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Abstract. Order parameter equations, such as the complex Swift-Hohenberg (CSH) equation, offer a 
simplified and universal description that hold close to an instability threshold. The universality of the 
description refers to the fact that the same kind of instability produces the same order parameter equation. 
In the case of lasers, the instability usually corresponds to the emitting threshold, and the CSH equation 
can be obtained from the Maxwell-Bloch (MB) equations for a class C laser with small detuning. In this 
paper we numerically check the validity of the CSH equation as an approximation of the MB equations, 
taking into account that its terms are of different asymptotic order, and that, despite of having been 
systematically overlooked in the literature, this fact is essential in order to correctly capture the weakly 
nonlinear dynamics of the MB. The approximate distance to threshold range for which the CSH equation 
holds is also estimated. 

PACS. 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, 
and optical spatio-temporal dynamics - 05.45.-a Nonlinear dynamics and chaos 

1 Introduction 

The complex Swift-Hohenberg (CSH) equation is an or­
der parameter equation tha t provides a reduced descrip­
tion of a variety of systems [1], such as Rayleigh-Benard 
convection [2], optical parametric oscillators [3-5], Cou-
ette flow [6], nematic liquid crystal [7], magnetoconvec-
tion [8], propagating flame front [9] and photorefractive 
oscillator [10,11] among others. In the case of lasers op­
erating near peak gain (small detuning), a derivation of 
the CSH equation for class A and C lasers was obtained 
in [12,13], s tart ing from the semiclassical Maxwell Bloch 
(MB) equations [14-18], tha t provide a general descrip­
tion of transverse pat terns in two levels, wide aperture and 
single longitudinal mode lasers. For class B lasers, such as 
CO2 and semiconductor laser, CSH equations have been 
obtained in [19] and [20] respectively. (For an explanation 
of the classification of lasers, see Ref. [21]). Experimen­
tal observations of pat terns in wide aperture lasers were 
reported in, for example, [22-26] (for reviews on pat tern 
formation in nonlinear optical systems, see [27-29]). 

The deduction of a generic order parameter equation 
greatly simplifies the theoretical description of the sys­
tem. But it is important to note the limitation of this 
kind of model equations, as Cross and Hohenberg state in 

their review ([1], p. 874): "it is t rue tha t many properties 
of nonequilibrium systems are encountered in these equa­
tions, and indeed many hard problems (...) may profitably 
be addressed in the simple framework provided by these 
equations. However, it is only as a perturbative expansion 
valid in a small region near threshold tha t they provide a 
quantitative description of real experimental systems, and 
results may be even qualitatively misleading if applied far 
from threshold". 

We will focus our at tention in a class C laser near 
peak gain tha t is assumed to be well described by the cor­
responding Maxwell Bloch equations. Using the assump­
tions tha t the amplitudes of the physical fields are small 
and depend slowly on time and on the transversal spatial 
scales, a CSH equation is derived form the Maxwell Bloch 
equations. The resulting CSH equation is tha t derived by 
Lega et al. in [12,13]. Although not explicitly s tated in this 
original formulation, the equation includes terms of dif­
ferent asymptotic order, in contrast to the Ginzburg Lan­
dau equation tha t is obtained for negative detuning [30], 
This asymptotic nonuniformity is systematically obviated 
in the li terature and was only recently addressed [31]. It is 
the manifestation of the fact tha t dispersion and diffusion 
have necessarily different asymptotic order, and it affects 
the slow scales tha t the system develops near threshold. 



