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Abstract

The physical properties (specific gravity, moisture content, thickness swelling and water absorption) and mechanical
properties (internal bond strength, bending strength and modulus of elasticity) were determined on 93 Spanish-manufactured
standard particleboards of different thicknesses selected randomly at the end of the production process. The testing methods
of the corresponding European standards (EN) were used, except in the case of the thickness swelling and absorption tests,
for which the Spanish UNE standard was used. The thickness and the values obtained for the physical properties were
entered into an artificial neural network in order to predict the mechanical properties of the board. The fit was compared
with the usual multivariate regression models. The use of a neural network made it possible to obtain the values of bending
strength, modulus of elasticity and internal bond strength of the boards utilizing the known data, not only of thickness,
moisture content and specific gravity, but also of thickness swelling and water absorption. The neural network proposed
is much better adapted to the observed values than any of the multivariate regression models obtained.
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Resumen

Predicción de propiedades mecánicas del tablero de partículas estándar mediante una red neuronal artificial
y comparación con un modelo de regresión multivariante

Se han determinado las propiedades físicas (densidad, humedad, hinchazón en espesor y absorción de agua) y me-
cánicas (tracción perpendicular a las caras, resistencia a flexión y módulo de elasticidad) de 93 tableros de partículas
estándar de diferentes espesores, de fabricación española, elegidos aleatoriamente a la salida del proceso de produc-
ción, utilizando los métodos de ensayo recogidos en las normas EN correspondientes, excepto en los ensayos de hin-
chazón y absorción que se ha utilizado norma UNE (española). El espesor y los valores obtenidos de las propiedades
físicas han sido introducidos en una red neuronal artificial (RNA) para predecir las propiedades mecánicas del table-
ro. El ajuste se ha comparado con los habituales modelos de regresión multivariante. La utilización de una red neu-
ronal ha permitido obtener los valores de resistencia a flexión, módulo de elasticidad y resistencia a la tracción per-
pendicular a las caras de los tableros de partículas a través de los datos conocidos, no sólo de espesor, humedad y
densidad sino también de hinchazón en espesor y absorción de agua. La red neuronal propuesta tiene una adecuación
a los valores experimentales muy superior a cualquiera de los modelos de regresión multivariante obtenidos.

Palabras clave: tableros derivados de la madera, propiedades físico-mecánicas, RNA, ajuste por regresión, mode-
lo predictivo.
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Introduction

Annual consumption of particleboard in Spain and
Portugal stands at around 3.8 million cubic meters. It
is a material primarily used in carpentry, furniture and
construction.

Studies to determine the physical and mechanical
properties of particleboard began in Spain right from
the time the industry was established in the mid 1960s
(García Esteban et al., 2002).

The physico-mechanical properties of particleboard
are an indication of quality and suitability in relation
to the proposed use of the board. In most cases the testing
methods listed in the specific standards for determining
these properties require sophisticated equipment and,
in general, long periods of time. In fact, results are nor-
mally obtained several hours or even several days after
the manufacture of the board, which means there is
some delay in detecting problems in the final product
(Cook et al., 2000).

This is why obtaining models capable of predicting
properties such as bending strength and internal bond
strength through the use of other properties which are
quicker and easier to determine, such as moisture content,
specif ic gravity, swelling and absorption, can be an
extremely useful instrument in the production control
process. The references consulted showed studies that
relate the strength properties to the specif ic gravity
and moisture content of the board, both of particle and
fibreboard, with positive results in all cases (Halligan
and Schniewind, 1974; Mc Nat, 1974; Vital et al., 1974;
Kelly, 1977; Hayashi et al., 2003; Wong et al., 2003;
Cai et al., 2004; Nemli et al., 2007). However, in addition
to specific gravity and moisture content, the present
study included thickness swelling and water absorption
to determine the prediction of internal bond strength
(IB), bending strength (MOR) and modulus of elasticity
(MOE).

In order to establish the model an artificial neural
network (ANN) was developed. Although such models
have existed for some sixty years, they were not fully
developed until recent times, with the appearance of
more powerful computers.

