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Abstract—Water interacts with soil through pore channels putting mineral constituents and pollutants into 
solution. The irregularity of pore boundaries and the heterogeneity of distribution of soil minerals and 
contaminants are, among others, two factors influencing that interaction and, consequently, the leaching of 
chemicals and the dispersion of solute throughout the soil. 

This paper deals with the interaction of irregular winding dragging paths through soil complex distributions. 
A mathematical modelling of the interplay between multifractal distributions of mineral/pollutants in soil and 
fractal pore networks is presented. 

A Holder path is used as a model of soil pore network and a multifractal measure as a model of soil complex 
distribution, obtaining a mathematical result which shows that the Holder exponent of the path and the entropy 
dimension of the distribution may be used to quantify such interplay. Practical interpretation and potential 
applications of the above result in the context of soil are discussed. Since estimates of the value of both 
parameters can be obtained from field and laboratory data, hopefully this mathematical modelling might prove 
useful in the study of solute dispersion processes in soil. 
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1. Introduction 

River basins distribute water stored in the soil by releasing it gradually into a complex 
network that involves a great disparity of length scales from the soil pore channels to the 
river basin boundaries. Along the way, water interacts with the basin, putting mineral 
constituent or soil pollutants into solution. 

Percolation network theory and fractal models recently have been used for modelling 
the spreading of solute through porous media during saturated flow. ADLER (1985) 
considered dispersion in fractal capillary networks, REDNER et al. (1987) studied mech­
anical dispersion in a self-similar model of a porous medium, and MAZO (1998) studied 
different aspects of dispersion in fractal media. Fractal curves and networks appear as 
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natural models for irregular geophysical boundaries, river basins or percolation channels 

(MANDELBROT, 1982; FEDER, 1988; RODRIGUEZ-ITURBE and RINALDO, 1997). 

On the other hand, distributions of nutrients and pollutants in soil demonstrate, as 

many other soil properties, high spatial and temporal variability. KRAVCHENKO et al. 

(1999) have shown that spatial distributions of soil phosphorus and potassium contents, 

organic matter contents, calcium and magnesium contents, and cation exchange capacity 

present highly heterogeneous patterns close to mathematical multifractal distributions. 

Similarly, mineral deposits have been shown to follow multifractal features (CHENG et al., 

1994; AGTERBERG et al., 1996). These observations imply that the distributions are 

generally sparse, and denser and rarer regions follow certain scaling regularity. Such 

heterogeneity should have profound influence on leaching of metals and nutrients, 

dispersion of solutes throughout the soil, and other transport processes. Both, pore space 

geometry and the probability that particles or molecules have of being moved from the 

soil matrix to flow into the pore space, will affect solute transport (PERFECT and SUKOP, 

2001). Thus, it is worthwhile to consider modelling the interplay between the complex 

geometry of pore networks and the heterogeneity of the mass distribution of soil 

components able to be transported through pore channels during saturated flow. 

The objective of this work was to model such mass-geometry interplay using fractal 

dimension of branched transport pathways and the entropy dimension of spatial 

distributions of solute concentrations. In section 2 the model is developed and a 

mathematical result for the model is presented. A precise original mathematical proof of 

the theoretical result, supporting the value of this modelling, is given. In section 3 the 

practical interpretation and potential applications of the above result in the context of soil 

are discussed. 

2. A Fractal Interaction Model for Winding Dragging Paths through Soil 

Complex Distributions 

Mathematically speaking, a fractal network is a connected (possibly self-intersecting) 

curve or path of fractal (Hausdorff) dimension D. In an abstract setting, this concept 

directly corresponds with that of Holder exponent of a continuous path. Since self-similar 

connected sets of points can be parameterized by means of continuous (Holder) paths of 

the same Hausdorff dimension (REMES, 1998; MARTIN AND MATTILA, 2000) we shall model 

winding pore channels as the image of a Holder m a p / : A —> R3, A C R, that is, a map 

verifying \f(x) —f(y) | < c\x — y\a for all x,y eA, with 0 < a < 1 and c < oo. This model 

will allow us to obtain exact mathematical results that shall be interpreted later in a 

practical setting. 