The argument of a qualitative only scope of the model 
equation is usually invoked to justify the application of the 
CSH equation far from threshold. The qualitative correct­
ness is difficult to be theoretically established, but, on the 
other hand, the capacity to produce quantitative predic­
tions can be determined from the numerical integration of 
both, the original system of Maxwell Bloch equations and 
the CSH equation. The results of the comparison between 
the numerical simulations of the CSH and the MB equa­
tions is what we present in the subsequent sections of this 
paper. We can obtain from the simulations the relative er­
ror that introduces the approximation and estimate how 
far from threshold we can increase the pump while keep­
ing a small relative error. Also, this numerical comparison 
between the CSH and the MB equations provides a con­
firmation of the main result presented in [31]: that the 
CSH equation for the description of the weakly nonlinear 
dynamics of the system near threshold (derived in [12,13]) 
necessarily contains terms of different asymptotic order. 

2 The complex Swift-Hohenberg equation 
and its numerical phase diagram 

The Maxwell-Bloch equations for a two-level single longi­
tudinal mode laser with flat mirrors are 

dE 
~dt 

iaV2E-aE + aP. 

dP 
~dt 

= -(l + in)P+(r-N)E, 

ON 
= -bN+\{EP + EP) 

(1) 

(2) 

(3) 

where E(x, y, t) and P(x, y, t) represent the complex elec­
tric and polarization fields, and N(x, y, t) is the real valued 
field of the population inversion (the same nondimensional 
formulation as in Ref. [30] is used). Parameter a > 0 
is the strength of the diffraction (that we set to 1 by 
scaling the space variables), a > 0 is the cavity losses, 
Q is the cavity detuning (the difference between atomic 
and resonance frequencies), r is the pumping parame­
ter, b > 0 is the decay rate of the population inversion, 
V2 = d2 /dx2 + d2 jdy2 is the Laplacian operator in the 
plane transverse to light propagation, and the bar stands 
for the complex conjugate. We will consider, as a specific 
C£lS67 el class C laser, for which a ~ 1 and 6 ~ 1. 

The corresponding CSH equation was obtained 
in [12,13], and a simpler derivation method, in which no a 
priori relative scaling of the variables is assumed, was in­
troduced in [31]. A linear stability analysis of the Maxwell 
Bloch equations shows that the lasing instability takes 
place at a critical value of the pump rc = 1. The assump­
tions of small detuning and small distance to threshold. 

are expressed through a small parameter 0 < E < 1 : 

l = ̂ V + «)£
2, (4) 

were a and LU are order 1 parameters that represent the 
scaled pump and detuning respectively. 

The resulting CSH equation is of the from: 

4>~t = a<f> + iV2<f> - 4>\4>\2 - 2eu;V24> - e 2 V V , (5) 

where time and space were scaled as t = ^ He2 and 

(x,y) = ^7T-(xiv)e 
v^ 

This CSH equation is exactly the same as that ob­
tained by Lega et al. in [12,13], but with the variables 
rescaled to show that it has terms of different asymptotic 
order and that it is not possible to remove the small pa­
rameter e from the equation. This asymptotic nonunifor-
mity comes from the simple fact that dispersion involves 
second order spatial derivatives while double diffusion has 
fourth order ones and thus, in the long wave approx­
imation where higher derivatives correspond to smaller 
terms, these two terms have necessarily different asymp­
totic order. This crucial fact is precisely what forced Lega 
et al. [12,13] to derive the CSH expanding first up to two 
orders (the first one included dispersion and the next the 
double-diffusion) and then collapsing back the expansion 
to get the CSH equation. But, despite of the wide use of 
the CSH equation, the asymptotic nonuniformity is never 
mentioned in the literature, and it was only recently ana­
lyzed in [31] where it was shown that it gives rise to two 
characteristic slow scales: one associated with dispersion 
#disp and a second one associated with diffusion S^s • Using 
the scaling indicated above, S^isp ~ 1 and S^m ~ i/e ^ 1; 
but in the original scaling of the Maxwell Bloch equation 
#disp ~ l / e > 1 and S^is ~ V v ^ 3> 1, so both are long 
spatial scales. 