Artif icial neural networks can be regarded as a
complex group of interconnected non-linear functions
(transfer functions or neurons) capable of self-adjusting
using known input and output data. It could be said
that these networks are multiple regression models in
which the algorithm allowing a solution to be reached
is unknown, or where the enormous complexity of the

algorithm makes it impossible to use (Pérez and Martín,
2003).

Neural networks consist of three layers: an input layer,
a hidden layer and an output layer. The input layer
receives the initial values of the variables; the output
layer shows the results of the network for the input
values; and the hidden layer performs the operations
designed to obtain an output. The input layer must have
as many neurons as there are input variables, and the
output layer must have as many neurons as the outputs
produced by the network. However, there is no rule to
enable it to be decided beforehand how many neurons
should make up the hidden layer or whether the hidden
layer needs to be made up of more than one sublayer
(Isasi and Galván, 2004), which means that the only
way to ascertain this is by means of a process of trial
and error. Neural networks are usually represented as
[n1 n2,1 n2,2… n2,m n3], where n1 is the number of neurons
in the input layer, n2,i the number in the hidden layers
and n3 the number in the output layer (Fig. 1).

These networks are based on biological neural net-
works. They are capable of learning by using a series
of examples, without the need to know beforehand the
relations which may exist between the variables involved
in the process, by adjusting the weight of the relations
between the variables in order to then predict a coherent
result when new data unknown to the network is entered.

This method has been widely used in the field of wood,
in the prediction of thermal conductivity of wood through
its chemical composition (Avramidis and Iliadis, 2005a),
in obtaining hygroscopic equilibrium points (Avramidis
and Iliadis, 2005b), in the classification of wood species
using ultrasound (Jordan et al., 1998), in the classifi-
cation of wood defects (Drake and Packianather, 1998;
Ramírez and Chacón, 2005), in the structural classi-
fication of wood using non destructive methods (Mier
et al., 2005), in obtaining the values of internal bond
of particleboard by using the manufacturing parameters
(Cook et al., 1991; Cook and Whittaker, 1992; Cook
and Whittaker; 1993; Cook and Chiu, 1997) and for
anatomical distinction between species of the same
genus by using their biometry (García Fernández et
al., 2007).

The aim of this study was to develop an artif icial
neural network in order to obtain three mechanical
properties - internal bond strength, MOR and MOE -
of particleboard of different thicknesses manufactured
in Spain, utilizing thickness and four physical pro-
perties - specific gravity, moisture content, thickness
swelling and water absorption. In addition, this predictive
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neural model was compared with the usual multivariate
regression models.

Material and Methods

The study used 93 Spanish-manufactured standard
particleboards classif ied as P2 by the UNE-EN 312
(AENOR, 2004) standard, of different thicknesses and
with measurements of 2,440 × 1,220 mm. The boards
were made up of pine wood (Pinus pinaster Aiton,
Pinus radiata D. Don), eucalyptus wood at less than
10% (Eucaliptus globulus Labill), and urea-formalde-
hyde adhesive. The following physical and mechanical
properties of the boards were determined: thickness
swelling and water absorption (UNE 56713) (AENOR,
1971), moisture content (UNE-EN 322) (AENOR,
1994c), specif ic gravity (UNE-EN 323) (AENOR,
1994d), internal bond strength of the board (UNE-EN
319) (AENOR, 1994b), and MOR and MOE (UNE-EN
310) (AENOR, 1994a). In the case of ascertaining the
swelling and absorption of the board, the Spanish rather
than the European standard was used, as the Spanish
standard requires a shorter testing time of two hours
as opposed to the 24 hours specified in the European
standard.

For the preparation of the test pieces, their measu-
rements and the expression of the test results, the UNE-
EN 325 (AENOR, 1994e) and UNE-EN 326-1 (AENOR,
1995) standards were used. The test pieces were condi-
tioned in a conditioning chamber at 20 ± 2°C and 65 ± 5%

relative humidity until constant weight was reached,
in accordance with the testing standard used.

The laboratory has been accredited since 2000 for
the associated tests by the Entidad Nacional de Acre-
ditación (ENAC) —Spanish National Accreditation
Body— in accordance with the UNE-EN ISO/IEC
17025:2005 standard «General requirements for the
competence of testing and calibration laboratories».