On the other hand the entropy dimension is a classical parameter used to quantify 

heterogeneity of mass distributions (RENYI, 1957) that may be estimated in real 

distributions by means of multifractal analysis of field data (see next section). 



The above abstract modelling will allow us to give in this section a precise original 

proof of the following result which shows how the entropy dimension Dj of the 

distribution and the Holder exponent a of the path, play an important role in measuring 

the physical interplay between both structures. 

Result: Let \i. be a multifractal measure being Dj the entropy dimension. Suppose 

further that f : A —> R™ is an a-Holder map such that y = / ( R ) C S and 1/a < D\. 

Then fi(y) — 0. 

2.1. Preliminaries 

The mathematical result is crucial for supporting the model. Next we present precise 

definitions and previous results needed. 

Given a finite measure fi on R" (or mass distribution), the local dimension (or local 

Holder exponent) of fi at x € R" is given by (see e.g., FALCONER, 1997) 

dimtoc fi[x) = lim 
40 logr 

if this limit exists, where B(x,r) denotes the closed ball B(x, r) = {y € R" : 

\y — x\ <r},x e R" and 0 < r < oo. 

For 0 < s < n the i-dimensional Hausdorff measure of a set E C R" is 

{ oo oo ^ 

Y^d(Si)s :Ed[jSi,d(Si) <8\. 
i=\ i=\ ) 

In particular, the Hausdorff measure Hn is a constant multiple of the Lebesgue measure 

£". 

If E is the support of the measure fi and V = {At : i = 1 , . . . ,«} is a partition of E, the 

Shannon entropy of fi with respect to V is given by (SHANNON, 1948) 

H,{V) = -Yjii{Ai)\ogli{Ai) 

If 

H^e) = mf{H^(V) : d{V) < s} 

being d(V) = maxi <,-<„{<i(A,-)}, where d stands for the diameter, the entropy dimension 

of (j, is defined by (RENYI, 1957) 

Di = lim H&) 
e^O — log £ 

The Hausdorff dimension of a set E C R" is defined by 



dimHE = inf{s : HS(E) = 0} = sup{s : HS(E) = oo}. 

If m < n, 0 < a < m, and A C Mm we shall denote by Lipa(A, R") the set of Holder 

continuous maps / : A —> M", that is 

Upa(A,Rn) = {f:A—>Rn:3L<oo with \f{x) - f{y)\<L\x - y\a, \/x,y E A}. 

The number 

^supjM^P:*,^,*^} 

is called the Holder constant off. 

The next theorem plays an important role in the proof of our results (see MATTILA, 1995). 

2.2. Theorem (Besicovitch's Covering Theorem) 

There are integers P(n) and Q(n) depending only on n with the following properties. 

Let A be a bounded subset o/R", and let B be a family of closed balls such that eachpoint 

of A is the center of some ball of B. 

a) There is a finite or countable collection of balls {B{\ C B such that they cover A and 

every point of R™ belongs to at most P(n) balls Bt, that is, 

XA<J2^<P(n) 
i 

where yA denotes the characteristic function of A. 

b) There are families B\,.. ., 0g(„) C B covering A such that each Bi is disjoint, that is, 

e(») 
A C | J | J B and B n B' = 0 for B,B' e Bt with B^B' 

i=l BeBt 

A Holder map / : A —> M3, A c t , gives a parameterization of a fractal path 

(MATTILA, 1995). If the image f(A) is embedded in the support S of a mass distribution, 

one natural problem is to relate the heterogeneity of the mass distribution, being this 

measured via the entropy dimension, with the Holder exponent of the map, in order to 

create the possibility that the image f(A) can catch a positive amount of mass. The next 

theorem deals with this problem. It is presented in a general form for distributions in M". 

2.3. Theorem 

Let (i be a measure supported on E C W, with entropy dimension D\, and 

0 < s < D1. Then, for any {mls)-H6'lder map f : A —> M", A cK™, we have 



H(En.f(A)) = 0. 

