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Abstract The paper aims to introduce new fluid-structure 
interaction (FSI) tests to compare experimental results with 
numerical ones. The examples have been chosen for a parti
cular case for which experimental results are not much repor
ted. This is the case of FSI including free surface flows. The 
possibilities of the Particle Finite Element Method (PFEM) 

for the simulation of free surface flows is also tested. The 
simulations are run using the same scale as the experiment in 
order to minimize errors due to scale effects. Different scena
rios are simulated by changing the boundary conditions for 
reproducing flows with the desired characteristics. Details 
of the input data for all the examples studied are given. The 
aim is to identifying benchmark problems for FSI including 
free surface flows for future comparisons between different 
numerical approaches. 

Keywords Fluid-Structure Interaction (FSI) • 
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1 Introduction 

The availability of sufficient computer power, together with 
the maturity of the tools for CFD analysis, open the way to 
the simulation of flow problems of increasing complexity. 
Between the many potential applications, the simulation of 
Fluid-Structure Interactions (FSI) problems including free-
surface flows represents a particularly interesting case. The 
challenge is in this case connected both to the inherent diffi
culty to solve FSI problems with the simulation of a highly 
unsteady flow with a rapid variation of the fluid domain. 

There exist in the literature many comparisons between 
experiments and numerical solutions for FSI problem without 
free surfaces; there also exist some publications concerning 
the comparison between experimental and numerical 
solutions for fluid mechanics problems with free surface 
flows. Nevertheless, one of the most important cases in which 
the fluid flow including the free surface motion interact with 
elastic structures has not been well documented, and it is very 
difficult to find experimental results to compare and to check 
the accuracy of the different methods developed. 

The objective of this work is to present a set of three 
examples for FSI problems including free surface flows sol
ved experimentally and numerically in order to have different 
benchmarks for comparison with different numerical models. 

From the numerical point of view, different methods have 
been devised over the last years to deal with this challenge. 
One of the methods developed in recent years to address the 
computational challenges involved in this class of problems 
is the Mixed Interface- Tracking/ Interface- Capturing Tech
nique (MITICT) The MITICT was introduced for FSI 
with multiple fluids or free-surface flows. It was successfully 
used in a number of test problems In this work, only a 
comparison with the Particle Finite Element Method (PFEM) 
will be performed. A complete description of PFEM may be 



found in Only a light overview of this numerical method 
will be described in the next section for comprehensive. 

A comprehensive comparison of the PFEM method with 
experimental results including mesh refinement and conver
gence test may be found in In this reference only fluid 
flow problems are compared without any elastic structure 
interaction. The extension to deal with the elastic deforma
tion of a structure in a fluid is the objective of this work. 

2 Numerical simulation 

Different methods have been devised over the years to deal 
with transient free surface problems. A first category of algo
rithms is based on the idea of tracking the evolution of a free 
surface defined with the help of a smooth distance function 
(Level Set) or of a scalar value representing the quantity 
of fluid in a given area. This is the basis of the Volume of Fluid 
(VOF) technique. This scalar function is convected accor
ding to the flow velocity field once a suitable discretization 
of the space is provided. This allows using existing Eulerian 
codes and justifies the success of the VOF method in the CFD 
community. This formulation permits to deal with separation 
(or reattachment) of parts of the fluid domain; nevertheless 
some concerns remain particularly on the imposition of the 
Dirichlet boundary conditions on the free surface. Even if 
all the advantages of Eulerian methods on fixed meshes can 
be retained, the VOF approach tends to introduce some dif
fusion in the position of sharn interfaces (see for examples 
Zalesak's circle benchmark While a number enhanced 
solution techniques have been deve

loped in recent years to increase the accuracy of the VOF-type 
methods, there is still need for development in this area. 

An alternative formulation, known as Smooth Particle 
Hydrodynamics (SPH), allows a Lagrangian simulation of 
a number of particles through the use of a simple meshless 
technology This technique, which is raising an increa
sing interest in the scientific community due to its simpli
city and computational efficiency, faces however some severe 
drawbacks. First it has troubles in representing constant func
tions (it is not a partition of unity) which implies problems in 
proving the convergence. Secondly its application is appea
ling as long as an explicit formulation for the fluid can be 
used, which makes it unattractive for truly incompressible 
flows 