The following equipment was used to determine 
the physical properties: a COBOS C-600-SX scale 
with a range of 0-600 g and a 0.01 g scale division; a
MITUTOYO Digimatic digital calliper with a range 
of 0-300 mm and a 0.01 mm scale division; and
MITUTOYO IDF 1,050 dial gauges with a range of 
0-50 mm and 0.01 mm scale division. For the mechanical
tests a MICROTEST universal testing machine was
used, with a load cell of 5,000 N, class 0.5%.

A multivariate regression model was obtained using
thickness, specific gravity, moisture content, thickness
swelling and water absorption as independent variables,
while the internal bond strength, MOR and MOE were
established as dependent variables in order to show
that the independent variables have an influence on the
proposed model and to obtain regression coefficients
with which to subsequently compare the neural network
obtained.

The equations based on the models proposed by
Halligan and Schniewind (1974) [Eq. 1-6] were used
for the regression model:

[1]IB = a
1

⋅T + a
2

⋅ MC + a
3

⋅ SG + a
4

⋅TS + a
5

⋅WA + c
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Figure 1. General artificial neural network architecture [2 4 2 1].
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[2]

[3]

[4]

[5]

[6]

IB = internal bond strength
T = thickness
MC = moisture content
SG = specific gravity
TS = thickness swelling
WA = water absorption.

The characterization of the network is based on the
definition of the type of network and the transfer func-
tions. For the network a feedforward multilayer percepton
was used, trained by means of the backpropagation
algorithm, one of the most commonly used algorithms
in the references consulted (Krauss et al., 1997; Drake
and Packianather, 1998; Myhara and Sablani, 2001;
Panchariya et al., 2002; Nordmark, 2002; Avramidis
and Iliadis, 2005a; Hernández-Pérez et al., 2004;
Diamantopoulou, 2005; Singh et al., 2007; Peng et al.,
2007).

The transfer function used was a variant of the hyper-
bolic tangent (Myhara and Sablani, 2001; Hernández-
Pérez et al., 2004; Diamantopoulou, 2005), more
specifically the hyperbolic tangent sigmoid transfer
function (tansig) (Krauss et al., 1997; Demuth et al.,
2002) [Eq. 7], which achieves the output much faster
and is mathematically equivalent, improving the func-
tioning of the network (Demuth et al., 2002).

[7]

f(x) = output value of the neuron
x = input value of the neuron

As the output values of the transfer function are in
the range of (–1, 1) the input and output data were nor-
malized before the network was trained, by means of
the equation [8] (Krauss et al., 1997; Demuth et al.,
2002; Peng et al., 2007).

[8]

X’ = value after normalization of vector X
Xmin and Xmax = maximum and minimum values of

vector X

The network training method was carried out by
means of supervised learning (Hagan et al., 1996;
Haykin, 1999; Pérez and Martín, 2003; Isasi and Galván,
2004), for which purpose the results were divided into
two groups selected at random and without repetition:
the training group (80 boards, 88% of the total) and
the testing group (13 boards, 12% of the total), in very
similar percentages to those used by Cook and Chiu
(1997). For the training the resilient backpropagation
algorithm was used (Demuth et al., 2002; Singh et al.,
2007), which improves the results of the learning in
the case of sigmoid transfer functions (Demuth et al.,
2002). A very common problem in network training is
overfitting, which is most obvious in the increase of
the error in the testing group coupled with a progressive
decrease in the error of the training group (Haykin,
1999; Isasi and Galván, 2004). To avoid this, an early-
stopping method was used, as described in Demuth et
al. (2002). For this purpose, every 5,000 epochs the
regression coefficients between the value obtained and
the expected value in the testing group were obtained
(De Veaux and Ungar, 1996). The training ceases as soon
as an increase in the error of the testing group is detected.

The mean square error value (MSE) (Panchariya et
al., 2002; Kalogirou et al., 2003) and the correlation
coefficients R between the real and the expected value
were used to assess the results of the learning process.
The correlation coefficient R and the prediction error
[Eq. 9] were used to assess the testing process, taking
into account that for particleboard manufacturing
processes the prediction of strength values with an
error of 15% is regarded as acceptable, while an error
of 20-30% is not (Cook and Chiu, 1997; Malinov et
al., 2001).

