INSTITUTO NACIONAL DE TECNICA AEROESPACIAL "ESTEBAN TERRADAS"

THE INFLUENCE OF LAUNCHING ERRORS ON THE TRAJECTORY OF SPACE PROBES

INTA REPORT I.C.1 APPENDIX 7.III

by

Ignacio Da Riva Enrique Fraga Amable Liñán

INTA REPORT I.C.1 (Appendix 7.III)

THE INFLUENCE OF LAUNCHING ERRORS ON THE TRAJECTORY OF

SPACE PROBES

1. <u>Introduction</u>.- In the following a study of launching errors is presented more complete than the one given in Chapter 7 of INTA REPORT I.C. 1 "The Influence of Launohing Errors on the Trajectory of Space Probes".

The matched conics approximation is also used here; however, "patching" between the geocentric and helicoentric orbits is assumed to take place at the Earth's sphere of influence (radius $r_{+r} \simeq 900000$ Km).

We acknowledge the help of Dr. J. Vandenkerokhove who suggested this extension of our previous work, and kindly provided us the first: two matrices given below.

The nomenolature is as given in the figures. 2. Relationships between the injection conditions and the orbital parameters.

We give below in terms of the seven injection conditions :

$$r_{in}$$
, v_{in} , Y_{in} , t_{in} , α_{in} , δ_{in} , A^{i}_{in}

the six orbital parameters in a geocentric equatorial inertial system :

$$a_{\alpha}, e_{\alpha}, t_{p_{\alpha}}, t_{\alpha}, \eta_{\alpha}, \omega_{\alpha}$$

The first three orbital parameters are independent of the selected coordinate system; they are given by the following relations:

A, Elliptic orbit.

$$a_{\alpha} = r /(2 - r \sqrt{2}/\mu_{\oplus})$$

$$e_{\alpha} = \sqrt{1 - \left(\frac{2}{r} - \frac{\sqrt{2}}{\mu_{\oplus}}\right) \left(\frac{r^2 \sqrt{2} \cos^2 \gamma}{\mu_{\oplus}}\right)}$$

$$t - t_{\rho} = \frac{1}{2E_{\odot}} \left[\left(2 E_{\oplus} r^2 + 2\mu_{\oplus} r - r^2 \sqrt{2} \cos^2 \gamma\right)^{1/2} + \frac{1}{2E_{\odot}} \right]$$

+
$$\frac{\mu_{e}}{\sqrt{-2E_{e}}}$$
 arc sin $\frac{\mu_{e} + 2 E_{e}r}{\left(\mu_{e}^{2} + 2r^{2}v^{2}\cos^{2}v E_{e}\right)^{1/2}}$]

with $E_{\oplus} = V^2/2 - \mu_{\oplus}/r$ (total energy)

B. Hyperbolic orbit

$$a_{\alpha} = r / (r V^{2} / \mu_{\oplus} - 2)$$

$$a_{\alpha} = \sqrt{1 - \left(\frac{2}{r} - \frac{V^{2}}{\mu_{\oplus}}\right) \left(\frac{r^{2} V^{2} \cos^{2} \gamma}{\mu_{\oplus}}\right)}$$

$$t_{p} - t_{p} = \frac{1}{2E_{\oplus}} \left[\left(2E_{\oplus} r^{2} + 2\mu_{\oplus} \cdot r - r^{2} V^{2} \cos^{2} \gamma\right)^{\frac{1}{2}} - \frac{\mu_{\oplus}}{\sqrt{2E_{\oplus}}} \right] \left[\left(2E_{\oplus} r^{2} + 2\mu_{\oplus} \cdot r - r^{2} V^{2} \cos^{2} \gamma\right)^{\frac{1}{2}} \right]$$

The second three grbital parameters are dependent on the coordinate system, they are given by :

$$i_{\alpha} = \operatorname{arc} \operatorname{oos} (\operatorname{sin} \operatorname{Ain} \operatorname{cos} \delta_{\operatorname{in}})$$
$$\Omega_{\alpha} = \alpha_{\operatorname{in}} - \operatorname{arc} \tan [\tan \operatorname{Ain} \sin \delta_{\operatorname{in}}]$$
$$\omega_{\alpha} = \operatorname{arc} \operatorname{oot} [\operatorname{cos} \operatorname{Ain} \operatorname{oot} \delta_{\operatorname{in}}] + \Delta u_{\operatorname{L}}$$

Effect of injection errors on orbital parameters

Differentiation of the preceding equations permits to express the errors of the orbital paremeters, in terms of the errors in the injection parameters; symbolically we can write:

$$|\Delta_{\alpha}| = |\mathcal{M}_{in,\alpha}| |\Delta_{in}|$$

where the matrix $\mathcal{M}_{in,\alpha}$ is given below as 2-1

Where the expressions for the partial derivatives are

$$\frac{\partial a_{\alpha}}{\partial r} = \pm \frac{2 \mu_{\theta}^2}{(r v^2 - 2 \mu_{\theta})^2} \qquad (+ \text{ for ellipse, - for hyperbola})$$

$$\frac{\partial a_{\alpha}}{\partial v} = \pm \frac{2 r^2 v \mu_{\theta}}{(r v^2 - 2 \mu_{\theta})^2}$$

$$\frac{\partial e_{\alpha}}{\partial r} = \frac{v^2 \cos^2 Y}{\mu_{\theta}} \frac{(r v^2 - 2)}{\mu_{\theta}}$$

$$\frac{\partial e_{\alpha}}{\partial v} = \frac{2 r v \cos^2 \gamma}{\mu_{\oplus} e_{\alpha}} \left(\frac{r v^2}{\mu_{\oplus}} - 1\right)$$
$$\frac{\partial e_{\alpha}}{\partial \gamma} = -\frac{r v^2 \sin \gamma \cos \gamma}{\mu_{\oplus} e_{\alpha}} \left(\frac{r v^2}{\mu_{\oplus}} - 2\right)$$

For elliptic orbits

 $\frac{\partial t}{\partial r} = 3 \frac{\mu_{\oplus}}{r} \frac{t - t_{P\alpha}}{r \sqrt{2} - 2\mu_{\oplus}} - \frac{r \sqrt{3} \sin \gamma \left[r \sqrt{2} \cos^2 \gamma + \mu_{\oplus} \right] \left[r \sqrt{2} - \mu_{\oplus} \right]}{\left(r \sqrt{2} - 2\mu_{\oplus} \right) e_{\alpha}^2 \mu_{\oplus}^2} + \frac{r \sqrt{3} \sin \gamma \left[r \sqrt{2} - 2\mu_{\oplus} \right] e_{\alpha}^2 \mu_{\oplus}^2}{\left(r \sqrt{2} - 2\mu_{\oplus} \right) e_{\alpha}^2 \mu_{\oplus}^2}$

$$+ \frac{\mathbf{r} \, \mathbf{v} \cos \mathbf{Y}}{\sqrt{\frac{\mu^2 \Theta^2}{\mu \oplus \alpha} - (\mathbf{r} \mathbf{v}^2 \cos^2 \mathbf{Y} - \mu_{\oplus})^2}} \left\{ 1 + \frac{1}{\Theta^2} \left[\frac{\mathbf{r} \mathbf{v}^2}{\mu_{\oplus}} - 1 \right] \left[1 - \frac{\mathbf{r} \mathbf{v}^2 \cos^2 \mathbf{Y}}{\mu_{\oplus}} \right] \right\}$$

$$\frac{\partial t_{P\alpha}}{\partial v} = \frac{3 rv(t-t_{P\alpha})}{rv^2 - 2\mu_{\oplus}} - \frac{2r^2 \sin Y (rv^2 \cos^2 Y + \mu_{\oplus})(rv^2 - \mu_{\oplus})}{(rv^2 - 2\mu_{\oplus})(\mu_{\oplus}^2 \sigma_{\pi}^2)} +$$

$$+ \frac{2 r^{2} \cos \gamma}{\sqrt{\mu_{\oplus}^{2} e^{2} - (r v^{2} \cos^{2} \gamma - \mu)^{2}}} \left\{ 1 + \frac{1}{e^{2}} \left(\frac{r v^{2}}{\mu_{\oplus}} - 1 \right) \left(1 - \frac{r v^{2} \cos^{2} \gamma}{\mu_{\oplus}} \right) \right\}$$
$$\frac{\partial t}{\partial \gamma} = \frac{1}{\mu_{\oplus}^{2} e^{2}} r^{2} \sin^{2} \gamma \left[r v^{2} \cos^{2} \gamma + \mu_{\oplus} \right] -$$

$$\frac{2 r^{2} \sin \gamma}{\sqrt{\mu_{\oplus \alpha}^{2} e^{2} - (rv^{2} \cos^{2} \gamma - \mu_{\oplus}^{2})}} \left(1 + \frac{1}{2e^{2}} \left[\frac{rv^{2}}{\mu_{\oplus}} - 2 \right] \left[1 - 1 \frac{rv^{2} \cos^{2} \gamma}{\mu_{\oplus}} \right] \right)$$