Proof. We may assume that d{E) < 1. Since the entropy dimension is D\, then (YOUNG, 

1982): 

log,u(B(x, r)) 
lim = D\ at u — almost all points i e £ 
r^o log r 

If s < Di is easy to show that 

u(B(x, r)) 
lim = 0 at u — almost all points x € E. 
r^O rs 

Presume now, contrary to the assertion, that for some s < Di there exists an 
(m/j')-Holder map f : A —> Rn, A C Rm, with fi(E n/(A)) > 0. Take S > 0 such that 
fi(E Of (A)) > S. By Egorov's theorem, there is EsC. E such that fi(Es) > fi(E) — S and 

fi(B(x, r)) 
lim = 0 uniformly on E$. 

Moreover, since ji(Enf(A)) > S, then /j,(E$ n/(A)) > 0. 
Since Holder maps can be extended (see VI.2.2 in STEIN, 1970) it may be surmesed 

that A is open and that Cm(A) <oo. 
Since /i-almost all points of E$ H/(A) are /i-density points (see, for example, 2.14 in 

MATTILA, 1995), then for /i-almost all x € E$ H/(A) one has 

limM^n/(A)nfi(x,r)) = 1 
r^o fi(B(x, r)) 

and then 

limM^n/(A)nfi(x,r)) = Q 

Let s > 0 arbitrary. Then there is R > 0 such that 

fi(Esnf(A)nB(x,r)) 
< £ (1) 

for r < R and for /i-almost all x € E$ fl/(A). 
Let consider now the covering of E$ H/(A) formed by balls B(x,R), xeEs- Applying 

Besicovith covering theorem 2.2, we can get a sequence of balls {Bk} verifying (1) such 
that 

^n/(A)c|jB, k 

k 

Moreover, that sequence may be grouped in a finite number of families B\,.. -,BQ(n) 
being Q{n) a constant depending only on n, such that B n B' = 0 for B,B' e 0y with 
B ^ B'. 



It follows that there is at least one of these families, say Bj, such that 

J2 KBi n Eg n/(A)) > -^r-MEs n/(A)) 

Since the balls Bt all have the same radius, the family of balls Bj is finite. Say 
Bj = {B\,.. .,BN}. Thus one has 

N 1 

NsRs> VVfl,. n ES n/(A)) > - r ^ M ^ n/(A)) 

and thus 

N>,(Esnf(A))R_ 
sQ(n) 

Let B; = B(jc;,/?e) with x,- e Eg n/(A), A,- = fl(B-) and y^At with f (yd = x;. The Holder 
condition implies that 

B\ = B (yi, L-slmRslm\ C A,- C A and Cm (flj) > cmRs. 

Moreover, since the balls {Bi,..., BN} are disjoints, the balls {B'i,..., B'N} are also 
disjoints. Then 

M^n/(A))p_s DS M^n/(A))cm 

1=1 fifi(«) fifi(«) 

Since fi(Eg Of (A)) > 0, cm > 0 and £ > 0 is arbitrary, then Cm(A) = oo which is a 
contradiction, and the statement follows. • 

2.4. Remark 

Notice that rectihability properties are studied above through coverings formed by 
balls of equal radius, due to the use of Besicovitch covering theorems instead of Vitali's 
type that render covering by balls of different sizes. For distributions coming from 
computer simulation of dynamical systems or else experimental distributions, this seems 
more convenient: one may not only be interested in limiting properties as rectihability but 
also in scaling properties of coverings of controlled size, as obtained in the proof of 
theorem 2.3. 

The entropy dimension thus appears as a degree of accessibility to the mass through 
continuous paths, giving a measure of the tortuosity needed to catch an important amount 
of mass. 

Invariant measures of dynamical systems produce typical examples of multifractal 
measures (PESIN, 1996). In the important case of self-similar measures, the result above 
takes a specific parameterized formulation. Namely, if {/i,.. .,/N} are contractions in M" 



and {pi,..., pN} are positive numbers such that Y^=iPt = 1> there is a unique measure 

verifying 

fi = J2piiiofi !> 

which is called the invariant measure associated to the iterated function system [fi,.. ./N', 

PI,. .., pN}. In the case that the {f1;.. .,fN} are similarities one has the following result. 