[9]

error % = prediction error
Vpred = predicted value by network
Vobs = observed value in testing

For accepting the correlation factor R, the UNE-EN
326-2 (AENOR, 2001) standard was taken into consi-

error% = 100 ⋅
V

pred
− V

obs( )
V

obs

′X =
X − X

min

X
max

− X
min

f x( ) = 2

1 + e −2 x( ) − 1

MOE = a
1

⋅T + a
2

⋅ MC + a
3

⋅ SG + a
4

⋅TS + a
5

⋅WA +
+a

6
⋅T 2 + a

7
⋅ MC2 + a

8
⋅ SG2 + a

9
⋅TS 2 + a

10
⋅WA2 + c

MOR = a
1

⋅T + a
2

⋅ MC + a
3

⋅ SG + a
4

⋅TS + a
5

⋅WA +
+a

6
⋅T 2 + a

7
⋅ MC2 + a

8
⋅ SG2 + a

9
⋅TS 2 + a

10
⋅WA2 + c

IB = a
1

⋅T + a
2

⋅ MC + a
3

⋅ SG + a
4

⋅TS + a
5

⋅WA +
+a

6
⋅T 2 + a

7
⋅ MC2 + a

8
⋅ SG2 + a

9
⋅TS 2 + a

10
⋅WA2 + c

MOE = a
1

⋅T + a
2

⋅ MC + a
3

⋅ SG + a
4

⋅TS + a
5

⋅WA + c

MOR = a
1

⋅T + a
2

⋅ MC + a
3

⋅ SG + a
4

⋅TS + a
5

⋅WA + c
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Table 1. Multivariate regression models

Equation
Parameters

R2 R F p-value MSE
(95% confidence interval)

[10] a1 = 2.03 · 10-3 (–4.88 · 10-3, 8.03 · 10-4)
a2 = 3.55 · 10-2 (1.30 · 10-2, 5.80 · 10-2)
a3 = 1.36 · 10-3 (7.47 · 10-4, 1.97 · 10-3)
a4 = –1.36 · 10-3 (–2.66 · 10-2, 7.98 · 10-4)
a5 = –1.38 · 10-3 (–4.75 · 10-3,1.99 · 10-3)
c = –0.54 (–1.13, 0.04) 0.48 0.70 16.17 3.02 · 10-11 5.05 · 10-3

[11] a1 = 0.01 (–0.14, 0.15)
a2 = 0.79 (–0.36, 1.95)
a3 = 0.05 (0.02, 0.08)
a4 = 0.90 (0.24, 1.56)
a5 = –0.02 (–0.19, 0.15)
c = –31.94 (–61.76, –2.12) 0.26 0.51 6.13 6.51·10-5 13.34

[12] a1 = 9.64 (–3.39, 22.67)
a2 = –10.44 (–113.37, 92.49)
a3 = 8.72 (5.91, 11.52)
a4 = 21.82 (–37.25, 80.88)
a5 = –0.39 (–15.81, 15.03)
c = –3,208.5 (–5,866.3, –550.6) 0.42 0.64 12.83 2.40 · 10-9 105,986.81

[13] a1 = –0.01 (–0.03, 0.01)
a2 = –0.10 (–0.31, 0.11)
a3 = 6.12 · 10-4 (–1.34 · 10-2, 1.46 · 10-2)
a4 = –0.01 (–0.08, 0.05)
a5 = –0.01 (–0.02, 0.01)
a6 = 2.01 · 10-4 (–1.52 · 10-4, 5.53 · 10-4)
a7 = 6.08 · 10-3 (––3.56 · 10-3, 1.57 · 10-2)
a8 = 3.52 · 10-7 (–1.02 · 10-5, 1.10 · 10-5)
a9 = –3.86 · 10-5 (–5.85 · 10-3, 5.78 · 10-3)
a10 = 1.29 · 10-4 (–1.72 · 10-4, 4.31 · 10-4)
c = 0.72 (–3.92, 5.36) 0.51 0.71 8.48 2.46 · 10-9 4.79 · 10-3