For hyperbolic orbits

$$\frac{\partial t_{\beta_{\alpha}}}{\partial r} = \frac{3 \mu_{\oplus}}{2Er^2} \left(t - t_{\beta_{\alpha}} \right) - \frac{\mu_{\oplus}^3 t_B \mu_{\oplus}^2 - 4E^2 r^2 \mu_{\oplus}}{(2E)^{5/2} \left(\mu_{\oplus} + 2Er + B \right)}$$

$$\frac{\partial \mathbf{t}_{P\alpha}}{\partial \mathbf{v}} = \frac{3\mathbf{v}(\mathbf{t}-\mathbf{t}_{R\alpha})}{2\mathbf{E}} - \frac{\mathbf{v}\left[\mu_{\oplus}^{2}\mathbf{B}+\mu_{\oplus}\mathbf{B}^{2}+(2\mathbf{E}\mathbf{r}+\mathbf{B})(\mathbf{B}^{2}+4\mathbf{E}^{2}\mathbf{r}^{2}\mathbf{s}\mathbf{i}\mathbf{n}^{2}\mathbf{\gamma}\right) - 2\mathbf{E}\mathbf{r}\mu_{\oplus}}{(2\mathbf{E})^{5/2}\left[\mu_{\oplus}+2\mathbf{E}\mathbf{r}+\mathbf{B}\right]\mathbf{B}}$$

$$\frac{\partial t_{P\alpha}}{\partial Y} = \frac{(2\text{Er +B}) r^2 V \cos Y \sin Y}{(2\text{E})^{1/2} (\mu_{\oplus} + 2\text{Er +B}) B}$$

Where
$$E = \frac{v^2}{2} - \frac{\mu_{\oplus}}{r}$$
 and $B = \sqrt{4E^2r^2 + 4E\mu_{\oplus}r - 2Er^2v^2 \cos^2 Y}$

$$\frac{\partial i_{\Delta}}{\partial \delta_{10}} = \frac{\sin \Lambda'_{in} \sin \delta_{in}}{\sqrt{1 - \cos^2 \delta_{in} \sin^2 \Lambda'_{in}}} = \frac{\sin \Lambda'_{in} \sin \delta_{in}}{\sin i_{\Delta}}$$

$$\frac{\partial i_{\alpha}}{\partial A_{in}^{l}} = - \frac{\cos A_{in}^{l} \cos \delta_{in}}{\sin i_{\alpha}}$$

$$\frac{\partial \Omega_{\alpha}}{\partial \delta_{\text{in}}} = -\frac{\cos \delta_{\text{in}} \sin A_{\text{in}} \cos A_{\text{in}}}{\sin^2 i_{\alpha}}$$

$$\frac{\partial \Omega_{\alpha}}{\partial A_{\text{in}}!} = - \frac{\sin \delta_{\text{in}}}{\sin^2 i_{\alpha}}$$

$$\frac{\partial \omega_{\alpha}}{\partial \partial in} = \frac{\cos A_{in}}{\sin^2 i_{\alpha}}$$

$$\frac{\partial \omega_{\alpha}}{\partial A_{in}} = \frac{\cos \delta_{in} \sin \delta_{in} \sin A_{in}}{\sin^2 i_{\alpha}}$$

$$\frac{\partial \omega_{\alpha}}{\partial r} = \frac{v^2 \cos^2 \gamma}{\sqrt{\mu^2 e^2 - (rv^2 \cos^2 \gamma - \mu_{\oplus})^2}} \left\{ 1 + \frac{1}{e^2} \left(\frac{rv^2}{\mu_{\oplus}} - 1 \right) \left(1 - \frac{rv^2 \cos^2 \gamma}{\mu_{\oplus}} \right) \right\}$$

$$\frac{\partial \omega_{\alpha}}{\partial v} = \frac{2 r v \cos^2 \gamma}{\sqrt{\frac{\mu^2 e^2}{\mu \oplus \alpha} - (r v^2 \cos^2 \gamma - \mu)^2}} \left\{ 1 + \frac{1}{\frac{e^2}{\mu \oplus \alpha}} \left(\frac{r v^2}{\mu \oplus \alpha} - 1 \right) \left(1 - \frac{r v^2 \cos^2 \gamma}{\mu \oplus \alpha} \right) \right\}$$

$$\frac{\partial \omega_{\lambda}}{\partial \gamma} = - \frac{\mathbf{r} \, \nabla^2 \, \sin 2 \, \gamma}{\sqrt{\mu^2 \theta^2 - (\mathbf{r} \nabla^2 \cos^2 \gamma - \mu_{\oplus})^2}} \left\{ 1 + \frac{1}{2\theta^2} \left(\frac{\mathbf{r} \nabla^2}{\mu_{\oplus}} - 2 \right) \left(1 - \frac{\mathbf{r} \nabla^2 \cos^2 \gamma}{\mu_{\oplus}} \right) \right\}$$

T 6	Δ ^r in	∆ v. ∆	∆ ¥.	Δt.	Δ Q.	۵Á.	$\Delta \delta_{\rm in}$
8					XIC		
	•	0	0	0 i.	000	000 000	
	o	o	0	Die DA'n	n n N n N	<u>24;</u>	
	0	0	0	0	~	9	
	o	O	-	0	0	0	
	Jag Jrin	de. drin	Ote. DY.n	0	0	Jus. JTin	
	Jan	<u>Jea</u> Dvin	Oth Dvin	Q	0	<u>Jus</u> Jvin	
	Jan Jrin	De. Dr.h	dre. Jrin	Ö	Ö	Due Dr.	
-							
	Q Q	¢ ⊄	∆ ¢	D in	ΔD	Δų	

3. Transformation from an equatorial into an ecliptical geocentric and inertial coordinate system.

The orbital parameters a_{ε} , e_{ε} , $t_{\rho_{\varepsilon}}$, i_{ε} , Ω_{ε} , and ω_{ε} measured in an ecliptical geocentric and inertial coordinate system are related to the orbital parameters a_{α} , e_{α} , $t_{\rho_{\alpha}}$, ω_{α} , Ω_{α} and ω_{α} measured in an equatorial geocentric and inertial coordinate system, by the following relationships.

$$a_{\xi} = a_{\alpha}$$

$$e_{\xi} = e_{\alpha}$$

$$t_{\rho_{\xi}} = t_{\rho_{\chi}}$$

$$\cos i_{\xi} = \cos \xi \cdot \cos i_{\alpha} + \sin \xi \cdot \sin i_{\alpha} \cdot \cos \Omega_{\alpha}$$

$$\cos \Omega_{\xi} = \frac{\cos \xi \cdot \sin i_{\alpha} \cdot \cos \Omega_{\alpha} - \sin \xi \cdot \cos i_{\alpha}}{\sin i_{\xi}}$$

$$\cos\left(\omega_{z}-\omega_{\varepsilon}\right) = \frac{\cos\varepsilon}{\sin i_{\alpha}} - \sin\varepsilon \cos i_{\alpha} \cos\Omega_{z}}{\sin i_{\varepsilon}}$$

The errors Δ_{ε} in system ε are, therefore, related to the errors in system \propto by a set of equations, which can be written conveniently, in matrix form : GEOCENTRIC ECLIPTIC ORBITAL AND TRANSITION PARAMETERS

						3.2	
Δa _ε	٦	.0	Ċ	0	0	0	∆a _∝
Δe_{ε}	D	1	0	0	0	0	Δe_{a}
Δt _ρ ε	0	0	1	0	0	0	∆t _{pa}
Δi_{ε}	0	0	0	<u>Die</u> Dia	Die Die	0	Δi_{α}
$\Delta \Omega_{\epsilon}$	ο	0	٥	$\frac{\partial \Omega_{\epsilon}}{\partial i_{\star}}$	<u>DDe</u> DDa	0	$\Delta \Omega_{d}$
$\Delta \omega_{\epsilon}$	0	0	0	Dwe Dia	$\frac{\partial \omega^{\alpha}}{\partial \omega^{\alpha}}$	1	$\Delta \omega_{\alpha}$

or, symbolically.

$$\left| \Delta_{\varepsilon} \right| = \left| \mathcal{M}_{\alpha, \varepsilon} \right| \left| \Delta_{\alpha} \right|$$

with the following expressions for the partial derivatives:

$$\frac{\partial i_{\varepsilon}}{\partial i_{\alpha}} = \cos \left(\omega_{\alpha} - \omega_{\varepsilon} \right)$$

$$\frac{\partial i_{\varepsilon}}{\partial \Omega_{\alpha}} = \frac{\sin \varepsilon . \sin i_{\alpha} . \sin \Omega_{\alpha}}{\sin i_{\varepsilon}}$$

$$\frac{\partial \Omega_{\varepsilon}}{\partial i_{\alpha}} = -\frac{\cos \varepsilon . \cos i_{\alpha} . \cos \Omega_{\alpha} + \sin \varepsilon . \sin i_{\alpha} - \cos \Omega_{\varepsilon} . \cos (\omega_{\varepsilon} - \omega_{\varepsilon}) \cos i_{\varepsilon}}{\sin i_{\varepsilon}}$$

$$\sin i_{\varepsilon} . \sin \Omega_{\varepsilon}$$

$$\frac{\partial \Omega_{\varepsilon}}{\partial \Omega_{\alpha}} = \frac{\sin i_{\alpha} \cdot \sin \Omega_{\alpha}}{\sin i_{\varepsilon} \cdot \sin \Omega_{\varepsilon}} \cdot \left[\cos \varepsilon + \cos \Omega_{\varepsilon} \cdot \sin \varepsilon , \operatorname{ootg} i_{\varepsilon} \right]$$

$$\frac{\partial \omega_{\varepsilon}}{\partial u_{\varepsilon}} = \frac{\left[\cos \varepsilon \cdot \cos i_{\alpha} + \sin \varepsilon \cdot \sin i_{\alpha} \cdot \cos \Omega_{\alpha} \right] - \cos^{2}(\omega_{\alpha} - \omega_{\varepsilon}) \cos i_{\alpha}}{\sin i_{\varepsilon} \cdot \sin (\omega_{\alpha} - \omega_{\varepsilon})}$$

$$\frac{\partial \omega_{\varepsilon}}{\partial \Omega_{\alpha}} = \frac{\sin \varepsilon \cdot \cos (\omega_{\varepsilon} \cdot \sin \Omega_{\alpha} - \cos (\omega_{\varepsilon} - \omega_{\varepsilon}) \cot g (\varepsilon \cdot \sin \varepsilon \cdot \sin (\omega_{\alpha} - \omega_{\varepsilon}))}{\sin (\varepsilon \cdot \sin (\omega_{\alpha} - \omega_{\varepsilon}))}$$