2.5. Corollary 

Let {fi,. . .,fN} be similarities in R™ with contraction ratios \r\,..., r^}, \p\,. . .,PN} 

positive numbers such that ^2i=1Pi = 1, and let ji be the invariant measure with respect 

to the iterated function system [fi,.. .fN; p\,.. .,p^}. Suppose that fi(fi(E) C]fj(E)j = Ofor 

i ^ j being E the support of ji. Then if 

0<s<&p^m 
J2i=iPil°gri 

for any (mls)-Hdlder map f : A —> Rn, A C Rm, we have ji(E H/(A)) = 0. 

Proof. It is a direct consequence of the fact that the entropy dimension of self-similar 

measures is given by the formula (DELIU et al., 1991): 

1 = Y ^ V — ; — 

3. Applications to Soil Drainage Networks 

Field data corresponding to soil properties can be collected in one, two or three spatial 

dimensions. The characteristics (i.e., shape, size and connectivity) of pore networks are 

often studied by two-dimensional image analysis of thin sections. Similarly, information 

on the spatial variability of soil properties is usually collected at different sites (points) 

located along a transect or over a given area. Thus, fractal modelling of the boundaries of 

pore channels and capillaries can be made by means of fractal curves and networks. 

Analogously, mineral or contaminant concentrations in soil may be represented by means 

of a mass distribution. We develop in this section a mass-geometric fractal modelling of 

the interplay between pore space geometry and the mass distribution of nutrients and 

contaminants. 



3.1. Fractal Pore Channel Networks 

Soil is formed by an intricate arrangement of solid particles and voids (pores) with 

connecting pore channels through which fluid flow and solute transport take place. A 

number of different approaches have been used to model this situation (JURY and FLUER, 

1992), including those which apply fractal and percolation models (SAHIMI, 1993; ADLER, 

1985; among others). The fractal nature of pore boundaries within a range of scales has 

been demonstrated. The concept of tortuosity applied to pore channels, widely used in 

soil sciences, has a precise meaning in terms of the scaling behavior of the length of 

pores. Although a wide variety of models has been used to describe pore geometry 

(PERFECT and SUKOP, 2001) an ideal pore channel may be modelled by a fractal curve. 

In order to quantify pore channel tortuosity the boundary fractal dimension D is used 

which is defined by means of the scaling equation (KAMPICHCHLER and HAUSER, 1993; 

ANDERSON et ah, 1998; PACHEPSKY et ah, 1996): 

where L(s) is the measured length using a yardstick of normalized length s, and Lj is the 

measured length when s is equal to unity. 

Different values for the fractal dimension of pore boundaries ranging from 1.06 to 

1.51 have been found. Also the effect of management practices on such values has been 

studied (PACHEPSKY et ah, 1996). 

3.2. Parameterizing Heterogeneity of Soil Distributions 

The distribution of soil mineral components and pollutants also show a high spatial 

variability. Since water interacts with soil mineral constituents and pollutants through 

soil pore channels, the spatial variability of their concentrations is a factor that should 

be taken into account in the study of solute dispersion processes. Thus, the geometry of 

the distribution of some soil minerals or contaminants is a crucial feature to determine 

the accessibility of pore channels to disperse soil componentes. For studying those 

distributions one may consider a measure or distribution that assigns to every region 

E the quantity fi(E) of a certain component located in that region. Typically fi(E) 

depends on the location of that region of the medium and varies widely with respect to 

the volume of E, having the main features of multifractal measures. This implies that, 

being sparse within the solid matrix, there exists denser and rarer regions following 

certain scaling regularity. In order to characterize the complexity of the spatial 

distribution, multifractal analysis may be used to estimate the Renyi spectrum of 

dimensions which include the entropy dimension as a significant dimension (see 

EVERSTZ and MANDELBROT, 1992). 

Let S be the support of a distribution fi (for methodological reasons we use a two-

dimensional model here). Let V = {Ri}i=1 be a collection of squares of side length s (see 

Fig. 1) that represent a partition of S. 



Ri 

Figure 1 

The Renyi dimensions are defined as 

, J V ( E ) 

0, = _Um'°^S;y,(^ 
q — 1 ê O log £ 

f or g ^ 1, being Di the entropy dimension computed by 

Dx = lim-
£^0 logs 

The dimension D0 is called the capacity dimension which agrees with the fractal 

dimension of the support S. 