The possibility exists to blend the advantages of "Par
ticle" methods with finite element (FE) methods. The PFEM 
achieves this result by convecting in a Lagrangian way the 
fluid "particles" while redefining at the beginning of each 
step a new mesh. This allows to reproduce very accurately 
the convection of the nodes and to impose the Dirichlet condi
tions in a natural way. Further, all the convergence results can 

be inherited from the FEM which guarantees the reliability 
of the computational predictions 

The PFEM treats the mesh nodes in the fluid domain as 
particles which can freely move and even separate from the 
main fluid domain representing, for instance, the effect of 
water drops. A finite element mesh connects the nodes defi
ning the discretized domain where the governing equations 
are solved in the standard FEM fashion. The PFEM is the 
natural evolution of recent work of the authors for the solution 
of FSI problems using Lagrangian finite element and mesh
less methods 

An obvious advantage of the Lagrangian formulation is 
that the convective terms disappear from the fluid equations. 
The difficulty is however transferred to the problem of ade
quately (and efficiently) moving the mesh nodes. We use 
innovative mesh regeneration procedure blending elements 
of different shapes using an extended Delaunay tesselation 

The need to properly treat the incompressibility condition 
in the fluid still remains in the Lagrangian formulation. The 
use of standard finite element interpolations may lead to a 
volumetric locking defect unless some precautions are taken 

In our work the stabilization via a finite calculus 
(FIC) procedure has been chosen Applications of the 
FIC method for incompressible flow analysis using linear 
triangles and tetrahedral meshes are reported in 

3 Overview of the particle finite element methods 
(PFEM) 

Let us consider a domain containing both fluid and solid sub 
domains. The moving particles interact with the solid boun
daries thereby inducing the deformation of the solid which in 
turn affects the flow motion making the problem fully cou
pled. In the PFEM, both the fluid and the solid domains are 
modeled using an updated Lagrangian formulation. That is, 
all variables in the fluid and solid domains are assumed to 
be known in the current configuration at time t. The new 
set of variables in both domains is sought for in the next 
or updated configuration at time t + At. The finite element 
method (FEM) is used to solve the continuum equations in 
both domains. 

Hence a mesh discretizing these domains must be gene
rated in order to solve the governing equations for both the 
fluid and solid problems in the standard FEM fashion. 

We note that the nodes discretizing the fluid and solid 
domains are viewed as material particles whose motion is 
tracked during the transient solution. This is useful to model 
the separation of fluid particles from the main fluid domain 
and to follow their subsequent motion as individual particles 
with a known density, an initial acceleration and velocity 
and subject to gravity forces. It is important to note that each 



Fig. 1 Sequence of steps to 
update a "cloud" of nodes from 
time n(t = t„) to time 
n + l(t = tn+At) 
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Fig. 2 Tank testing device: 
front view and draft 

particle is a material point characterized by the density of 
the solid or fluid domain to which it belongs. The mass of 
a given domain is obtained by integrating the density at the 
different material points over the domain. The quality of the 
numerical solution depends on the discretization chosen as 
in the standard FEM. 

Adaptive mesh refinement techniques can be used to 
improve the solution in zones where large motions of the fluid 
or the structure occur. For clarity purposes we will define the 
collection or cloud of nodes (C) pertaining to the fluid and 
solid domains, the volume (V) defining the analysis domain 
for the fluid and the solid and the mesh (M) discretizes both 
domains. 

1. The starting point at each time step is the cloud of points 
in the fluid and solid domains. For instance C denotes 
the cloud at time t = tn (Fig. 1). 

2. Identify the boundaries for both the fluid and solid 
domains defining the analysis domain V in the fluid and 
the solid. This is an essential step as some boundaries 
(such as the free surface in fluids) may be severely dis
torted during the solution process including separation 
and re-entering of nodes. The Alpha Shape method [20] 
is used for the boundary definition. 

3. 

4. 

5. 

6. 

Discretize the fluid and solid domains with a finite 
element mesh M. In our work we use an innovative 
mesh generation scheme based on the extended Delaunay 
tessellation [15]. 
Solve the coupled Lagrangian equations of motion for the 
fluid and the solid domains. Compute the relevant state 
variables in both domains at the next (updated) configu
ration for t +At: velocities, pressure and viscous stresses 
in the fluid and displacements, stresses and strains in the 
solid. 
Move the mesh nodes to a new position Cn+l where n+1 
denotes the time tn + At, in terms of the time increment 
size. This step is typically a consequence of the solution 
process of step 4 
Go back to step 1 and repeat the solution process for the 
next time step. 