4. Relationships between the orbital parameters and transition point conditions.

The following parameters determine the trans ition point in the Eart's sphere of influence and the velocity of the probe there, as well as the transit time :

$$r_{tr_{\varepsilon}} = \delta_{tr_{\varepsilon}} = \sigma_{tr_{\varepsilon}} = v_{tr} = \lambda_{\varepsilon} = \delta_{\varepsilon} = t_{tr_{\varepsilon}}$$

These are given in terms of the orbital parameters :

by the following relations for hyperbolic orbits.

$$\sin \delta_{\text{tr}_{\mathcal{E}}} = \sin i_{\mathcal{E}} \cdot \sin (\omega_{\mathcal{E}} + \theta_{\text{tr}_{\mathcal{E}}})$$
$$\tan (\alpha_{\text{tr}_{\mathcal{E}}} - \Omega_{\mathcal{E}}) = \cos i_{\mathcal{E}} \cdot \tan (\omega_{\mathcal{E}} + \theta_{\text{tr}_{\mathcal{E}}})$$
$$V_{\text{tr}} = \sqrt{\frac{\mu_{\oplus} (2a_{\mathcal{E}} + r_{\text{tr}_{\mathcal{E}}})}{a_{\mathcal{E}} r_{\text{tr}_{\mathcal{E}}}}}$$

$$r_{tr_{\mathcal{E}}} = \text{oonstant} (\sim 900000 \text{ Km})$$

$$\cos \theta_{tr_{\mathcal{E}}} = \frac{a_{\mathcal{E}} (\theta_{\mathcal{E}}^2 - 1)}{e_{\mathcal{E}} r_{tr_{\mathcal{E}}}} - \frac{1}{\theta_{\mathcal{E}}}$$

$$\sin \delta_{\mathcal{E}} = \sin i_{\mathcal{E}} \cdot \cos (Y_{tr_{\mathcal{E}}} - \omega_{\mathcal{E}} - \theta_{tr_{\mathcal{E}}})$$

$$\begin{aligned} \tan\left(\sum_{\Phi}(t_{tr_{\mathcal{E}}}) - \lambda_{\mathcal{E}} - \Omega_{\mathcal{E}}\right) &= \frac{\tan\left(Y_{tr_{\mathcal{E}}} - \omega_{\mathcal{E}} - \theta_{tr_{\mathcal{E}}}\right)}{\cos t_{\mathcal{E}}} \\ \cos Y_{tr_{\mathcal{E}}} &= \sqrt{\frac{\mu_{\Phi} \cdot e^{(e^{2}_{\mathcal{E}} - 1)}}{r_{tr_{\mathcal{E}}} v_{tr_{\mathcal{E}}}}} \\ t_{tr_{\mathcal{E}}} - t_{p_{\mathcal{E}}} &= \frac{1}{2E} \left[\sqrt{2Er_{tr_{\mathcal{E}}}^{2} + 2\mu_{\Phi} \cdot r_{tr_{\mathcal{E}}}} - J^{2}} - \right] \\ - \frac{\mu_{\Phi}}{\sqrt{2E}} \quad L \left(\mu_{\Phi} + 2E \cdot r_{tr_{\mathcal{E}}} + \sqrt{2E} \cdot \sqrt{2E} \cdot r_{tr_{\mathcal{E}}}^{2} + 2\mu_{\Phi} \cdot r_{tr_{\mathcal{E}}} - J^{2}}\right] + \\ + \frac{a^{3/2}_{\mathcal{E}}}{\mu_{\Phi}}^{3/2}} \quad L \left(\mu_{\Phi} \cdot e^{2}\right) \\ \text{Where } E = \frac{\mu_{\Phi}}{2 \cdot \epsilon} \quad "J = \sqrt{\mu_{\Phi} \cdot e^{(e^{2}_{\mathcal{E}} - 1)}} \\ Effect of orbital parameters errors on transition conditions. \end{aligned}$$

Differentation of preceding equations permits to express the errors in the transition parameters in terms of the errors in the orbital parameters; symbolically:

where
$$\mathcal{M}_{\mathrm{tr}_{\mathcal{E}}} \in [1] \mathcal{M}_{\mathcal{E}} = [\mathcal{M}_{\mathcal{E}}, \mathrm{tr}_{\mathcal{E}}] \land \mathcal{E}$$

4. 2	$\nabla \alpha_{\boldsymbol{\varepsilon}}$	Δeε	∆tre €	∆ i _€	$\Delta \Omega_{\mathcal{E}}$	$\Delta \omega_{\mathbf{E}}$	gage an an inger angen.	
	0	dutre due	dôtre dwe	0	λε dωε	dae dae	C	
	0		0	0		O	0	
	0	detre die	dôtr <u>e</u> dire	0	<u>λε</u> ^{δί} ε	2 9 9 ° E	0	
	0	0	0	Ö	JNE Dtpe	0	4 	
	0	datr <u>e</u> De _E	dôtre dee	0	dee dee	dee	dt _{tre} de _E	÷
	0	datre dae	dôtre dae	dvtr dae	dre dae	20E	dttre das	
	∆ ^r tr _E	D dtre	۵ôtre	Δ ^v tr	Δλε	Δδε	4tre	

×

Expressions of the partial derivatives $\partial \alpha_{\text{tr}_{\mathcal{E}}} = \frac{00 \text{s} i_{\mathcal{E}} \cdot 00 \text{s}^2 (\alpha_{\text{tr}_{\mathcal{E}}} - \Omega_{\mathcal{E}})}{1 - \theta_{\mathcal{E}}^2}$ $\partial \alpha_{\mathcal{E}} = \cos^2(\omega_{\mathcal{E}} + \theta_{\mathrm{tr}_{\mathcal{E}}}) + \theta_{\mathcal{E}} + \theta_{\mathrm{tr}_{\mathcal{E}}} + \theta_{\mathrm{tr}_{\mathcal{E}}}$ $\frac{\partial \alpha_{\mathrm{tr}_{\mathcal{E}}}}{\partial e_{\mathcal{E}}} = \frac{\cos \mathbf{i}_{\mathcal{E}} \cdot \cos^{2}(\alpha_{\mathrm{tr}_{\mathcal{E}}} - \Omega_{\mathcal{E}})}{\cos^{2}(\omega_{\mathcal{E}} + \theta_{\mathrm{tr}_{\mathcal{E}}})} \cdot \frac{\mathbf{a}_{\mathcal{E}}}{\mathbf{r}_{\mathrm{tr}_{\mathcal{E}}} e_{\mathcal{E}}^{2} - 1) + \mathbf{r}_{\mathrm{tr}_{\mathcal{E}}}} \frac{\mathbf{a}_{\mathcal{E}}}{\mathbf{r}_{\mathrm{tr}_{\mathcal{E}}} e_{\mathcal{E}}^{2} - 1} \cdot \mathbf{r}_{\mathrm{tr}_{\mathcal{E}}}}$ $\frac{\partial \alpha_{\text{tr}_{\mathcal{E}}}}{\partial \mathbf{i}_{\mathcal{E}}} = -\cos^2 \left(\alpha_{\text{tr}_{\mathcal{E}}} - \Omega_{\mathcal{E}} \right) \cdot \sin \mathbf{i}_{\mathcal{E}} \cdot \tan \left(\omega_{\mathcal{E}} + \theta_{\text{tr}_{\mathcal{E}}} \right)$ $\frac{\partial \alpha_{\mathrm{tr}_{\varepsilon}}}{\partial \alpha_{\mathrm{tr}_{\varepsilon}}} = \frac{\cos i_{\varepsilon} \cdot \cos^2 (\alpha_{\mathrm{tr}_{\varepsilon}} - \Omega_{\varepsilon})}{2}$ 3005 $\cos^2 (\omega_{e} - \theta_{tr_{e}})$ $\frac{\partial \delta_{\mathrm{tr}_{\mathcal{E}}}}{\partial \alpha_{\mathcal{E}}} = \frac{\sin i_{\mathcal{E}} \cdot \cos \left(\omega_{\mathcal{E}} + \theta_{\mathrm{tr}_{\mathcal{E}}}\right)}{\cos \delta_{\mathrm{tr}_{\mathcal{E}}}} \cdot \frac{1 - \theta_{\mathcal{E}}^2}{r_{\mathrm{tr}_{\mathcal{E}}} \theta_{\mathrm{tr}_{\mathcal{E}}}}$ $\frac{\partial \delta_{\text{tr}_{\mathcal{E}}}}{\partial \theta_{\mathcal{E}}} = \frac{\sin i_{\mathcal{E}} \cdot \cos (\omega_{\mathcal{E}} + \theta_{\text{tr}_{\mathcal{E}}})}{\cos \delta_{\text{tr}_{\mathcal{E}}}} \cdot \frac{a_{\mathcal{E}} (\theta_{\mathcal{E}}^2 - 1) + r_{\text{tr}_{\mathcal{E}}}}{r_{\text{tr}_{\mathcal{E}}} \theta_{\mathcal{E}}^2 \sin \theta_{\text{tr}_{\mathcal{E}}}}$ $\frac{\partial \delta_{\text{tr}_{\varepsilon}}}{\partial i_{\varepsilon}} = \frac{\cos i_{\varepsilon} \cdot \sin (\omega_{\varepsilon} + \theta_{\text{tr}_{\varepsilon}})}{\cos \delta_{\text{tr}_{\varepsilon}}}$

