procedure. 

An optimized implementation of the BBA encoder 
obtains up to a 70:1 compression factor with respect to a tex­
tual representation. Decoding animation data on low mem­
ory devices such as CPs requires server-side adaptation. Our 
approach was to reduce the number of the animation key 
frames so that the CP must only store a small quantity of 
information and use temporal interpolation. Animation sim­
plification based on frame reduction was achieved by con­
sidering a progressive approach. 

3.4 Simplification control 

As explained in the previous sections, the key component of 
the processing path 1 is the Simplificator module executed 
on the server prior to the transmission of the content to a 
specific terminal on a specific connection. For an animated 
object the Simplificator adapts the number of vertices, the 
resolution of the texture and the animation. Together with 
the improvements introduced by the geometry, texture and 
animation coding tools with the main objective of reducing 
the data size, a global quality/bit-rate/execution time control 

can be obtained over all objects. We developed an intelli­
gent global adaptation tool consisting in finding heuris­
tics for approximately solving an NP-hard knapsack prob­
lem. To simplify the problem we searched for the nature of 
the function between the cost and the different parameters 
that are controlled by the Simplificator. With a regression 
coefficient of 93% measured over all the more than 80 ob­
jects in the game, the original MPEG-4 file size S decreases 
roughly tri-linearly with the LODs of geometry (G), texture 
(T) and animation (A): 

S = UQG + ajT + a&A + b. (6) 

Since parameters ao, aj, a& and b are model-dependent, 
we extract them in the production phase and embed them in 
the in the "meta" atom of the MP4 file, during the exporting 
phase. To control the minimum quality that is visually ac­
ceptable, we also embed in the MP4 file the following three 
parameters: minimum number of vertices, minimum texture 
resolution and minimum number of animation frames. Be­
low these thresholds, the 3D model will be remotely ren­
dered and transformed in an image which will be mapped 
on a billboard. 

Results of the adaptation algorithms for geometry, tex­
ture and animation can be visualized at www.MyMultimedia 
World.com, an on-line repository for MPEG-4 objects. 

4 System components: terminals, servers and network 

We developed the system to support a variety of terminals, 
to test and validate the scalability of game content: mobile 
terminals and PCs, from high-end gaming ones to laptops, 
and including 3D displays, for which the rendering trans­
formation R yields [Pi}3D. For the latter, lenticular sheets 
were used to turn a flat, 2D matrix display into an auto-
stereoscopic multiview display able to present the viewer 
with different images from various slightly different view­
ing angles. To efficiently address 3D displays that require 
a high number of views (typically 9 or more), configura­
tion described in (5e) is used, consisting in pre-render the 
3D mesh data to an intermediate image-plus-depth format 
{Pi}3B. The transformation R renders only one viewpoint 
and provides the depths of the pixels in the computed view 
to the display; a dedicated processor in the display can ren­
der the desired viewpoints at high quality in multiview 
3D, as suggested in Fig. 2. [Pi}3D format is used for data 
transmission and, on the terminal, the scene is generated for 
multiple viewpoints. 

On the network side, the architecture is decoupled be­
tween the game network and the content delivery network, 

http://www.MyMultimedia
http://World.com


Fig. 2 2D image (a) and depth 
buffers (b), and final image on 
3D display (c) 

LCS load LCS bandwidth usage 

Fig. 3 LCS load and bandwidth as a function of the number of clients 

coordinated through a central lobby server. The game net­
work manages a distributed network of game logic servers, 
called ZGSs (Zone Game Servers). The content delivery 
network contains a pool of content adaptation and delivery 
servers, called LCSs (Local Content Servers). 

Many of the transformation operations mentioned in 
Sect. 3 require extensive CPU power and memory. A pure 
client-server architecture for serving dynamically rendered 
content does not scale well, and that is why the peer-to-peer 
model was chosen: the network can contain many heteroge­
neous ZGSs and LCSs, potentially hosted at the most pow­
erful PCs of the players themselves (a content adaptation 
server is installed on every client PC, and may be called 
upon dynamically to start acting as an LCS, depending on 
overall system conditions). 

A deployed networked implementation of the RCS 
model in Sect. 2 enables live update, distribution and adapta­
tion of content. Any game client can create its own content 
(in standard formats) and add it to the game in real time, 
by using the ZGS network (for referencing) and the LCS 
one (for the content itself). All terminals, from high-end 3D 
graphic PCs to humble CPs, are simultaneously active in the 
same game, and interacting with each other. The LCSs ac­
tively adapt the content to the client characteristics before 
delivery, using residual capacity available in the node. This 
adaptation corresponds mostly to the simplification opera­
tion S, and is done through the set of simplification tools 
described in Sect. 3. An LCS, therefore, is an intermediate 
node, performing an operation akin to C o S o C _ 1 . To im­
prove performance, each LCSs caches the result of simpli­
fications, so that future requests can be served immediately. 
An automatic load balancing mechanism was also added: 

the number of clients served by an LCS can change along 
time as a response to LCS load (result of adaptation tasks) 
and used bandwidth (result of content delivery). The load 
produced by adaptation tasks depends on various factors: 
the content to adapt, the adaptation parameters, or the num­
ber of concurrent adaptations. The resulting serve time is in 
general the sum of the time needed for adaptation plus the 
time for delivery (except for cached adapted content). Some 
tests were made under controlled conditions; the values for 
LCS load and bandwidth usage are represented in Fig. 3, 
against the number of simultaneous adaptation works being 
served. 

