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Recently, it has been observed that simple geometry characterized by a low level of symmetry
present interesting peculiarities in the process of transition from laminar Poiseuille flow to turbulent
flow. Examples of this type of geometry are eccentric channels and, more generally, parallel
channels containing a narrow gap. In the present work, a global linear stability analysis for the flow
in this class of geometry has been performed. The problem is discretized through spectral
collocation and the eigenvalue problem has been solved with the Arnoldi-method based algorithms
and the QZ algorithm. Since no numerical studies of this type have yet been performed to address
the issue of transition in this geometry, the codes have been validated toward results obtained in
simplified geometries �e.g., concentric annular channel and square channel�. The eigenvalue spectra
of the Poiseuille flow in eccentric channels and a U-shaped channel have then been computed and
analyzed for a wide range of geometric parameters. After comparison with spectra typical of channel
flow and pipe flow it is shown that an additional linear mechanism of instability is present, related
to the spanwise variation of the laminar velocity profile. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3005864�

I. INTRODUCTION

The turbulent flow in parallel channels characterized by
the presence of a narrow gap is subject to local laminariza-
tion, and more generally, turbulence is anisotropic and inho-
mogeneous in the cross section. Moreover, large-scale peri-
odic coherent structures are usually observed in the region of
the narrow gap.1 These coherent structures are observed even
at very low Reynolds numbers, and appear to be present at
an early stage in the process of laminar-turbulent transition
for this class of geometries.1

No numerical studies regarding the issue of transition in
these geometries have been performed. In the present work
the focus will be on a biglobal linear stability analysis2 of the
laminar Pouseille flow in two geometries characterized by
the presence of a narrow gap. No such study has been pub-
lished previously, to the knowledge of the present authors.
By biglobal linear stability analysis is intended here a
method that does not rely on the approximations of spatial
homogeneity in two or three spatial directions, as the Orr–
Sommersfeld theory does by using the Squire transforma-
tion, but rather addresses the problem as a partial differential
equation eigenvalue problem. It considers arbitrary depen-
dence of the amplitude function on two spatial directions,
only assuming periodicity on the third.

The prototype of any geometry containing a narrow gap
is the eccentric annulus. This geometry has been studied
through a spectral collocation discretization3 method written

in bipolar coordinates. It has to be noted that the oscillations
observed by Guellouz and Tavoularis4 and Hopper and
Rehme5 have not been observed experimentally for eccentric
channels. A recent numerical work6 supports the assumption
that the oscillations are indeed present for the flow in eccen-
tric annuli for certain combinations of the geometric param-
eters and the Reynolds number.

Since the geometry of Guellouz and Tavoularis4 and
Gosset and Tavoularis1 cannot be analyzed easily due to the
absence of a set of orthogonal coordinates, in the present
work another geometry has been analyzed. Lexmond et al.,7

Biemuller et al.,8 and Meyer and Rehme9 showed that then
parallel flow in two rectangular channels connected by a nar-
row gap presents the same behavior observed by Guellouz
and Tavoularis4 in the region of the narrow gap. The linear
stability problem for the laminar flow in this geometry has
been analyzed here through a multiblock spectral collocation
methodology in Cartesian coordinates.

Figure 1 shows an outline of the geometry studied as
well as the laminar velocity profile examined. Figure 2
shows the grids used for the spectral collocation discretiza-
tion employed. The algorithms used here have been imple-
mented in MATLAB for testing and in FORTRAN for large-scale
calculations. Two pre-existing QZ algorithms10 have been
used �implemented, respectively, in the IMSL library and
MATLAB�. An in-house implicitly restarted Arnoldi
algorithm11 implemented in FORTRAN has also been used.
Due to the memory requirements all calculations have been
performed on the Japanese supercomputer TSUBAME.
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II. RECTANGULAR “U SHAPED” CHANNELS

A. Outline

The flow in rectangular channels connected by a narrow
gap presents flow oscillations in the narrow gap when the
narrow gap length to width ratio is bigger than two. The
linear stability problem in Cartesian coordinates is expressed

by the following eigenvalue-eigenfunction problem for
�ũ , ṽ , w̃ , p̃� and � �where z is streamwise direction and w the
streamwise velocity�:

− i�ũ = − iW�ũ −
� p̃

�x
+

1

Re
� �2ũ

�x2 +
�2ũ

�y2 − �2ũ� , �1a�

FIG. 1. �Color online� Geometries studied and streamwise velocity laminar profiles.