$$\frac{\partial V_{tr}}{\partial a_{\mathcal{E}}} = - \frac{\mu_{\oplus}}{2 v_{tr} a_{\mathcal{E}}^2}$$

$$\frac{\partial \lambda_{\varepsilon}}{\partial a_{\varepsilon}} = \frac{\cos^{2} \left[Z_{\oplus}(t_{tr_{\varepsilon}}) - \lambda_{\varepsilon} - \Omega_{\varepsilon} \right]}{\cos i_{\varepsilon} \cdot \cos^{2} (\gamma_{tr_{\varepsilon}} - \omega_{\varepsilon} - \theta_{tr_{\varepsilon}})} \left[\frac{e_{\varepsilon}^{2} - 1}{e_{\varepsilon} \gamma_{r_{tr_{\varepsilon}}}} \frac{1}{\sin \theta_{tr_{\varepsilon}}} - \frac{1}{e_{\varepsilon} \gamma_{r_{tr_{\varepsilon}}}} \right]$$

$$\frac{3 a_{\varepsilon} + r_{tr_{\varepsilon}} - a_{\varepsilon} \theta_{\varepsilon}^{2}}{\sin Y_{tr_{\varepsilon}}} \sqrt{\frac{r_{tr_{\varepsilon}}(\theta_{\varepsilon}^{2} - 1)}{2a_{\varepsilon} + r_{tr_{\varepsilon}}}} + \frac{2 \pi}{365!25} \frac{\partial t_{tr_{\varepsilon}}}{\partial a_{\varepsilon}}$$

$$\frac{\partial \lambda_{\varepsilon}}{\partial \theta_{\varepsilon}} = - \frac{\cos^{2} \left[\sum_{\Theta} (t_{tr_{\varepsilon}}) - \lambda_{\varepsilon} - \Omega_{\varepsilon} \right]}{\cos i_{\varepsilon} \cdot \cos^{2} (Y_{tr_{\varepsilon}} - \omega_{\varepsilon} - \theta_{tr_{\varepsilon}}) \left[\frac{a_{\varepsilon} (\theta_{\varepsilon}^{2} + 1) + r_{tr_{\varepsilon}}}{\theta_{\varepsilon}^{2} r_{tr_{\varepsilon}}} - \frac{1}{s_{tr_{\varepsilon}}} - \frac{1}{s_{tr_{\varepsilon}}} \right]}$$

$$=\frac{\varepsilon}{\sin Y_{\text{tr}_{\mathcal{E}}}}\sqrt{\frac{\varepsilon}{r_{\text{tr}_{\mathcal{E}}}^{(2a}\varepsilon + r_{\text{tr}_{\mathcal{E}}}^{)(a_{\mathcal{E}}^{2}-1)}} + \frac{2\pi}{365!25}} \frac{\partial \tau_{\text{tr}_{\mathcal{E}}}}{\partial e_{\mathcal{E}}}$$

 $\frac{\partial \lambda_{\mathcal{E}}}{\partial t_{\mathcal{P}_{\mathcal{E}}}} = \frac{2 \pi}{365, 25}$

$$\frac{\partial \lambda_{\mathcal{E}}}{\partial i_{\mathcal{E}}} = \frac{\cos^2 \left[\sum_{\oplus} (t_{tr_{\mathcal{E}}}) - \lambda_{\mathcal{E}} - \Omega_{\mathcal{E}} \right] \cdot \tan \left(\lambda_{tr_{\mathcal{E}}} - \omega_{\mathcal{E}} \theta_{tr_{\mathcal{E}}} \right) \cdot \sin i_{\mathcal{E}}}{\cos^2 i_{\mathcal{E}}}$$

$$\frac{\partial \lambda_{\varepsilon}}{\partial \omega_{\varepsilon}} = \frac{\cos^2 \left[\Sigma_{\varepsilon} (t_{tr_{\varepsilon}}) - \lambda_{\varepsilon} - \Omega_{\varepsilon} \right]}{\cos i_{\varepsilon} \cdot \cos^2 \left(Y_{tr_{\varepsilon}} - \omega_{\varepsilon} - \theta_{tr_{\varepsilon}} \right)}$$

$$\frac{\partial \delta_{\varepsilon}}{\partial \alpha_{\varepsilon}} = \frac{\sin i_{\varepsilon} \cdot \sin (Y_{tr_{\varepsilon}} - \omega_{\varepsilon} - \theta_{tr_{\varepsilon}})}{\cos \delta_{\varepsilon}}$$

$$\frac{3 a_{\mathcal{E}} - \Gamma_{\mathrm{tr}_{\mathcal{E}}} - a_{\mathcal{E}} e_{\mathcal{E}}^{2}}{\sin \gamma_{\mathrm{tr}_{\mathcal{E}}}} \sqrt{\frac{\Gamma_{\mathrm{tr}_{\mathcal{E}}}(e_{\mathcal{E}}^{2} - 1)}{2a_{\mathcal{E}} - \Gamma_{\mathrm{tr}_{\mathcal{E}}}}} - \frac{e_{\mathcal{E}}^{2} - 1}{e_{\mathcal{E}}^{2} \Gamma_{\mathrm{tr}_{\mathcal{E}}}} - \frac{1}{1}}{\frac{1}{e_{\mathcal{E}}^{2} \Gamma_{\mathrm{tr}_{\mathcal{E}}}}} \int \frac{1}{e_{\mathcal{E}}^{2} \Gamma_{\mathrm{tr}_{\mathcal{E}}}} - \frac{1}{e_{\mathcal{E}}^{2} - 1}}{e_{\mathcal{E}}^{2} \Gamma_{\mathrm{tr}_{\mathcal{E}}}} - \frac{1}{e_{\mathcal{E}}^{2} \Gamma_{\mathrm{tr}_{\mathcal{E}}}} - \frac{1}{e_{\mathcal{E}}^{2} \Gamma_{\mathrm{tr}_{\mathcal{E}}}}}{e_{\mathcal{E}}^{2} \Gamma_{\mathrm{tr}_{\mathcal{E}}}} - \frac{1}{e_{\mathcal{E}}^{2} \Gamma_{\mathrm{tr}_{\mathcal{E}}}}} \int \frac{1}{e_{\mathcal{E}}^{2} \Gamma_{\mathrm{tr}_{\mathcal{E}}}} - \frac{1}{e_{\mathcal{E}}^{2} \Gamma_{\mathrm{tr}_{\mathcal{E}}}}}{e_{\mathcal{E}}^{2} \Gamma_{\mathrm{tr}_{\mathcal{E}}}}}$$

$$\frac{\partial \delta_{\mathcal{E}}}{\partial e_{\mathcal{E}}} = \frac{\sin i_{\mathcal{E}} \cdot \sin \left(\tilde{Y}_{tr_{\mathcal{E}}} - \omega_{\mathcal{E}} - \theta_{tr_{\mathcal{E}}} \right)}{\cos \delta_{\mathcal{E}}}$$

$$\frac{a_{\mathcal{E}}}{\sin \tilde{Y}_{tr_{\mathcal{E}}}} \sqrt{\frac{e_{\mathcal{E}}}{r_{tr_{\mathcal{E}}} (2a_{\mathcal{E}} + r_{tr_{\mathcal{E}}}) (e^{2} - 1)}} - \frac{1}{\sin \theta_{tr_{\mathcal{E}}}} \frac{a_{\mathcal{E}} (e^{2}_{\mathcal{E}} + 1) + r_{tr_{\mathcal{E}}}}{\sin \theta_{tr_{\mathcal{E}}} e^{2} r_{tr_{\mathcal{E}}}} \right]$$

$$\frac{\partial \delta_{\varepsilon}}{\partial i_{\varepsilon}} = \frac{\cos i_{\varepsilon} \cdot \cos \left(Y_{tr_{\varepsilon}} - \omega_{\varepsilon} \cdot \theta_{tr_{\varepsilon}} \right)}{\cos \delta_{\varepsilon}}$$

$$\frac{\partial \delta_{\varepsilon}}{\partial \omega_{\varepsilon}} = \frac{\sin i_{\varepsilon} \cdot \sin \left(Y_{tr_{\varepsilon}} - \omega_{\varepsilon} - \theta_{tr_{\varepsilon}} \right)}{\cos \delta_{\varepsilon}}$$

$$\frac{\partial t_{tr_{e}}}{\partial a_{e}} = \frac{1}{\sqrt{\mu_{e}}} \begin{cases} \frac{r_{tr_{e}}^{2} + 4a_{e} r_{tr_{e}} - 3a_{e}^{2} (e_{e}^{2} - 1)}{\frac{2}{4} a_{e} r_{tr_{e}}^{2} + 2r_{tr_{e}} a_{e}^{2} (e_{e}^{2} - 1)} \\ \frac{1}{2} \sqrt{\frac{a_{e} r_{e}^{2}}{\epsilon r_{e}}} + 2r_{tr_{e}} a_{e}^{2} (e_{e}^{2} - 1)} \end{cases}$$