4 Experimental model 

The experimental data used for the comparison are taken 
from the laboratory tests carried out specifically for this study 
using the tank testing facilities at ETSIN-UPM. The expe
rimental equipment is schematically represented in Fig. 2. 



Fig. 3 Mould for the probes, syntethizing process, traction test and anchorage 

It is composed of a structure that holds a tank and an elec
trical engine that produces a harmonic rolling motion on the 
moving part of the structure, which embraces the tank with 
the liquid inside. The system incorporates a high precision 
torquemeter with a 200 N m range because it is routinely used 
for the design of the passive anti-roll tanks for fishing vessels. 
It has been used previously aimed at providing validation data 
for CFD studies, both in terms of free surface shape as well 
as in terms of the effect of the liquid with respect to the tank 
motion, by measuring the torque produced by the motion of 
the liquid [21]. 

The tank, that is made of methacrylate, is prismatic, with 
a length of 609.0 mm, a height of 344.5 mm and a width 
of 39.0 mm. The container can move in an oscillatory way 
around a fixed point in order to produce the waves. In this 
study the fixed point is the center of the bottom of the tank. 
The magnitude of maximum angle as well as the angular 
speed can be regulated, aimed at matching the critical slo
shing frequencies for different liquid levels. The container is 
closed in the upper wall, but two holes were made on the top 
in order to allow the air to circulate freely without affecting 
the liquid behavior. 

On the bottom wall or in the upper one, an elastic beam 
may be clamped to interact with the incompressible fluid. 
The beams used have a thickness of 4 mm and width of 
33.2 mm which is enough to simulate a 2D flow without tou
ching the lateral walls. The minimum admissible gap was 
found to be 2.9 mm for the longest configuration of the probes 
(287.1 mm). It would be desirable to have a smaller gap with 

the tank walls but due to the flexibility of the material, the 
rubber beam is prone to slightly bend on the front direction 
driven by capillarity and surface tension effects, thus tou
ching the tank walls and invalidating the experiment. On top 
of this, it was discovered that smaller gaps made it extremely 
difficult the positioning at the anchorage. 

The material for the probes clamped to the bottom is a 
dielectric polyurethane resin, whose trademark is AXSON 
RE 11820-(9). It was specifically syntethized for these tests 
by mixing the components and carefully filling a mould mil
led with the probe dimensions (Fig. 3). The density of the 
probes was established as 1.1 g/cm3. The Young modulus 
(initial slope), measured with a traction test is approximately 
0.006 GPa. A spare probe was manufactured to be used for 
the traction destructive tests (Fig. 3). An important aspect 
to be taken into account is that the mechanical properties 
of this material are not affected by its immersion in the 
liquids during the sloshing tests. For the probes clamped to 
the top, a commercial neoprene rubber was used. Its density 
is 1.9 g/cm3 and its Young modulus is 0.004 GPa. 

An anchorage piece was designed and milled to clamp the 
probe to the tank roof or bottom guaranteeing both a very 
good bending restriction at the base, as well as an accurate 
leveling of the piece at the bottom/top of the tank (see Fig. 3). 
In this way, the flow is not significantly affected on the vici
nity of the probe by the anchorage. A hole was prepared in 
the tank to receive the anchorage piece. 

Regarding the liquids, fresh water and a commercial sun
flower oil were used. The temperature of the tests was 23°C. 

Fig. 4 Clamped elastic beam in 
shallow oil: initial geometry and 
angle of the container versus 
time 
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Fig. 5 Clamped elastic beam in shallow oil: experimental versus 
numerical comparison for t = 0.92, 1.20, 1.40, 1.68 [s] 

Fig. 6 Clamped elastic beam in shallow oil: comparison of the displa
cement in X direction 

A computer program was implemented aimed at measu
ring the total displacement of the elastic beam at different 
heights. The program facilitates the analysis of the indivi
dual frames obtained from a conventional video register of 
the experiment. For the short beam cases, only the displace
ment of the end-point of the cantilever was measured. For 
the cases with a long beam, where several bending modes 
appear, displacements have been measured at several points 
marked on the beam front. 

The sunflower oil density was 0.917. The kinematic visco
sity of the sunflower oil was measured using a Canon-Fenske 
viscosimeter running a series of tests at 23, 40 and 50°C and 
by extrapolating the tabulated constants for the viscosimeter 
that corresponded to the latter temperatures. At 23°C its value 
is 50 est (5e-5m2/s). This means that the Reynolds number 
corresponding to the gap will be in principle 50 times smal
ler for the sunflower oil. The liquid levels considered were 
the same as the probe lengths. This means for all the probes 
there is one water level that corresponds exactly to the probe 
length, which is a limit case worth studying. 