FIG. 2. �Color online� Grids employed.
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− i�ṽ = − iW�ṽ −
� p̃

�y
+

1

Re
� �2ṽ

�x2 +
�2ṽ
�y2 − �2ṽ� , �1b�

− i�w̃ = − iW�w̃ −
�W

�x
ũ −

�W

�y
ṽ − i�p̃

+
1

Re
� �2w̃

�x2 +
�2w̃

�y2 − �2w̃� , �1c�

� ũ

�x
+

� ṽ
�y

+ i�w̃ = 0, �1d�

where W is the laminar streamwise velocity distribution. The
boundary conditions are used for the pressure:

� p̃

�y
=

1

Re
� �2ṽ

�y2� ,

if the wall is normal to the coordinate y;

� p̃

�x
=

1

Re
� �2ũ

�x2� ,

if the wall is normal to the coordinate x; and nonslip bound-
ary conditions for the velocity components. The eigenfunc-
tions �ũ , ṽ , w̃ , p̃� refer to the perturbations:

u� = ũ�x,y�exp�i��z − �t�� , �2a�

v� = ṽ�x,y�exp�i��z − �t�� , �2b�

w� = w̃�x,y�exp�i��z − �t�� , �2c�

p� = p̃�x,y�exp�i��z − �t�� . �2d�

An additional point of complexity is that the domain has a
U-shape and special care needs to be taken to treat this ge-
ometry with a spectral collocation method. The cross section
has been divided in five blocks, in which both directions
have been discretized with Chebyshev polynomials. At the
junctions between the blocks the following conditions have
been enforced �an example on the boundary between block 1
and block 2�:

�ũ1, ṽ1,w̃1� = �ũ2, ṽ2,w̃2� ,

�3�
��� · �ũ1, ṽ1,w̃1�� · n�1 = ��� · �ũ2, ṽ2,w̃2�� · n�2,

where n�1 and n�2 are the vectors normal to the interface be-
tween blocks 1 and 2; �ũ1 , ṽ1 , w̃1� is the eigenfunction for
block 1 and �ũ2 , ṽ2 , w̃2� the eigenfunction for block 2. This
ensures the well posedness of the linear stability problem.

The laminar solution W has been computed numerically
by solving the following problem:

� �2W

�x2 +
�2W

�y2 � = Re
dP

dz
�4�

and normalized by the value of the maximum velocity
�dP /dz is the mean pressure gradient in the streamwise di-
rection�. The grid used is similar in structure to the one used
for the eigenvalue problem. However, as shown by Theofilis

et al.,12 the solution of the Poisson equation should take
place on a finer grid than the eigenvalue problem mesh.
Therefore, Eq. �4� has been solved on a mesh 2N�2M
where M �N is the mesh used for the eigenvalue problem
given by Eqs. �1a�–�1d�. Once the laminar solution is inter-
polated on the grid, Eqs. �1a�–�1d� can be reduced to the
following linear eigenvalue problem in the temporal frame-
work �obtained considering � as a parameter, searching for
the eigenvalue ��:

A� ū = �B� ū , �5�

where ū represents a unidimensional vector representation of

�ũ , ṽ , w̃�, and A� and B� are the matrix associated to the set of
equations. The artificial-compressibility paradigm can be ap-
plied to avoid matrix B to become singular.

Equation �5� has then been solved with the QZ
algorithm10 for testing and an Arnoldi algorithm11 for large-
scale computations. In the case of the Arnoldi algorithm the
following equivalent eigenvalue problem has been solved:

�A� − �B� �−1B� ū =
1

�� − ��
ū , �6�

since it leads to the same set of eigenvalues, shifted by the
constant �, as shown by Jennings and Halliday.13 The matrix

�A� −�B� � has been inverted by solving the equation:

�A� − �B� �M = B� , �7�

where M = �A� −�B� �−1B� . The equation has been solved serially
�or, in some cases, parallelly with shared memory� with an
iterative method �biconjugate gradient method� written in
FORTRAN and LU decomposition based methods with
MATLAB.

B. Validation

The validity of the methodology has been tested on the
flow in rectangular channels and on the limit of channel flow.

Let A be the ratio between the extension of the domain
in the direction x and the extension of the domain in direc-
tion y. For A→� the eigenvalue spectrum should approxi-
mate the spectrum of the flow between two parallel infinite
plates extending in the x direction.