+
$$\frac{3 a_{\varepsilon}^{1/2}}{2} I \left(\frac{a_{\varepsilon} + r_{tr_{\varepsilon}} + \sqrt{r_{tr_{\varepsilon}}^{2} + 2r_{tr_{\varepsilon}}} a_{\varepsilon} - a_{\varepsilon}^{2} (e_{\varepsilon}^{2} - 1)}{a_{\varepsilon} e_{\varepsilon}} \right) - \frac{a_{\varepsilon} e_{\varepsilon}}{2}$$

$$\frac{r_{\mathrm{tr}_{\varepsilon}a_{\varepsilon}}^{1/2}}{\sqrt{r_{\mathrm{tr}_{\varepsilon}}^{2}+2r_{\mathrm{tr}_{\varepsilon}a_{\varepsilon}}-a_{\varepsilon}^{2}(e_{\varepsilon}^{2}-1)}}}$$

$$\frac{\partial t_{tr_{\mathcal{E}}}}{\partial \theta_{\mathcal{E}}} = \frac{-1}{\sqrt{\mathcal{M}_{\oplus}}} \left[\frac{\theta_{\mathcal{E}} a_{\mathcal{E}}^{3}}{\sqrt{a_{\mathcal{E}} r_{tr_{\mathcal{E}}}^{2} + 2r_{tr_{\mathcal{E}}} a_{\mathcal{E}}^{2} - a_{\mathcal{E}}^{2} (\theta_{\mathcal{E}}^{2} - 1)}} \right] + \frac{1}{\sqrt{a_{\mathcal{E}} r_{tr_{\mathcal{E}}}^{2} + 2r_{tr_{\mathcal{E}}} a_{\mathcal{E}}^{2} - a_{\mathcal{E}}^{2} (\theta_{\mathcal{E}}^{2} - 1)}}}$$

+
$$a_{\mathcal{E}}^{3/2}$$
 $\frac{r_{\mathrm{tr}_{\mathcal{E}}} + a_{\mathcal{E}}}{\sqrt{r_{\mathrm{tr}_{\mathcal{E}}}^2 + 2r_{\mathrm{tr}_{\mathcal{E}}} a_{\mathcal{E}}^2 - a_{\mathcal{E}}^2 (\theta_{\mathcal{E}}^2 - 1)}}$

5. Relationships between the transition conditions with respect to the Earth and the injection conditions in the heliocentric orbit.

These injection conditions are the following in a heliocentric inertial reference system:

$$\mathbf{r} = \int_{\mathbf{tr}_{\sigma}}^{\mathbf{r}} \mathbf{d} = \nabla = \int_{\sigma}^{\mathbf{r}_{\sigma}} \mathbf{tr}_{\sigma} = \int_{\mathbf{tr}_{\sigma}}^{\mathbf{r}_{\sigma}} \mathbf{tr}_{\sigma} = \int_{\mathbf{tr}_{\sigma}}^{\mathbf{r}_{\sigma}}^{\mathbf{r}_{\sigma}} \mathbf{tr}_{\sigma} = \int_{\mathbf{tr}_{\sigma}}^{\mathbf{r}_{\sigma}}^{\mathbf{r}_{\sigma}} \mathbf{tr}$$

That are given in terms of the transition conditions with - respect to a geocentric ecliptic inertial reference system:

$$\mathbf{r}_{\mathbf{t}\mathbf{r}_{\varepsilon}} \ \ \delta_{\mathbf{t}\mathbf{r}_{\varepsilon}} \ \ \mathbf{a}_{\mathbf{t}\mathbf{r}_{\varepsilon}} \ \ \mathbf{v}_{\mathbf{t}\mathbf{r}_{\varepsilon}} \ \ \mathbf{\lambda}_{\varepsilon} \ \ \delta_{\varepsilon} \ \ \mathbf{t}_{\mathbf{t}\mathbf{r}_{\varepsilon}}$$

by the following relations:

$$\begin{aligned} \tan \alpha &= \frac{\cos \delta_{trg} \cdot \sin \alpha_{trg} + \frac{r_{\oplus}}{r_{trg}} \sin \sum_{\Phi} (t_{trg})}{\frac{r_{\oplus}}{r_{trg}} \cos \sum_{\Phi} (t_{\pm}) + \cos \alpha} \cos \delta_{trg} \\ \tan^{2} \delta_{trg} &= \frac{r_{\pm}}{r_{\Phi}^{2} + r_{trg}^{2} \cos \delta_{trg} + 2r r_{trg}} \cos \delta_{trg} \cos \left[\alpha_{trg} - \sum_{\Phi} (t_{trg})\right] \\ r_{trg} &= \frac{r_{\pm}}{r_{\Phi}} \sin \delta_{trg} \\ r_{trg} &= \frac{r_{\pm}}{\sin \delta_{trg}} \cos \delta_{g} \cos \delta_{g} \cos \delta_{g} + v_{tr}^{2} \end{aligned}$$

TRANSITION AND HELIOCENTRIC ORBITAL PARAMETERS

$$\begin{split} & \operatorname{Sen} Y_{\sigma} = (V_{\mathbf{I}})^{-1} \left\{ V_{\mathrm{tr}} \cos \oint \cos \oint \sin \left[\lambda_{\varepsilon} + \alpha_{\mathrm{tr}} - \Sigma_{\varepsilon} (t_{\mathrm{tr}_{\varepsilon}}) \right] + \right. \\ & + V_{\mathrm{tr}} \sin \oint_{\varepsilon} \sin \left[\delta_{\mathrm{tr}_{\sigma}} + V_{\varepsilon} \cos \left[\delta_{\mathrm{tr}_{\sigma}} \sin \left[\alpha_{\mathrm{tr}_{\sigma}} - \Sigma_{\varepsilon} (t_{\mathrm{tr}_{\varepsilon}}) \right] \right] \right\} \\ & \left. \cos i_{\sigma} = (V_{\mathbf{I}} \cos Y_{\sigma})^{-1} \left\{ V_{\varepsilon} \cos \left\{ \delta_{\mathrm{tr}_{\sigma}} \cos \left[\alpha_{\mathrm{tr}_{\sigma}} - \sum_{\varepsilon} (t_{\mathrm{tr}_{\varepsilon}}) \right] + \right. \\ & \left. + V_{\mathrm{tr}} \cos \left\{ \delta_{\mathrm{tr}_{\sigma}} \cos \left[\alpha_{\mathrm{tr}_{\sigma}} + \lambda_{\varepsilon} - \sum_{\varepsilon} (t_{\mathrm{tr}_{\varepsilon}}) \right] \right\} \right\} \end{split}$$

However, taking into account that $r_{tr_{\varepsilon}}/r_{\oplus}$ is a small number ($\simeq 0.9/150$) we shall use the following appoximate relations in which terms of order $\left[r_{tr_{\varepsilon}}/r_{\oplus}\right]^2$ have been:

$$\begin{aligned} \alpha_{\mathrm{tr}_{\mathcal{G}}} &= \sum_{\mathfrak{G}} (\mathbf{t}_{\mathrm{tr}_{\mathcal{E}}}) + \frac{\mathbf{r}_{\mathrm{tr}_{\mathcal{E}}}}{\mathbf{r}_{\mathfrak{G}}} \cos \delta_{\mathrm{tr}_{\mathcal{E}}} \sin \left[\alpha_{\mathrm{tr}_{\mathcal{E}}} - \sum_{\mathfrak{G}} (\mathbf{t}_{\mathrm{tr}_{\mathcal{E}}}) \right] \\ \delta_{\mathrm{tr}_{\mathcal{G}}} &= \frac{\mathbf{r}_{\mathrm{tr}_{\mathcal{E}}}}{\mathbf{r}_{\mathfrak{G}}} \sin \delta_{\mathrm{tr}_{\mathcal{E}}} \\ \mathbf{r}_{\mathrm{tr}_{\mathcal{G}}} &= \mathbf{r}_{\mathfrak{G}} + \mathbf{r}_{\mathrm{tr}_{\mathcal{E}}} \cos \delta_{\mathrm{tr}_{\mathcal{E}}} \sin \left[\alpha_{\mathrm{tr}_{\mathcal{E}}} - \sum_{\mathfrak{G}} (\mathbf{t}_{\mathrm{tr}_{\mathcal{E}}}) \right] \\ \mathbf{v}_{\mathrm{I}}^{2} &= \mathbf{v}_{\mathfrak{G}}^{2} + 2\mathbf{v}_{\mathrm{tr}} \, \mathbf{v}_{\mathfrak{G}} \cos \delta_{\mathcal{E}} \cos \lambda_{\mathcal{E}} + \mathbf{v}_{\mathrm{tr}}^{2} \\ \mathbf{t}_{\mathrm{tr}_{\mathcal{G}}} &= \mathbf{t}_{\mathrm{tr}_{\mathcal{E}}} \end{aligned}$$

$$\sin Y_{\sigma} = \frac{V_{tr} \cos \delta_{\varepsilon} \sin \lambda_{\varepsilon} + [\alpha_{tr\sigma} - Z_{tr\varepsilon}] [V_{\oplus} + V_{tr} \cos \delta_{\varepsilon} \cos \lambda_{\varepsilon}] + \delta_{tr\sigma} \sin \delta_{\varepsilon} V_{tr}}{V_{I}}$$

$$\cos i_{\sigma} = \frac{v_{\phi} + v_{tr} \cos \delta_{\varepsilon} \cos \lambda_{\varepsilon} - [\alpha_{tr\sigma} - \Sigma_{\phi}(t_{tr\varepsilon})]v_{tr} \cos \delta_{\varepsilon} \sin \lambda_{\varepsilon}}{v_{I} \cos \gamma}$$

Effect of transition errors on injection error in the heliocentric orbit.