[14] a1 = 0.50 (–0.31, 1.31)
a2 = 8.95 (–0.84, 18.75)
a3 = –0.55 (–1.20, 0.11)
a4 = = –5.63 (–8.79, –2.47)
a5 = 0.82 (0.10, 1.54)
a6 = –0.01 (–0.03, 0.04)
a7 = –0.43 (–0.88, 0.02)
a8 = 4.59 · 10-4 (–3.48 · 10-5, 9.53 · 10-4)
a9 = 0.58 (0.31, 0.86)
a10 = –0.01 (–2.73 · 10-2, 7.88 · 10-4)
c = 124.45 (–91.70, 340.60) 0.42      0.65 6.03 8.37 · 10-7 10.40

[15] a1 = 125.90 (50.93, 200.87)
a2 = –67.67 (–974.65, 839.32)
a3 = –57.48 (–118.02, 3.07)
a4 = –300.51 (–593.18, –7.83)
a5 = 49.22 (–17.77, 116.20)
a6 = –2.51 (–4.03, –0.99)
a7 = 5.07 · 10-2 (5.05 · 10-3, 9.64 · 10-2)
a8 = 1.18 (–40.43, 42.79)
a9 = 30.01 (4.92, 55.11)
a10 = –0.93 (–2.23, 0.37)
c = 17,713.95 (–2,294.86, 37,722.76) 0.52 0.72 8.74 1.38 · 10-4 89,105.48



deration. This standard specifies a value of the corre-
lation coeff icient of 0.70 for accepting the relation
between the test values obtained by a standardized test
and those obtained by an alternative method.

For the calculations of the multivariate regression
model Statistics Toolbox® ver. 4 was used, and for the
creation of the artificial neural network the Neural Net-
work Toolbox® ver. 4.0.2 was used. Both of these are
part of the MATLAB® ver. 6.5.0. Release 13 programme.

Results and Discussion

In regression model building, there is little to be
gained by separating data into parts for f itting and
testing (Diamantopoulou 2005, Hirsch 1991). Therefore,
for the fit of the regression model all the available data
were used (Table 1).

The best determination coefficient, R2, obtained is
0.52 for equation [15], which indicates that the models
proposed are capable of explaining at best 52% of the
values observed. These values are lower than those ob-
tained by other authors (Halligan and Schniewind,
1974; Cai et al., 2004). This may be due to the fact that
the equations obtained by these authors were calculated
using boards purposely manufactured for the studies
under very controlled conditions, while the samples of
the present study were taken from boards chosen at
random from the production chain (Kelly, 1977).

However, the values obtained for the p-value indicate
that it is highly unlikely that all the regression coeffi-
cients are zero (MathWorks Inc, 2002). It can therefore
be stated that thickness, moisture content, specific gra-
vity, thickness swelling and water absorption all have
an influence on the result of the properties of internal
bond strength, MOR and MOE. These results agree
with those obtained by other authors (Halligan and
Schniewind, 1974; Hayashi et al., 2003; Nemli et al., 2007).

In the neural network the values of moisture content,
specific gravity, absorption and swelling and nominal
thickness were used as input variables. Internal bond
strength, MOR and MOE were used as output values.

To obtain the mechanical properties through the
physical properties three independent networks were
designed, which is regarded as more efficient than a
global network for the three mechanical properties
(Sha and Edwards, 2007) (Fig. 2).

Although the amount of data available for the training
was lower than necessary (222) (Sha, 2007) and the
neural network proposed would not be completely
mathematically def ined, the purpose of the present
study was not to determine all the parameters of the
network, but rather to establish a group of parameters
which would ensure a correct generalization by the
network (Tompos et al., 2007) and would satisfy the
criterion specif ied in the UNE-EN 326-2 (AENOR,
2001) standard.

The results of the training process are shown in Ta-
ble 2.

The R results are very similar to those in the refe-
rences consulted, which range from 0.90 to 0.99 in the
training process (Myhara et al., 1998; Hernández-Pérez
et al., 2004; Peng et al., 2007; Diamantopoulou, 2005;
Avramidis and Iliadis, 2005a).

The graphs in Figure 3 show the correlations of the
observed values versus the neural network predicted
values in the training process.

For the testing, 13 randomly selected boards which
had not previously been entered into the network were
used (Table 3).
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Figure 2. Architecture of the network used.