Figure 3 shows results for A=20 and A=200, compared
to the spectrum of channel flow at Re=100. It is possible to
notice that the Cartesian bidimensional code is able to repro-
duce well the spectrum of channel flow. Both results are
obtained with a 32�48 grid. The algorithm used is the QZ
algorithm. It is possible to notice that the results are in gen-
eral good agreement with those presented in Theofilis et al.12

C. Results

For the geometry of Lexmond et al.7 the typical eigen-
value spectrum is shown in Fig. 4. Assuming the geometry to
be defined as in Fig. 1, two geometric parameters affect the
eigenvalue spectrum: the channel length L and the gap height
H �the coordinates have been normalized by the channel
height M�. For L=1 /3 and H=1 /5 the flow presents an un-
stable mode, while for a rectangular geometry with the same
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parameter A�=M /L=3� the flow is linearly stable for every
value of Re. A convergence study on the most unstable
eigenmode has been conducted, and the results are reported
in Table I.

The most unstable mode is characterized by an antisym-
metric pressure wave �Fig. 5� propagating in the streamwise
direction. This wave is associated with a strong oscillating
cross velocity in the narrow gap region. A similar mechanism
of instability will be observed in the following section for
eccentric channels, where its origin will be investigated. The
cross velocity and streamwise velocity distributions �Fig. 5�
of the most unstable perturbation are strikingly similar to the
distributions observed for the most energetic mode of turbu-
lence at a Reynolds number of 3000 through proper orthogo-
nal decomposition �POD� �for a large eddy simulation �LES�
in the same geometry as shown by Merzari et al.14�. This
suggests that the laminar velocity profile in this geometry is
linearly unstable and the most unstable mode develops into
the most energetic mode of turbulence.

For narrow gaps the critical Reynolds number is sensibly
lower than the value predicted by the linear theory for the
flow in parallel plates and square ducts of any shape �Table

II�. It is also reasonably close to experimental values charac-
teristic of rectangular ducts for the values of H investigated
here.2,7 As an example, the curves of marginal stability for
three different values of the parameter are shown in Fig. 6. It
is possible to notice that the position of the minima of the
curves strongly depends upon the parameter L.

The results presented in this section show clearly that the
introduction of a narrow gap changes the stability properties
of the flow. In particular two otherwise linearly stable rect-
angular ducts become unstable when connected through a
gap. The origin of this surprising result will be investigated
in the following section, by studying a simpler geometry.

III. ECCENTRIC CHANNELS

A. Outline

The linear stability problem for the flow in eccentric
channels will be considered. Even if this geometry is simple,
and an orthogonal set of coordinates exists, the problem has
never been addressed before, to the knowledge of the present
authors. The only available case for eccentric channels ap-
pears to be the flow between counter-rotating cylinders,
widely studied experimentally and theoretically by Taylor15

and object of several analytical and numerical studies.16

However the conditions of instability for Taylor–Couette
flows are different from the ones in the present case and no
direct comparison is possible.

TABLE I. Most unstable eigenvalues for L=0.33, H=0.2 e=0.5,
Re=50 000, �=1.

Grid �Nx�Ny� Most unstable

60�42 0.8743+0.0504i

75�42 0.8685+0.0504i

100�42 0.6885+0.0504i

75�42 0.8685+0.0504i

75�46 0.8685+0.0505i

75�50 0.8685+0.0505i

FIG. 4. �Color online� Eigenvalue spectrum L=1 /3, H=1 /5, Re=50 000,
and �=1.0.

FIG. 3. �Color online� Benchmarking of the 2D multiblock code. Square
duct at Re=100 for A=20 �a� and A=200 �b�.

114104-4 Merzari et al. Phys. Fluids 20, 114104 �2008�

Downloaded 27 Nov 2008 to 132.239.1.231. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Extensive numerical studies have been performed, how-
ever, for concentric annular channels and pipes. It is well
known that linear stability analysis is not able to predict
instability for pipe flow �i.e., pipe flow is linearly stable for
every value of the Reynolds number and any infinitesimal
perturbation�, and overpredicts the critical Reynolds number
for concentric annular channels and the flow between parallel
plates. The reasons for these failures are not entirely under-
stood. Possible explanations are finite amplitude effects,17

the nonorthonormality of the Navier–Stokes operator,18 spa-
tial effects, or nonlinear effects.19

FIG. 5. �Color online� Most unstable eigenmode for L=1 /3, H=1 /5, Re=50 000, and �=1.0. Distribution for the real part velocity components and the
pressure.