Differentiation of the preceding equations permits to express the errors in the injection conditions in terms of the errors in transition conditions.

$$|\Delta_{tr,\sigma}| = |\mathcal{M}_{trE,tr\sigma}| |\Delta_{tr_{\mathcal{E}}}|$$

where $|\mathcal{M}_{trE,tr\sigma}|$ is given by 5.1

with the following expressions for the derivatives

$$\frac{\partial \mathbf{r}_{tr_{\mathcal{E}}}}{\partial \mathbf{r}_{tr_{\mathcal{E}}}} = \cos \delta_{tr_{\mathcal{E}}} \cdot \sin \left[\boldsymbol{\alpha}_{tr_{\mathcal{E}}} - \boldsymbol{\Sigma}_{\boldsymbol{\Theta}}(t_{tr_{\mathcal{E}}}) \right]$$

$$\frac{\partial \mathbf{r}_{tr_{\mathcal{E}}}}{\partial \boldsymbol{\alpha}_{tr_{\mathcal{E}}}} = \mathbf{r}_{tr_{\mathcal{E}}} \cdot \cos \delta_{tr_{\mathcal{E}}} \cdot \cos \left[\boldsymbol{\alpha}_{tr_{\mathcal{E}}} - \boldsymbol{\Sigma}_{\boldsymbol{\Theta}}(t_{tr_{\mathcal{E}}}) \right]$$

$$\frac{\partial \mathbf{r}_{tr_{\mathcal{E}}}}{\partial t_{tr_{\mathcal{E}}}} = -\mathbf{r}_{tr_{\mathcal{E}}} \cdot \sin \left[\boldsymbol{\alpha}_{tr_{\mathcal{E}}} - \boldsymbol{\Sigma}_{\boldsymbol{\Theta}}(t_{tr_{\mathcal{E}}}) \right] \quad \sin \delta_{tr_{\mathcal{E}}}$$

$$\frac{\partial \mathbf{r}_{tr_{\mathcal{E}}}}{\partial t_{tr_{\mathcal{E}}}} = -\mathbf{r}_{tr_{\mathcal{E}}} \cdot \sin \left[\boldsymbol{\alpha}_{tr_{\mathcal{E}}} - \boldsymbol{\Sigma}_{\boldsymbol{\Theta}}(t_{tr_{\mathcal{E}}}) \right] \quad \sin \delta_{tr_{\mathcal{E}}}$$

5.1	Δrtre	Δα _{tr} ε	∆ ôtrE	۵Vtr	Δ λ _ε	$\nabla_{\mathcal{E}}^{\mathcal{O}}$	Δtr _E
	drtro Ottre	datro Sttre	0	O	0 1 c.	076 Dtre	۴
	0	0	<u>o</u>	20 20	016 00e	000 200	0
	0	0	0	re	oic ste	02°	0
	0	0	0	04 04r	Dig Dkr	976 21	0
	Ditra Dure	Datra Datra	Dore Doue	O	<u> 3 5 6</u>	770- 206-	0
	Ortra Datie	Jarre Darre	0	0	<u>) i.</u> Dare	Darre Darre	0
	JEre DEre	Jarie Drie	Dobres Datre	o	Oir Drie	375 Dr.c.	0
				11	<u></u>		
	Δ ^{ft}	$\Delta \alpha_{tf_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f$	$\Delta \delta_{t_{f_{\sigma}}}$	> [⊾] ♦	⊄ ز	۵ ار	∆ ttr

$$\frac{\partial \alpha_{\mathrm{tr}_{\mathcal{F}}}}{\partial r_{\mathrm{tr}_{\mathcal{E}}}} = \frac{\cos \delta_{\mathrm{tr}_{\mathcal{E}}}}{r_{\mathfrak{G}}} \sin \left[\alpha_{\mathrm{tr}_{\mathcal{E}}} - \Sigma_{\mathfrak{G}} \left(t_{\mathrm{tr}_{\mathcal{E}}} \right) \right]$$

$$\frac{\partial \alpha_{\mathrm{tr}_{\mathcal{E}}}}{\partial \alpha_{\mathrm{tr}_{\mathcal{E}}}} = \frac{r_{\mathrm{tr}_{\mathcal{E}}}}{r_{\mathfrak{G}}} \cos \delta_{\mathrm{tr}_{\mathcal{E}}} \cos \left[\alpha_{\mathrm{tr}_{\mathcal{E}}} - \Sigma_{\mathfrak{G}} \left(t_{\mathrm{tr}_{\mathcal{E}}} \right) \right]$$

$$\frac{\partial \alpha_{\mathrm{tr}_{\mathcal{E}}}}{\partial \delta_{\mathrm{tr}_{\mathcal{E}}}} = -\frac{r_{\mathrm{tr}_{\mathcal{E}}}}{r_{\mathfrak{G}}} \sin \delta_{\mathrm{tr}_{\mathcal{E}}} \sin \left[\alpha_{\mathrm{tr}_{\mathcal{E}}} - \Sigma_{\mathfrak{G}} \left(t_{\mathrm{tr}_{\mathcal{E}}} \right) \right]$$

$$\frac{\partial \alpha_{\mathrm{tr}_{\mathcal{E}}}}{\partial \delta_{\mathrm{tr}_{\mathcal{E}}}} = \frac{2\pi}{r_{\mathfrak{G}}} \sin \delta_{\mathrm{tr}_{\mathcal{E}}} \sin \left[\alpha_{\mathrm{tr}_{\mathcal{E}}} - \Sigma_{\mathfrak{G}} \left(t_{\mathrm{tr}_{\mathcal{E}}} \right) \right]$$

$$\frac{\partial \alpha_{\mathrm{tr}_{\mathcal{E}}}}{\partial \delta_{\mathrm{tr}_{\mathcal{E}}}} = \frac{2\pi}{365,25} \left\{ 1 - \frac{r_{\mathrm{tr}_{\mathcal{E}}}}{r_{\mathfrak{G}}} \cos \delta_{\mathrm{tr}_{\mathcal{E}}} \cos \left[\alpha_{\mathrm{tr}_{\mathcal{E}}} - \Sigma_{\mathfrak{G}} \left(t_{\mathrm{tr}_{\mathcal{E}}} \right) \right] \right\}$$

$$\frac{\partial \delta_{\mathrm{tr}_{\overline{\sigma}}}}{\partial \mathrm{r}_{\mathrm{tr}_{\varepsilon}}} = \frac{\sin \delta_{\mathrm{tr}_{\varepsilon}}}{\mathrm{r}_{\mathfrak{G}}}$$

$$\frac{\partial \delta_{\text{tr} \varepsilon}}{\partial \delta_{\text{tr}_{\varepsilon}}} = \frac{r_{\text{tr}\varepsilon}}{r_{\oplus}} \cos \delta_{\text{tr}_{\varepsilon}}$$

$$\frac{\partial v_{I}}{\partial v_{tr}} = \frac{v_{\bullet} \cos \delta_{\varepsilon} \cos \lambda_{\varepsilon} + v_{tr}}{v_{I}}$$

$$\frac{\partial v_{I}}{\partial \lambda_{\varepsilon}} = -\frac{v_{tr} v_{\bullet} \cos \delta_{\varepsilon} \cos \lambda_{\varepsilon}}{v_{I}}$$

$$\frac{\partial v_{I}}{\partial \delta_{\varepsilon}} = -\frac{v_{tr} v_{\bullet} \sin \delta_{\varepsilon} \cos \lambda_{\varepsilon}}{v_{I}}$$

$$\frac{\partial i\sigma}{\partial r_{tr_{e}}} = \frac{v_{tr} \cos \delta_{e} \cos \lambda_{e} \left(\frac{\partial \alpha_{tr_{e}}}{\partial r_{tr_{e}}} \right) - v_{I} \cos i_{\sigma} \cdot \sin \gamma_{\sigma} \left(\frac{\partial r_{\sigma}}{\partial r_{tr_{e}}} \right)}{v_{I} \cos \gamma_{\sigma} \sin i_{\sigma}} - v_{I} \cos i_{\sigma} \cdot \sin \gamma_{\sigma} \left(\frac{\partial r_{\sigma}}{\partial \alpha_{tr_{e}}} \right)}$$

$$\frac{\partial i\sigma}{\partial \alpha_{tr_{e}}} = \frac{v_{tr} \cos \delta_{e} \cos \lambda_{e} \left(\frac{\partial \alpha_{tr_{e}}}{\partial \lambda_{tr_{e}}} \right) - v_{I} \cos i_{\sigma} \sin \gamma_{\sigma} \left(\frac{\partial r_{\sigma}}{\partial \alpha_{tr_{e}}} \right)}{v_{I} \cos \gamma_{\sigma} \sin i_{\sigma}} - v_{I} \cos i_{\sigma} \sin \gamma_{\sigma} \left(\frac{\partial r_{\sigma}}{\partial \alpha_{tr_{e}}} \right)}$$

$$\frac{\partial i\sigma}{\partial \tau_{tr_{e}}} = \frac{v_{tr} \cos \delta_{e} \cos \lambda_{e} \left(\frac{\partial \alpha_{tr_{e}}}{\partial \delta_{tr_{e}}} \right) - v_{I} \cos i_{\sigma} \sin \gamma_{\sigma} \left(\frac{\partial r_{\sigma}}{\partial \delta_{tr_{e}}} \right)}{v_{I} \cos \gamma_{\sigma} \sin i_{\sigma}} - v_{I} \cos i_{\sigma} \sin \gamma_{\sigma} \left(\frac{\partial r_{\sigma}}{\partial \delta_{tr_{e}}} \right)}$$

$$\frac{\partial i\sigma}{\partial \tau_{tr_{e}}} = - \left(v_{I} \cos \gamma_{e} \sin i_{\sigma} \right)^{-1} \left(\cos \delta_{e} \cos \lambda_{e} - \frac{v_{I} \cos i_{\sigma} \sin \gamma_{\sigma}}{v_{r}} \sin \delta_{e} \left(\frac{\partial r_{e}}{\partial v_{tr}} \right) \right)$$

$$\frac{\partial i_{\sigma}}{\partial \tau_{e}} = \left(v_{I} \cos \gamma_{e} \sin \delta_{e} \right)^{-1} \left(\cos \delta_{e} \cos \lambda_{e} - \frac{v_{I} \cos i_{\sigma} \sin \gamma_{\sigma}}{v_{r}} \left(\frac{\partial r_{\sigma}}{\partial v_{tr}} \right) \right)$$

$$\frac{\partial i_{\sigma}}{\partial \lambda_{e}} = \left(v_{I} \cos \gamma_{e} \sin \delta_{e} \right)^{-1} \left(\cos \delta_{e} \cos \delta_{e} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{\sigma} \sin \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \sin \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \sin \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \sin \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \sin \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \sin \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \sin \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \sin \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \sin \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \sin \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \sin \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \right)^{-1} \left(v_{I} \cos \delta_{e} \cos \delta_{$$