Internal Bond 
(IB)

Bending Strength 
(MOR)

Modulus of
elasticity (MOE)

Thickness (T)

Moisture
content (MC)

Thickness 
swelling (TS)

Specific 
gravitiy (SG)

Water 
absorption (WA)

ANN Internal Bond
tansig

[5 8 8 11 1]

ANN Modulus of Elasticity
tansig

[5 8 12 9 1]

ANN Bending Strength
tansig

[5 9 6 8 1]

Table 2. Results of the training process

Subnetwork Property
Network

R
Linear regression

MSE
structure model

1 IB [ 5 8 8 11 1] 0.997 y = 0.99 · x + 0.01 6.86 · 10-4

2 MOR [5 9 6 8 1] 0.989 y = 0.98 · x + 0.34 2.1 · 10-3

3 MOE [5 8 12 9 1] 1.0 y = x + 8.15 1.34 · 10-5



Figure 4 shows the correlations of the observed values
versus the neural network predicted values in the testing
process.

The values of the correlation coefficient, R, concur
with the data obtained by Cook et al. (2000) for the
values of internal bond strength and bending using the
parameters of the manufacturing process, and are higher
than the specifications of the UNE-EN 326-2 (AENOR,
2001) standard for acceptance of results obtained by a

method other than the standardized method (R ≥ 0.70).
The fit is satisfactory, as the average prediction error

of the values obtained for the properties of internal
bond strength, MOR and MOE are much lower than
15% (Table 3), which means that the neural network
can be regarded as appropriate for obtaining information
on mechanical properties (Cook and Chiu, 1997). The
values of the regression coeff icient are higher than
those obtained in any of the multivariate models.
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Figure 3. Correlation of observed values vs. neural network predicted values in the training process: internal bond strength (A)
MOR (B) MOE (C).

A B C

Table 3. Results of the testing process

Subnetwork Property R Linear regression model Average error (%)

1 IB 0.872 y = 1.54 x – 0.292 14.65
2 MOR 0.867 y = 2.14 x – 15 13.79
3 MOE 0.872 y = 1.71 x – 1.54 · 10-3 12.20

Data

Internal bond strength MOR MOE

No.
Observed Predicted

Error
Observed Predicted

Error
Observed Predicted

Error
(%) (%) (%)

1 0.72 0.87 –17.65 12.7 17.8 –28.49 2,177 2,056.6 5.85
2 0.61 0.43 40.40 13.9 16.4 –15.15 2,513 3,039 –17.31
3 0.36 0.34 5.78 21.8 37.64 –42.07 2,865 2,919.6 –1.87
4 0.58 0.68 –14.96 12.9 13.4 –3.59 2,618 3,172.2 –17.47
5 0.72 0.86 –16.65 16.6 19.04 –12.79 3,158 3,280 –3.72
6 0.64 0.68 –6.96 16.4 17.44 –5.97 2,867 3,436.2 –16.56
7 0.47 0.35 32.56 15.1 14.84 1.77 2,878 3,164.3 –9.05
8 0.52 0.51 2.84 10.8 11.3 –4.03 2,081 2,050.2 1.5
9 0.54 0.60 –10.39 14.3 16.0 –10.49 2,947 4,158.1 –29.13

10 0.52 0.42 23.44 12.8 9.6 33.52 2,434 2,429.5 0.18
11 0.52 0.57 –8.06 16.8 18.06 –6.76 2,736 3,100.1 –11.74
12 0.59 0.62 –4.99 15.2 16.4 –7.10 3,008 3,772.7 –20.27
13 0.54 0.51 5.79 16.2 15.1 7.50 3,164 4,157.5 –23.90

Mean 14.65 Mean 13.79 Mean 12.20



Conclusions

— The use of an artif icial neural network allows
the values of internal bond strength, MOR and MOE
of particleboards to be obtained through the known
data not only of thickness, moisture content and specific
gravity, but also of thickness swelling and water ab-
sorption. The R values and the prediction error values
concur with those previously obtained by other authors.

— The R value is higher than that required by the
UNE-EN 326-2 (AENOR, 2001) standard for accepting
the results obtained by methods other than the stan-
dardized method.

— The network calculated is much better adapted
to the observed values than any of the multivariate
regression models obtained.
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