TABLE II. Critical Reynolds number and critical wavenumber as a function
of the gap height �the gap length is constant L=1 /3�.

H Re �

0.4 2600 2.1

0.2 1300 2.2
FIG. 6. Marginal stability curves for U-shaped channels and two values of
the geometric parameter L �H is constant�. The continuous curves are second
order polynomial fits to the computational data.
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Therefore, the objective of the present study cannot be
the correct prediction of the instability threshold. It can be,
however, a starting point for the analysis of the problem of
transition. And it can provide some information regarding the
effect of eccentricity and the presence of the narrow gap on
the linear stability problem.

The linear stability problem can be solved in the bicy-
lindrical set of coordinates �� ,� ,z�, where �� ,�� are the
bipolar coordinates defined as follows as a function of the
Cartesian coordinates �x ,y�:

� + i� = − c coth−1x + iy

2
�8�

and the Cartesian coordinates can therefore be expressed as

x��,�� = c
sinh �

cosh �-cos �

�9�

y��,�� = c
sin �

cosh �-cos �
,

where c is a function of the geometric parameters g=R1 /R2

and e=d / �R2−R1� �where d is the distance between the axis
of the two cylinders�:

c = R1 sinh�cosh−1�g�1 + e2� + 1 − e2

2eg
�� . �10�

The Jacobian h can then be defined as

h��,�� =
c

cosh � − cos �
. �11�

By simply rewriting the vector form of the Navier–Stokes
equation in bicylindrical coordinates, it is possible to obtain

�u

�t
+

u

h

�u

��
+

v
h

�u

��
+ w

�u

�z
+ u2 sinh � − uv sin�

= −
1

h

�p

��
+

1

Re
� 1

h2

�2u

��2 +
1

h2

�2u

��2 +
�2u

�z2

−
2 sin �

h

�v
��

+
2 sinh �

h

�v
��

−
cosh � + cos �

h
u� , �12a�

�v
�t

+
u

h

�v
��

+
v
h

�v
��

+ w
�v
�z

− uv sinh � + u2 sin �

= −
1

h

�p

��
+

1

Re
� 1

h2

�2v
��2 +

1

h2

�2v
��2 +

�2v
�z2

+
2 sin �

h

�u

��
−

2 sinh �

h

�u

��
−

cosh � + cos �

h
v� , �12b�

�w

�t
+

u

h

�w

��
+

v
h

�w

��
+ w

�w

�z

= −
�p

��
z +

1

Re
� 1

h2

�2w

��2 +
1

h2

�2w

��2 +
�2w

�z2 � , �12c�

1

h2� ��hu�
��

+
��hv�

��
� +

�w

�z
= 0. �12d�

The equations for the linear instability problem can be de-
rived by superposing the following infinitesimal disturbance
�u� ,v� ,w� , p�� to the laminar velocity profile �0,0 ,W�:

u� = iũ��,��exp�i��z − �t�� , �13a�

v� = ṽ��,��exp�i��z − �t�� , �13b�

w� = w̃��,��exp�i��z − �t�� , �13c�

p� = p̃��,��exp�i��z − �t�� . �13d�

After linearization, the equations can be rewritten as

− i�ũ = − iW�ũ + i
1

h

� p̃

��
+

1

Re
� 1

h2

�2ũ

��2 +
1

h2

�2ũ

��2

− �2ũ + i
2 sin �

h

� ṽ
��

− i
2 sinh �

h

� ṽ
��

−
cosh � + cos �

h
ũ� , �14a�

− i�ṽ = − iW�ṽ −
1

h

� p̃

��
+

1

Re
� 1

h2

�2ṽ
��2 +

1

h2

�2ṽ
��2

− �2ṽ + i
2 sin �

h

� ũ

��
− i

2 sinh �

h

� ũ

��

−
cosh � + cos �

h
ṽ� , �14b�

− i�w̃ = − iW�w̃ − iũ
�W

��
− ṽ

�W

��
− i�p̃

+
1

Re
� 1

h2

�2w̃

��2 +
1

h2

�2w̃

��2 − �2w̃� , �14c�

i

h2� ��hũ�
��

− i
��hṽ�

��
� + i�w̃ = 0. �14d�

For each pair of values �Re,�� the equations become a com-
plex eigenfunction—eigenvalue problem in �ũ , ṽ , w̃ , p̃� and
�. The laminar distribution W can be obtained by solving a
laminar problem similar to Eq. �4�; however, an analytical
solution has been obtained by Snyder and Goldstein20 for W:

W��,�� = F + E� −
1

2

cosh���
sinh���

+ 	
n
�Anen� + �Bn −

cosh���
sinh��� �e−n��cos�n�� , �15�

where F, E, A, and B are coefficients that depend on the
geometry �Snyder and Goldstein20�. As an additional confir-
mation, it has then been verified a posteriori that the expres-
sion given by Eq. �15� is a solution of the laminar problem.

In the present case a nonstaggered approach has been
applied for the pressure. The validity of the approach has
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been addressed by Khorrami and Malik.21 The following
boundary condition for the pressure is assumed to be re-
spected at the wall:

i
1

h

� p̃

��
= −

1

Re
� 1

h2

�2ũ

��2 + i
2 sin �

h

� ṽ
��
� , �16�

while nonslip boundary conditions are considered for the ve-
locity components. Periodic boundary conditions are imple-
mented in the spanwise direction.

The derivates in the inhomogeneous spatial directions
�� ,��, can be discretized by using spectral collocation tech-
niques. An interesting peculiarity of this choice, however, is
that Chebyshev polynomials are not necessarily the optimal
choice for the wall normal direction. In fact, it can be proved
that in the limit e→0 the set of collocation points obtained in
this case do not coincide with the collocation points for the
radial direction associated to Chebyshev polynomials in a
concentric channel.

In the present case, Chebyshev polynomials and Fourier
functions have been selected as basis functions for the appli-
cation of the spectral collocation methodology. The problem
then reduces to a linear system of the type already described
in Eq. �5� which can be solved using the same techniques
described in Sec. II A.

B. Validation

Since there are no studies available on the Pouseille flow
between eccentric channels, the methodology has been tested
on the limit case of the concentric channel �e→0�.

In order to provide an extensive validation, the results of
the bicylindrical code have been tested against the results
obtained for two-dimensional �2D� and one-dimensional
�1D� cylindrical codes. The codes have been written follow-
ing the example of Khorrami and Malik.21 The accuracy of
the cylindrical codes has been verified by benchmarking to-
ward results published in the literature.

In particular, in the limit g→1, the spectrum of the con-
centric channel is bound to be a good approximation of the
spectrum of channel flow �the curvature effect of the inner
cylinder tends to be negligible�. This intuitive result has been
confirmed by early works,22 and here. In Table III a compari-
son is available between the most unstable modes for chan-
nel flow �computed by Orszag23� and the ones obtained for

the flow in a concentric annular channel with g=0.99. The
specific code employed is 1D and only axial-symmetric dis-
turbances are considered. The Reynolds number is equal to
10 000 and the wavenumber � is equal to 1. The discretiza-
tion employed includes 64 nodes in the radial direction. Im-
proved agreement is obtained if an increasing number of col-
location nodes is employed. In Fig. 7, the eigenvalue
spectrum for the same condition is shown. It is possible to
notice that the S-family is in very good approximation lo-
cated near Re=2 /3, as predicted by the theory of linear sta-
bility for channel flow. Figure 7�b� also shows the radial
distributions for the most unstable eigenfunction. The agree-
ment with previous works is overall good.

The cylindrical code thus validated has been employed
as a benchmarking tool for the bicylindrical code. In Fig. 8 it
is possible to observe a comparison between the data ob-
tained for the three algorithms employed for a case with
g=0.7 and Re=5000.

It is possible to notice that the 2D codes produce very
similar results; differences between the two are related to the
choice of Chebyshev polynomial for the discretization of the

TABLE III. Most unstable eigenvalues for the implemented 1D polar code.