 $\frac{\partial i\sigma}{\partial tr_{\varepsilon}} = (V_{I}\cos\gamma\sin t_{\sigma})^{-1}V_{tr}\cos\delta_{\varepsilon}\cos\lambda_{\varepsilon}(\frac{\partial a_{tro}}{\partial t_{tr\varepsilon}})^{-1} - \frac{\partial r_{\sigma}}{\partial t_{r\varepsilon}} \right\}$ $\frac{\partial i\sigma}{\partial tr_{\varepsilon}} = \frac{2\pi}{365,25}V_{tr}\cos\delta_{\varepsilon}\sin\lambda_{\varepsilon} - V_{I}\cos\delta_{\varepsilon}\sin\gamma_{\sigma}(\frac{\partial r_{\sigma}}{\partial tr_{\varepsilon}}) - \frac{\partial r_{\sigma}}{\partial tr_{\varepsilon}} \right\}$

6. Relationships between in the injection conditions and orbital parameters of the heliocentric orbit.

We give below the relation between the orbital parameters in a heliocentric ecliptic inertial reference system:

as es to is no wa

and the injection conditions into the orbit.

$$r_{tr_{\sigma}}$$
, $\delta_{tr_{\sigma}}$, $\alpha_{tr_{\sigma}}$, v_{I} , V_{σ} , i_{σ} , $t_{tr_{\sigma}}$

These relations are as follows

 $a_{\sigma} = \frac{r_{tr_{\sigma}}}{2 - \frac{r_{tr_{\sigma}} V_{I}^{2}}{\mu_{o}}}$

$$e_{\sigma} = \sqrt{1 - \left(\frac{2}{r_{tr_{\sigma}}} - \frac{v_{I}^{2}}{\mu_{\odot}}\right)} \left(\frac{r_{tr_{\sigma}}^{2} v_{I}^{2} \cos^{2} \gamma_{\sigma}}{\mu_{\odot}}\right)$$

$$t_{tr_{\sigma}} = t_{\rho} = \frac{1}{2E_{\odot}} \left[\left(2E_{\odot} r_{tr_{\sigma}}^{2} + 2\mu_{\odot} r_{tr_{\sigma}} - r_{tr_{\sigma}}^{2} v_{I}^{2} \cos^{2} \gamma_{\sigma} \right)^{\frac{1}{2}} + \right]$$

+
$$\frac{\mu_{c}}{\sqrt{-2E_{o}}}$$
 $\sin^{-1}\frac{\mu_{o}^{+2E_{o}r_{tr_{\sigma}}}}{(\mu_{o}^{2}-2r_{tr_{\sigma}}^{2}V_{I}^{2}\cos^{2}\gamma_{\sigma}E_{o})^{\frac{1}{2}}}$]

 $E_{\odot} = \frac{v_1^2}{2} - \frac{\mu_{\odot}}{r_{\rm tr}_{\sigma}}$

$$i_{\sigma} = i_{\sigma}$$

$$\cos (\alpha_{tr_{\sigma}} - \Omega_{\sigma}) = \operatorname{ctg} i_{\sigma} \tan \delta_{tr_{\sigma}}$$

$$\sin (\omega_{\sigma} - \Delta U_{t}) = \frac{\sin \delta_{tr_{\sigma}}}{\sin i_{\sigma}}$$

The errors in the heliocentric orbital parameters may be expressed symbolically in terms of the errors in the injection conditions by

$$|\Delta_{\sigma}| = |\mathcal{M}_{tr\sigma}, \sigma| |\Delta_{tr\sigma}|$$

Where the matrix $M_{tro,\sigma}$ is given by 6.1 with the following expressions for the derivatives.

$$\frac{\partial a_{\sigma}}{\partial r_{tr_{\sigma}}} = \frac{2\mu_{\sigma}^{2}}{(r_{tr_{\sigma}} V_{I}^{2} - 2\mu_{\sigma})^{2}}$$

$$\frac{\partial a_{\sigma}}{\partial v_{I}} = \frac{2 \mu_{\odot} v_{I} r_{tr_{\sigma}}^{2}}{(r_{tr_{\sigma}} v_{I}^{2} - 2\mu_{\odot})^{2}}$$

$$\frac{\partial e_{\sigma}}{\partial r_{tr_{\sigma}}} = \frac{v_{I}^{2} \cos^{2} Y_{\sigma}}{\mu_{\odot}^{e_{\sigma}}} \left(\frac{r_{tr_{\sigma}}}{\mu_{\odot}} \frac{v_{I}^{2}}{\mu_{\odot}} \right) - 1 \right)$$

$$\frac{\partial c_{\sigma}}{\partial v_{I}} = \frac{2 r_{tr_{\sigma}} v_{I} \cos^{2} \gamma_{\sigma}}{\int_{0}^{\mu} c_{\sigma}} \left(\frac{r_{tr_{\sigma}} v_{I}^{2}}{\mu_{0}} - 1 \right)$$

I. °	Δrtro	Datro	2 dt ro	٨٧J	۵ľσ	ΔΥσ	Δttr
9	0	0	-	0	0	0	
	0	deg	dtpg drg	0	0	dvo	
	0	O	Ø	Ŧ	dig	duo dig	
	200	deg dv.	dtpo dv1	0	0	deua dv1	
	Ø	Ø	Ø	0	2000 John	duo dôtro	
	0	0	O	0	datro	0	
	dag drtrg	dea	dr tro	0	0	duc drtr	
				1(
	Δa_{σ}	D D D D D	Δt_{lg}	∆ in	$\Delta \Omega_{\sigma}$	$\Delta \omega_{\sigma}$	

$$\frac{\partial e_{\sigma}}{\partial Y_{\sigma}} = -\frac{\mathbf{r}_{\mathrm{tr}_{\sigma}} \mathbf{v}_{\mathrm{I}}^{2} \operatorname{sin} Y_{\sigma} \cos Y_{\sigma}}{\mu_{\odot} e_{\sigma}} \left(\frac{\mathbf{r}_{\mathrm{tr}_{\sigma}} \mathbf{v}_{\mathrm{I}}^{2}}{\mu_{\odot}} - 2 \right)$$

 $\frac{\partial t_{p_{\sigma}}}{\partial r_{tr_{\sigma}}}, \frac{\partial t_{p_{\sigma}}}{\partial v_{I}} \text{ and } \frac{\partial t_{p_{\sigma}}}{\partial r_{\sigma}} \text{ are those given in matrix}$ 2.1 when $t_{p_{\alpha}}$, r_{in} , v_{in} , $\gamma_{in} e_{\alpha}$, a_{α} and μ_{Φ} are substituted by $t_{p_{\sigma}}$, $r_{tr_{\sigma}}$, v_{I} , γ_{σ} , e_{σ} , a_{σ} , and μ_{Φ}

$$\frac{\partial \Omega_{\sigma}}{\partial t_{r_{\sigma}}} = -\frac{\operatorname{ctg} i_{\sigma}}{\cos^{2} \delta_{tr\sigma} \sin (\alpha_{tr\sigma} - \Omega_{\sigma})}$$

$$\frac{\partial \Omega_{\sigma}}{\partial i\sigma} = \frac{\tan \theta_{tr_{\sigma}}}{\sin^2 i_{\sigma} \cdot \sin (\alpha_{tr_{\sigma}} - \Omega_{\sigma})}$$

 $\frac{\partial \omega_{\sigma}}{\partial \mathbf{v}_{\mathrm{tr}_{\sigma}}}, \frac{\partial \omega_{\sigma}}{\partial \mathbf{v}_{\mathrm{I}}} \text{ and } \frac{\partial \omega_{\sigma}}{\partial \mathbf{v}_{\sigma}} \text{ are those given in matrix 2.1}$ when ω_{α} , \mathbf{r}_{in} , \mathbf{v}_{in} , \mathbf{v}_{in} , \mathbf{e}_{α} , \mathbf{a}_{α} and μ_{\oplus} are substituted by ω_{σ} , $\mathbf{r}_{\mathrm{tr}\sigma}$, \mathbf{v}_{I} , \mathbf{v}_{σ} , \mathbf{e}_{σ} , \mathbf{a}_{σ} and μ_{\odot}

$$\frac{\partial \omega_{\sigma}}{\partial \delta_{\text{tr}_{\sigma}}} = \frac{\cos \delta_{\text{tr}_{\sigma}}}{\sqrt{\operatorname{stn}^{2} \operatorname{i}_{\sigma} - \cos^{2} \delta_{\text{tr}_{\sigma}}}}$$

$$\frac{\partial \omega_{\sigma}}{\partial i_{\sigma}} = \frac{\cos \delta_{tr_{\sigma}} \cdot \cos i_{\sigma}}{\sin i_{\sigma} \sqrt{\sin^2 i_{\sigma} - \cos^2 \delta_{tr_{\sigma}}}}$$