5 Experimental versus numerical comparisons 

5.1 Clamped elastic beam immersed in a shallow oil flow 

The first two examples consist in a clamped beam of different 
lengths immersed in sunflower oil. Figure 4 represents the 
geometry and the angular displacement of the first example. 
The numerical model has 15,480 fluid particles and a total of 
16,939 nodes including the solid and the fluid part. The ave
rage time step used was equal to 0.0025 s. Snapshots of dif
ferent instances of the experiment are shown and compared 

Fig. 7 Clamped elastic beam 
immersed in deep oil flow: 
initial geometry and angle of the 
container versus time 
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Fig. 8 Clamped elastic beam in deep oil: experimental versus nume
rical comparison t = 1.84, 2.12, 2.32, 2.56 [s] 

with the PFEM results at the same times in Fig. 5. The agree
ment between the experimental results and the numerical 
ones are acceptable. A most significant result may be found 
in Fig. 6 were the maximum X displacement corresponding 
to the end point of the beam has been represented for both: 
the experimental and the numerical solution. 

5.2 Clamped elastic beam immersed in deep oil flow 

The second example is similar to the previous one but with 
a more deep oil flow. The geometry and the motions of the 
container are shown in Fig. 7. In this example, the mesh has a 
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Fig. 9 Clamped elastic beam immersed in deep oil flow: comparison 
of the displacement in X direction 

total of 16,731 nodes with 15,371 nodes placed out the fluid 
part. 

Figures 8 and 9 show the free surface and the beam displa
cement of the end point at different time steps respectively. 
This is a complicated example in which the interaction bet
ween the fluid and the elastic beam is very strong. It is inter
esting to observe the shape of the free surface which shows a 
bubble over the structure region in such a way that the top of 
the beam that initially was at the free surface level remains 
all the time immersed in the fluid. 

5.3 Hanging elastic beam with shallow water 

This is the most difficult and impressive example. Now, the 
beam in hanging from the upper wall in such a way that 
the interaction with the fluid can be attained only due to the 
waves produced. Otherwise there is not interaction. 

Figure 10 show the initial geometry and the motions of 
the container. The amount of particles used for the numeri
cal solution was 16,924 and time step was equal to 0.0025 s. 
Snap shots of the different instances of the experiment versus 
the PFEM results are shown in Fig. 11. 

Fig. 10 Hanging elastic beam 
with shallow water: initial 
geometry and angle of the 
container versus time 
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Fig. 11 Hanging elastic beam 
in shallow water: experimental 
versus numerical comparison 
t = 0.76, 1.64,2.4,2.68,2.96, 
3.32, 3.4, 3.56, 3.80, 3.84, 4, 4.16 [s] 
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Fig. 12 Hanging elastic beam 
in shallow water: comparison of 
the end and midpoint 
displacement in X direction 

0.06 

, , 
§ 0.04 
D 

s 8 0.02 

a-v> 
? 0 
X 
s o -0.02 
a* T3 
C 

W -0.04 

/> 

Experimental result 1 
Numerical result 

\ i \ 
J Mi] \ 

^ / ' / V I hi I ;. 
xl \ , / / \\ / / | i ' 

vy \-\y v̂ y I 

Iv 

i / ' 1 ' / 

/ y ; > f 

I ''',! > •',| " 
1 '' i /'i 

' \' ' w ~ 

\ 

0.03 

2 3 

Time[s] 

In this example the natural frequency of the free surface 
wave does not coincide with the imposed frequency of the 
beam. This produces a strong shock at the time of 2 s. were the 
FSI start. High frequencies of the elastic beam are induced 
at this moment. Figure 12 shows the displacement of end-
point and midpoint of the beam as a function of time. The 
agreement between the numerical results and the experimen
tal ones are very good, taking in account the complexity of 
the example. 

6 Conclusions 

A new series of experimental test have been presented. The 
main characteristic of the new test are: free surface flows 
including waves and fragmentation, elastic solid with geo
metrical non-linearity, FSI between incompressible flows and 
elastic beams. The experimental results have been compared 
with numerical results using the PFEM. PFEM is a powerful 
tool for solving free surface flow problems involving large 
deformation of the fluid domain. Very good results have been 
obtained for the relevant parameters for the flow field and the 
elastic structure analyzed (such as the free surface and elastic 
beam position) as shown in the comparison with experimen
tal data. 
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