Rank Present code 1D polar code Orszag �1971�

1 0.237 543+0.003 75i 0.237 526 49+0.003 739 67i

2 0.9646−0.035 617i 0.964 630 92−0.035 617 28i

3 0.9646−0.035 1867i 0.964 642 51−0.035 186 58i

4 0.27715−0.050 98i 0.277 204 34−0.050 898 73i

5 0.936 316 5−0.0632i 0.936 316 54−0.063 201 50i

6 0.936 352 1−0.063 252i 0.936 351 78−0.063 251 57i

7 0.907 983−0.091 222 1i 0.907 983 05−0.091 222 74i

8 0.908 06−0.091 314i 0.908 056 33−0.091 312 86i

9 0.879 627 1−0.119 23i 0.879 627 29−0.119 232 85i

10 0.879 756 5−0.119 372i 0.879 755 70−0.119 370 73i

FIG. 7. 1D polar code results, eigenvalue spectrum �a� and most unstable
eigenfunction �b�.

114104-7 Biglobal linear stability analysis for the flow Phys. Fluids 20, 114104 �2008�

Downloaded 27 Nov 2008 to 132.239.1.231. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



wall normal direction in bipolar coordinates �it is not opti-
mal�, and concern only higher order eigenvalues �S family�.
Moreover, the results of the 2D codes include the results
obtained by the 1D code.

C. Results

All results obtained in this section have been obtained
with a grid resolution of 64�64. The high resolution in the
spanwise direction is justified by the inhomogeneous charac-
ter of the cross section.

1. Low eccentricity

The eigenvalue spectrum of the linear stability problem
for eccentric annular channels does not differ substantially
from the spectrum for concentric channels at low eccentric-
ity. The reduction in symmetry, however, leads to a less regu-
lar spectrum �i.e., in high symmetrical systems several of the
eigenvalues have multiplicity bigger than one, while in low-
symmetrical systems high-multiplicity eigenvalues tend to be

less common�, and the branches of modes clearly discernible
for concentric channels mix in a nontrivial manner. The most
unstable modes, however, are still given by the A-family, at
least for low eccentricity. Eccentric annular channels are
more stable than concentric channels for the same values of
g and Re. Figure 9 shows a typical eigenvalue spectrum for
the flow in eccentric annular channels �g=0.7, e=0.1, �
=1.0�. The most unstable mode for the same case is shown in
Fig. 10 and it is comparable with the most unstable eigen-
mode for a concentric channel at g=0.7 �Fig. 7�b��.

In the eigenvalue spectrum of the flow in eccentric chan-
nel, there is a particular set of modes that is increasingly
unstable as the eccentricity increases. The nature of these
modes can be associated with the presence of a spanwise
variation for the mean velocity profile. Henningson24 showed
that if a spanwise variation �of the type shown in Eq. �17�� is
added to the mean flow the eigenvalue spectrum of the
Pouseille flow in concentric channels and pipe channels
might contain additional unstable modes.FIG. 9. �Color online� Eigenvalue spectrum, e=0.1, g=0.7, and Re=7000.

FIG. 8. �Color online� Comparison between 2D polar code and bicylindrical
code for e=0.01, g=0.7, and Re=5000.

FIG. 10. �Color online� Most unstable eigenmode for e=0.1, g=0.7, and
Re=7000. Velocity distribution for the velocity components u and w.

114104-8 Merzari et al. Phys. Fluids 20, 114104 �2008�

Downloaded 27 Nov 2008 to 132.239.1.231. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



A numerical experiment has been conducted on a con-
centric annular channel, with g=0.7, �=1, and Re=5000 the
results are reported in Fig. 11. It is possible to notice that for
the same Reynolds number �Re=5000� is dramatically dif-

ferent if compared to Fig. 8. In particular, an entire new
branch is introduced that will be in the following addressed
as “Sp” branch or family. The laminar profile studied corre-
sponds to the following distribution:

W =
1 − r2 + rm

2 ln�r2�
1 − rm

2 + rm
2 ln�rm

2 �
+ a cos�k	� , �17�

where rm is the radial position of the velocity maximum and
a and k are parameters.

A three-dimensional plot of the perturbation added to the
streamwise velocity profile as well as the most unstable per-
turbation �member of the Sp-family� are shown in Fig. 12.

The same family of modes, or a very similar family of
modes, is present in eccentric channels, at low eccentricity
their presence is masked by other modes, since they do not
appear clearly as a family. Moreover they do not play an
essential role in the linear stability problem, while at higher
eccentricity they become the main cause of instability.

Figure 13�a� shows the curves of marginal stability com-
puted by considering the A family only. The problem has
been given by Eq. �10� repeatedly for hundreds of values of
� and Re through the Arnoldi algorithm. It is possible to
notice that, at low values of eccentricity, the higher the ec-

FIG. 11. �Color online� Eigenvalue spectrum for g=0.7 and Re=7000 �con-
centric annulus with mean spanwise variation�.