The graphs in the figure show a worst-case situation, in 
which clients are continuously demanding adapted content 
(client load is 100%). In the real world, a game client re­
quests content only intermittently, as dictated by the game. 
To get some insight, we can make some simplifying assump­
tions, such as requests randomly scattered in time (mod­
eled as the Poisson distribution). Setting then a maximum 
LCS load of 30%, we would need between 5 and 10 LCSs 
to be able to guarantee a server availability of 99.9% to a 
pool of 100 clients requesting adaptation loads between 10% 
and 40%. 

5 Conclusions 

Today's multiplayer 3D games often rely on dedicated/ 
proprietary technological solutions for their servers (e.g., 
massively parallel, brute-force grid computing), and scale 
down content a priori, according to the bandwidth or ren­
dering power of the "weakest" node in the infrastructure. 
We opted instead for a completely different paradigm: ex­
ploiting the scalability at the level of content, platforms 



and networks, possibly adapting the content, network and 
processing load to the distributive resources available over 
the end-to-end delivery chain. Therefore 4D (animated 3D) 
content is not stored locally on one single server or local 
storage medium (e.g., DVD), but is rather distributed over 
a multitude of servers spread all over the network with ad­
equate load-balancing and fault-tolerance policies, and pos­
sibly hosted at the most powerful PCs of the players them­
selves ! 

We managed to integrate a chain of content conversion, 
transmission and rendering technologies into a heteroge­
neous infrastructure and terminal set, demonstrating real­
time interactive 4D content adaptation. We developed a dis­
tributive multiplayer 4D game but, more importantly, we 
developed a framework to develop distributive multiplayer 
4D games, or other multimedia applications with heavy and 
highly variable bandwidth and rendering requirements. And 
our framework hooks to a complete toolkit of standard­
ized content representation/compression formats (MPEG-4, 
JPEG 2000), enabling easy deployment over existing in­
frastructure, while not impeding well-established practices 
in the game development industry. 

References 

Martinez, J.M., Moran, R: Authoring 744: Writing descriptions to 
create content. IRRR Multimed. 10(4), 94-99 (2003) 
Garland, M., Heckbert, P.S.: Surface simplification using quadric 
error metrics. In: Proc. ACM SIGGRAPH, pp. 209-216 (August 
1997) 
Taubin, G., Rossignac, J.: Geometric compression through topo­
logical surgery. ACM Trans. Graph. 17(2), 84-115 (1998) 
ISO/IRC JTC1/SC29/WG11: a.k.a. MPRG: IS 14496-16, a.k.a. 
MPRG-4 Part 16: Animation Framework extension (AFX) (Feb­
ruary 2004) 
Aviles, M., Moran, F , Garcia, N.: Progressive lower trees of 
wavelet coefficients: efficient spatial and SNR scalable coding of 
3D models. In: Proc. PCM, Pacific-rim Conf. Multimedia, No­
vember 2005. LNCS, vol. 3767, pp. 61-72. Springer, New York 
(2005) 
Said, A., Pearlman, A.: A new, fast and efficient image codec 
based on set partitioning in hierarchical trees. IRRR TCSVT 6(3), 
243-250 (1996) 
Gioia, P., Aubault, O., Bouville, C : Real-time reconstruction of 
wavelet-encoded meshes for view-dependent transmission and 
visualization. IRRR TCSVT (Trans. Circ. Syst. Video Technol. 
14(7), 1009-1020 (2004) 
Tack, K., Lafruit, G , Catthoor, F , Lauwereins, R.: Ruminat­
ing CPU overhead for on-the-fly content adaptation with MPRG-
4 wavelet subdivision surfaces. IRRR Trans. Consum. Rlectron. 
52(2), 559-565 (2006) 
ISO/IRC JTC1/SC29/WG11: a.k.a. MPRG (Moving Picture Rx-
perts Group): IS (International Standard) 14496-2, a.k.a. MPRG-4 
Part 2: Visual (February 1999) 
Preda, M., Tran, S., Preteux, F : Adaptation of quadric metric sim­
plification to MPRG-4 animated object. In: Proc. PCM, November 
2005. LNCS, vol. 3767, pp. 49-60. Springer, New York (2005) 
Preda, M., Jovanova, B., Arsov, I., Preteux, F : Optimized MPRG-
4 animation encoder for motion capture data. In: Proc. Web3D 
Symposium, pp. 181-190 (April 2007) 

12. Berretty, R.-P.M., Peters, F.J., Volleberg, G.T.G.: Real time ren­

dering for multiview autostereoscopic displays. In: Proc. Stereo­

scopic Displays and Applications Conf. SPIR, vol. 6055, pp. 208-

219 (January 2006) 


	INVE_MEM_2008_55106b.pdf