When Dq is a decreasing function of q, fi is called a multifractal distribution. 

3.3. Application to Soil Drainage 

The theoretical result of section 2 may be interpreted in the practical context of soil. It 

suggests to use the exponent Dj — D as an indicator that might reflect the likelihood of 

leaching or dispersion of soil chemicals and minerals, based solely on the physical 

interplay between the pore boundary and chemical molecules. The greater the index is the 

higher is the probability of chemical molecules to be dispersed into the water pore 

channel. This probability would diminish when the difference D\ — D approaches zero 

and increases when it becomes negative. The greater the entropy dimension is, the more 

tortuosity for the channel is needed, and thus this parameter may be used as a measure of 

the risk of mineral loss by illuviation. 

In the case of soil contaminants it would measure the risk of exporting pollution 

to the surrounding areas. Particle size soil distributions have been shown to obey 

fractal scaling laws (TURCOTTE, 1986; TYLER and WHEATCRAFT, 1990) and the power-

scaling exponent has been related with tortuosity (TYLER and WHEATCRAFT, 1989). 



Thus the knowledge of such exponent or other entropy-like quantities (MARTIN et ah, 

2001) characterizing texture, together with the entropy dimension of certain 

distributions of soil mineral, provide valuable information that may be used for 

the diagnosis of soils and eventually may be of help in implementing adequate 

policies. In this sense, the potential application might be wide and have a real 

value in a practical setting. It is well known that parameters and meaningful indexes, 

such as those above, are strongly demanded by soil scientists (DORAN and PARKIN, 

1994). 

3.4. A Case Study 

Soil samples corresponding to an agricultural field (vineyard) located in Central Spain 

have been collected. A total number of 256 sampling points in an square lattice was 

considered, being the distance between two neighboring points equal to 20 meters. At any 

point of the lattice a sample at 25 cm. depth was taken and potassium, phosphorous and 

organic matter contents were obtained by laboratory standard techniques. This produces 

data sets {/*,- : i — 1, 2,..., 256} corresponding to the respective potassium/phosphorous 

and organic matter contents. 

The probability measure or mass distribution fi is constructed, assigning to any 

subsquare RGS a measure or mass 

At every /*,-(£) for i — 1, 2,..., N(s) is computed. 

The multifractal dimensions Dq are estimated by a least-square fitting of the 

corresponding scalings endowed in equation (1), for s ranging from e — 16 to £ = 1, and 

q ranging from q — —10 to q — 10 with a lag of 0.5. The multifractal dimensions Dq are 

plotted against q in Figures 2 and 3. 

Coefficients of determination (R ) in those fittings and Dq values range from 0.993 to 

0.999 for q values ranging from q — —10 to q — 10. 

The estimated values of the entropy dimensions of potassium and phosphorous 

distributions were 1.973 and 1.964 respectively which means that both distributions 

have followed quite similar heterogeneity patterns. It would mean that both 

minerals have a very similar probability to be in contact with soil water during 

saturated flow. 

Taking into account the increase of the pore boundary dimension value after 

tillage and other management practices (PACHEPSKY et al., 1996) the exponent D1 — D 

would be affected and consequently the probability of leaching of different minerals 

by the effect of watering or rain events. It follows that the use of parameters proposed 

here might be useful to assess the planning of management practices in agricultural 

fields. 
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Figure 2 
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4. Conclusions 

Physical and chemical heterogeneities coexist together and interplay in soil. Under a 
modelling of this interplay, the boundary of pore space may be characterized by the 
fractal dimension D and the heterogeneity of soil minerals or contaminants chemical may 
be characterized by the entropy dimension D1. A mathematical result is precisely derived 
and interpreted in a practical context. If D « Di the pore network has only a small 



probability of catching the chemical mass spread in a heterogeneous multifractal manner. 
This probability would diminish when the difference Di — D approaches zero and 
increases when it becomes negative. Although this is a simple and schematic modelling 
of a considerably more complex situation, this result relates to factors that influence 
solute dispersion and appear unconnected in former studies. Since estimates of the value 
of both parameters can be obtained from laboratory and field data, hopefully this 
mathematical modelling might be useful in future studies 
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