FIG. 12. �Color online� Most unstable eigenmode for g=0.7 and Re=5000 �concentric annulus with mean spanwise variation�: laminar streamwise distribu-
tion �a�; streamwise velocity �b�, and components v �c� and u �d�.
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centricity the more stable is the flow. In fact, the concentric
channel is the most unstable configuration if the other param-
eters �g, Re� are considered constant. Therefore at low ec-
centricity �e.g., e
0.3 for g=0.7�, the main effect of an in-
crease in eccentricity is a drift of the curve of marginal
stability toward higher Re and �.

2. High eccentricity

The trend shown in Fig. 11�a�, shows clearly that the
A-family is progressively more stable as eccentricity in-
creases. However, the A-family is not the only set of modes
able to generate unstable eigenmodes at high eccentricity.

Figure 14 shows the eigenvalue spectrum for g=0.7,
e=0.5, and Re=7000. From extrapolation of the results pre-
sented in Fig. 13, it is evident that the flow should be stable
to infinitesimal perturbation at this Reynolds number �it
should be stable even for e=0.0�. However, this is not case.
Several eigenmodes appear to be linearly unstable, and they
can be recognized as part of the Sp family identified for
concentric channels with spanwise variation. Figure 15
shows a contour plot of the absolute value of the velocity
components of the most unstable perturbation. They appear
to be very similar to the results of Fig. 12. Therefore, it may
be concluded that eccentric channels at sufficient high values

FIG. 13. Portion of the curves of marginal stability at different values of
eccentricity for g=0.7. Low eccentricity �a� and high eccentricity �b�.

FIG. 14. Eigenvalue spectrum �a� for e=0.5, g=0.7, and Re=7000; with
detail of the Im=0 region �b�.

FIG. 15. �Color online� Most unstable eigenmode for e=0.5, g=0.7, Re
=7000. Components u and v of the velocity.
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of eccentricity are linearly unstable at lower values than their
concentric channel counterparts. Moreover the instability can
be associated to the spanwise variation of the streamwise
velocity component W.

An additional numerical test has been conducted in order
to verify this important result. In Table IV the two most
unstable eigenvalues for the case g=0.7, e=0.5, Re=7000,
and �=1 are shown for four different grids. It is demon-
strated that the eigenvalue spectrum is close to convergence
for the four grids and a resolution of 64�64 is deemed to be
acceptable. It has to be noted that an exponential variation of
the mesh in the spanwise direction has been adopted in order
to achieve a more uniform grid.

The effect of eccentricity on the eigenvalue spectrum is
shown in Fig. 16�a� where the value of the most unstable
eigenvalue is shown as a function of e. The critical eccen-
tricity depends also upon the value of g �Fig. 16�a��. The
laminar flow is increasingly unstable as the Reynolds num-

TABLE IV. Most unstable eigenvalues for g=0.7, e=0.5, Re=7000, and
�=1.

Grid Most unstable Second most unstable

45�80 0.6184+0.001 36i 0.712+0.001 25i

45�90 0.6184+0.001 34i 0.712+0.001 24i

64�64 0.6185+0.001 34i 0.711+0.001 24i

64�80 0.6184+0.001 36i 0.712+0.001 25i

FIG. 16. Most unstable eigenvalue as a function of eccentricity �a�, and as a function of the Reynolds number �b� at g=0.7 and e=0.5 with a logarithmic fit.
For both graphs �=1.0.
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ber increases. It appears that a logarithmic law well approxi-
mates the dependency of the imaginary part of the most un-
stable mode of the Sp family upon the Reynolds number
�Fig. 16�b�, the data refer to g=0.7, e=0.5, and �=1�. As a
consequence of the presence of these unstable modes, the
curves of marginal stability shift toward lower Reynolds
numbers �Fig. 13�b��. The critical Reynolds number appears
to be lower than the concentric case, which is at odds with
what observed experimentally by Gosset and Tavoularis.1

In fact, Gosset and Tavoularis1 found that for a similar
geometry, an increased value of eccentricity leads to more
stable laminar flows. The calculations performed seem to
confirm this observation for small values of the eccentricity.
However, the critical Reynolds number predicted by the lin-
ear theory �Fig. 13�a�� is significantly higher than the experi-
ment value for the concentric channel. This disagreement is
not surprising since linear stability analysis is not usually
able to reproduce the stability properties of laminar flows in
pipes and concentric channels. Full nonlinear transient
growth studies are necessary to reproduce accurately the pro-
cess of transition in these geometries.