7.1. Relationships between the errors in the position and velocity of the probe at arrival and the errors in the heliocentric orbit parameters (with $r_{T_{o}}$ fixed)

We give below the relation between the probe's position and velocity at the moment of arrival at the target :

$$r_{T_{\sigma}}, \alpha_{T_{\sigma}}, \delta_{T_{\sigma}}, v_{T}, \alpha_{v_{T_{\sigma}}}, \delta_{v_{T_{\sigma}}}, t_{T_{\sigma}}$$

and the heliocentric orbital parameters :

 $a_{\sigma}, c_{\sigma}, t_{p_{\sigma}}, i_{\sigma}, \Omega_{\sigma}, \omega_{\sigma}$

These relations are as follows :

$$\sin \delta_{T_{\sigma}} = \sin i_{\sigma} \sin (\omega_{\sigma} + \theta_{T_{\sigma}})$$
$$\tan (\alpha_{T_{\sigma}} - \Omega_{\sigma}) = \cos i_{\sigma} \tan (\omega_{\sigma} + \theta_{T_{\sigma}})$$

$$v_{T} = \sqrt{\frac{\mu_{O}(2a_{O} + r_{T_{O}})}{a_{O} r_{T_{O}}}}$$

$$r_{T_{\sigma}} = . \text{ constant}$$

$$\cos \theta_{T_{\sigma}} = \frac{a_{\sigma} (1 - \theta_{\sigma}^{2})}{\theta_{\sigma} r_{T_{\sigma}}} \frac{1}{\theta_{\sigma}}$$

$$\cos \theta_{T_{\sigma}} = \frac{\sqrt{\mu_{0} a_{\sigma} (1 - \theta_{\sigma}^{2})}}{r_{T_{\sigma}} \eta_{T_{\sigma}}}$$

$$\tan \left(\alpha_{V_{T_{\sigma}}} - \Omega_{\sigma} \right) = \cos i_{\sigma} \operatorname{ctg} \left(Y_{T_{\sigma}} - \omega_{\sigma} - \theta_{T_{\sigma}} \right)$$

$$\sin \delta_{V_{T_{\sigma}}} = \sin i_{\sigma} \cdot \cos \left(Y_{T_{\sigma}} - \omega_{\sigma} - \theta_{T_{\sigma}} \right)$$

$$t_{T_{\sigma}} - t_{P_{\sigma}} = \frac{1}{2E} \left\{ \sqrt{2Er_{T_{\sigma}}^{2} + 2\mu_{\sigma}r_{\sigma}} - J^{2} + \frac{\mu_{\sigma}}{\sqrt{-2E}} \left[\sin^{-1} \left(\frac{\mu_{\sigma} + 2E r_{\sigma}}{\sqrt{\mu_{\sigma}^{2} + 2EJ^{2}}} \right) - \frac{\pi}{2} \right] \right\}$$

where

$$E = -\frac{\mu_0}{2a_{\sigma}} J = \sqrt{a_{\sigma} \mu_0 (1 - \theta_{\sigma}^2)}$$

The errors in the position and velocity of the probe at arrival (with $f_{\tau_{\sigma}}$ constant) are given in terms of the errors in the heliocentric orbital parameters by

1 DTo 1=1 MO, TO 1 DO

where the matrix $|\mathcal{M}_{\sigma,T\sigma}|$ is given by 8.1, with the expressions given below for the derivatives.

The partial derivatives of $r_{T\sigma}$, $\delta_{T\sigma}$, $\alpha_{T\sigma}$, v_T and $\delta_{V_{T\sigma}}$ are the same as those given in matrix 4.1 if we substitute

$$r_{tr_{\mathcal{E}}}, \delta_{tr_{\mathcal{E}}}, \sigma_{tr_{\mathcal{E}}}, v_{tr_{\mathcal{E}}}, \delta_{\mathcal{E}}$$
 and $a_{\mathcal{E}}, \sigma_{\mathcal{E}}, t_{\mathcal{P}_{\mathcal{E}}}, i_{\mathcal{E}}, \Omega_{\mathcal{E}}, \omega_{\mathcal{E}}$

by

by
$$r_{T_{\sigma}}, \delta_{T_{\sigma}}, \alpha_{T_{\sigma}}, T, \delta_{v_{T_{\sigma}}}$$
 and $a_{\sigma}, a_{\sigma}, t_{\rho}, i_{\sigma}, \Omega_{\sigma}, \omega_{\sigma}$
and the heliocentric orbit being eliptic, the combination $e_{\varepsilon}^2 - 1$
by $1 - e_{\sigma}^2$.

Δaσ	Dea	\$ the	Δto	ΔΩ _Q	$\Delta \omega_{\sigma}$	
0 44	des of the	0010 0000	0	davro davo	2 dun	Ó
0		0	0	~	0	0
0 00	dia	0019 049	0	dug	dira	0
0	0	0	0	Õ	0	~
0	900	deg	Q	devro deo	der	deg
0 + 20	900	000	247 290	davro dag	20000	dtre
			1 .			
Arta	20 TG	$\Delta \delta_{T\sigma}$	۵۷۲	Δov _{To}	Δδ _{VTσ}	Δt _{To}

The remaining derivatives are as follows :

$$\frac{\partial \mathscr{A}_{V_{T}}}{\partial a_{\sigma}} = -\frac{\cos i \sigma \mathscr{U}_{S}(\mathscr{A}_{V_{T}\sigma} - \Omega_{\sigma})}{\sin^{2}(\Upsilon_{T_{\sigma}} - \omega_{\sigma} - \theta_{T_{\sigma}})} \frac{\sqrt{1 - e_{\sigma}^{2}}}{\Gamma_{T_{\sigma}}} \left[\frac{\sqrt{1 - e_{\sigma}^{2}}}{e_{\sigma} \sin \theta_{T_{\sigma}}} - \sqrt{\frac{\mu_{0}}{a_{\sigma}}} \frac{1}{2 V_{T} \sin \Upsilon_{T_{\sigma}}} \right]$$

$$\frac{\partial \alpha_{V_{T_{\sigma}}}}{\partial e_{\sigma}} = - \frac{\cos i_{\sigma} \cos^{2}(\alpha_{V_{T_{\sigma}}}, Q_{\sigma})}{\sin^{2}(Y_{T_{\sigma}}, Q_{\sigma}, \Theta_{T_{\sigma}})} \left[\frac{\Theta_{\sigma}}{r_{T_{\sigma}} v_{T}} \frac{\sqrt{\mu_{\odot} a_{\sigma}}}{r_{T_{\sigma}} v_{T}} + \frac{1}{\Theta_{\sigma}^{2}} \frac{1}{\sin \theta_{T_{\sigma}}} \left(1 + a_{\sigma} - a_{\sigma} \Theta_{\sigma}^{2} \right) \right]$$

$$\frac{\partial \alpha_{\tau_{\sigma}}}{\partial i_{\sigma}} = \cos^{2} (\alpha_{\tau_{\sigma}} - \Omega_{\sigma}) \sin i_{\sigma} \tan (\gamma_{\tau_{\sigma}} - \omega_{\sigma} - \theta_{\tau_{\sigma}})$$

$$\frac{\partial^{d} v_{T_{\sigma}}}{\partial \omega_{\sigma}} = + \frac{\cos i_{\sigma} \cos^{2}(d_{v_{T_{\sigma}}} - \Omega_{\sigma})}{\sin^{2}(Y_{T_{\sigma}} - \omega_{\sigma} - \theta_{T_{\sigma}})} \qquad \frac{\partial^{d} v_{T_{\sigma}}}{\partial \Omega_{\sigma}} = 1$$

$$\frac{\partial t_{T_{\sigma}}}{\partial a_{\sigma}} = -\sqrt{\frac{\mu_{\sigma}^{3}}{8a_{\sigma}^{5}}} \frac{-\frac{8r_{T_{\sigma}}a_{\sigma}+3r_{T_{\sigma}}^{2}+2a_{\sigma}^{2}(1-e_{\sigma}^{2})}{\sqrt{4r_{T_{\sigma}}a_{\sigma}-r_{T_{\sigma}}^{2}-2a_{\sigma}^{2}(1-e_{\sigma}^{2})}} + \frac{1}{2}\left(\frac{\mu_{\sigma}}{c_{\sigma}}\right)^{3/2} \left[\sin^{-1}\left(\frac{a_{\sigma}-r_{\sigma}}{a_{\sigma}-e_{\sigma}}\right) - \frac{\pi}{2}\right] -$$

$$\frac{\partial t_{T_{\sigma}}}{\partial e_{\sigma}} = - \frac{\mu_{\sigma}^{2}}{\sqrt{4 r_{T_{\sigma}}^{a} \sigma \mu_{\sigma}} - \mu_{\sigma}^{2} r_{T_{\sigma}}^{2} - \mu_{\sigma}^{a} \sigma^{(1 - e_{\sigma}^{2})}} +$$

+
$$\left(\mu_{e^{a}\sigma}\right)^{1/2}$$
 $\frac{a_{\sigma} - r_{T\sigma}}{a_{\sigma} + (a_{\sigma} + a_{\sigma})^{2} - (a_{\sigma} - r_{T\sigma})^{2}}$