For higher values of the eccentricity �Fig. 13�b��, the
critical Reynolds number is sensibly lower than the concen-
tric case and it appears to be closer to experimental values
for pipe flow.17 This observation suggests that, while at lower
eccentricity the mechanism of transition cannot be explained
through the linear theory, the present analysis may lead to a
more accurate prediction of the stability threshold at high
eccentricity. It also reinforces the idea that the mechanism of
transition in this geometry is radically different from concen-
tric pipes.

In conclusion, despite the limitations of the present ap-
proach, a few significant conclusions can be drawn from the
present calculations:

�1� At low values of eccentricity, eccentricity plays a stabi-
lizing role, since eccentric channels have more stable
A-family modes than concentric channels;

�2� an additional family of modes is present in eccentric

channels, related to the spanwise variation of the stream-
wise velocity field;

�3� this additional family of modes induces instability at
lower values of the Reynolds number than the A-branch
for high values of eccentricity �e�0.3�.

Thus the usual process of transition in concentric chan-
nels and pipes is stabilized at higher eccentricity, but an ad-
ditional process of instability comes into play. The most un-
stable perturbation associated with this mechanism develops
in the wider gap region and is related to the spanwise varia-
tion of the streamwise velocity profile W. The connection
between the family of modes presented in this section and
the mechanism of instability discovered in Sec. II C can be
found when observing the pressure distribution for the most
unstable mode. In fact, the Sp-family modes are character-
ized by an antisymmetric pressure wave of the type already
discussed in Sec. II C �Fig. 17 shows the pressure distribu-
tion for the most unstable mode, e=0.5, g=0.7, and Re
=7000�. The difference between the shapes of the waves in
the two cases might be related to the shape of the cross
section �i.e., in eccentric channels there are actually two
gaps: a wide gap and a narrow gap; while in U-shaped chan-
nels only a narrow gap can be identified�. Both geometries
are characterized by a single symmetry axis.

IV. CONCLUSIONS

The global linear stability problem for two geometry
classes containing a narrow gap has been studied through
spectral collocation. Compared to the results typical of chan-
nel flow, concentric annular channel flow or pipe flow, the
results show that an additional mechanism of instability is
present.

In particular, in eccentric channels, a new branch of
modes is introduced that can be recognized as to be a con-
sequence of the spanwise variation of the laminar velocity
profile. The effect is significant at high eccentricity �the

FIG. 17. �Color online� Most unstable eigenmode distribution for the pressure, e=0.5, g=0.7, and Re=7000.
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range examined goes from e=0.01 to 0.8� and depends over-
all upon the internal to external diameter ratio and the eccen-
tricity. The most unstable eigenmodes are characterized by
spanwise variation in the wide gap region and the propaga-
tion of an asymmetric pressure wave in the streamwise di-
rection. This mechanism of instability might justify the onset
of oscillations in the wide gap region observed by Gosset
and Tavoularis1 for a similar geometry. However a full non-
linear transient growth study is necessary to clarify how
these initials oscillations develop into coherent structures in
the narrow gap region at higher Reynolds numbers.

For the U-shaped channel case, rather than a family of
modes a single unstable mode has been found, at least for the
calculations performed here. As in the case of eccentric chan-
nel the most unstable mode of turbulence is characterized by
the propagation in the streamwise direction of an asymmetric
pressure wave. The velocity distribution for the unstable
mode presents important similarities with most energetic
mode of turbulence observed through a POD �proper or-
thogonal decomposition� of the flow field performed on a
LES �large eddy simulation� database at a Re=3000.14 This
suggests that

�1� the laminar velocity profile in U-shaped channels go
through a process of linear instability and

�2� the most unstable mode dominates the turbulence struc-
ture at higher Reynolds numbers.

The relationship between coherent structures and insta-
bility modes is further discussed in the works of Uhlmann
and co-workers.25,26

Future work will include a transient growth study of the
most unstable perturbation for eccentric channel and
U-shaped channels to clarify their role in the laminar-
turbulent transition in these geometries. In particular, it will
be investigated if such modes develop in the vortex street
observed by Guellouz and Tavoularis.4
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