The CSH equation above has to be considered in the 
close-to-threshold limit of e —> 0, and the relation between 
the Maxwell Bloch and CSH solutions can be written as 

E{x,y,t) 
P(x,y,t) 
N(x,y,t)_ 

= 
" l " 

1 
0 

Vb-(*+l) 

(6) 

\n\« I, H « i , 

Traveling wave solutions of the form </>TW = 
A/aexp(ikTw • x — ik^wi), with &TW = I^TWI ~ 1 
are approximate solutions of the CSH equation up to 
O(e) corrections (this family of TW is just the result of 
making the limit e —> 0 and k ~ 1 in the well known 
expression of the exact TW family, see [12,13,18,32,33]). 
This solution exists only for a > 0 and a linear stability 
analysis shows that it becomes unstable outside the region 
defined by u> > 0 and a > UJ2 with a critical wavenumber 
kc = \Jujje 3> 1 [31], which corresponds to a perturbation 
with small diffusive length scale. The phase diagram in 
the parameter space a-ui represented in Figure 1 was 
numerically reproduced starting with an initial condition 
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Fig. 1. Real part of <j>, in a 2D system of size 3 x 3 with 
periodic boundary conditions, for different points in the region 
of parameter space a > 0 and UJ > 0. Each square represents 
an individual numerical integration of equation (5) with initial 
condition given by a traveling wave, with kxw = (1,1) 27r/3, 
plus noise of amplitude 0.02. The curve a = UJ2 is the stability 
limit of this kind of solution. The final time is t = 10 and 
s = 0.0083. The gray scale limit values are: black ~ —2.5 and 
white ~ 2.5. 

with k x w = ( l , l ) 2 7 r / 3 plus noise of amplitude 0.02. 
The system has been integrated using periodic boundary 
conditions in a square box of length 3. The mesh of 
Figure 1 represents the final states for the corresponding 
values of a and u>, for t = 10 and e = 0.0083 (each square 
in the mesh is the result of an individual numerical 
integration). To the right of the parabola a = UJ2 the 
traveling wave solution becomes unstable and gives rise 
to another structure with smaller wavelength associated 
with the diffusive terms in equation (5). Some squares of 
the mesh still show the long wavelength solution to the 
right of the parabola, where it should be unstable. The 
reason is tha t , close to the stability limit, the unstable 
modes require a time greater than t = 10 to grow. 

The nonlasing solution, </> = 0, is linearly unstable 
for a > 0 if UJ < 0, and for a > —UJ2 if u> > 0 

(exhibiting again a large diffusive critical wavenumber 
kc = \Jujje ^> 1) [31]. The numerical phase diagram of 
Figure 2 confirms again the theoretical stability pre­
dictions and shows the appearance of a structure with 
wavenumber k ~ 1/%/e 3> 1 to the right of the stability 
limit given by the parabola a > —UJ2. The initial condi­
tion is Gaussian noise with amplitude 0.2, the final time 
is f = 10 and e = 0.0083. 

A Fourier spectral method has been used for the nu­
merical integration of the CSH in a square box with peri­
odic boundary conditions. The solution is first represented 
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Fig. 2. Real part of <j> for different points in the region of 
parameter space a < 0 and UJ > 0. Each square represents 
an individual numerical integration of equation (5) with initial 
condition given by the nonlasing solution, 0 = 0, plus Gaussian 
noise of amplitude 0.2. The curve a = —UJ2 is the stability 
limit of the zero solution. The final time is t = 10 and e = 
0.0083. The gray scale values are: black = —2.5, gray = 0, and 
white = 2.5. 

as a t runcated Fourier series 

^£,y,t) = ][>k(t> ik-x. 
k 

Then, in the system of ODE's for the Fourier mode coef­
ficients 

% = (a + \k\2(2ecj - i) - e 2 | k | 4 ) ^ k - [4>\4>\\-
at 

An integrating factor is used tha t exactly integrates the 
linear terms to avoid the severe time step restrictions that 
appear for large values of |k| [34], and the resulting system 

at 

with Ck = ct+ |k|2 (2eu; — i) — e2 |k|4 , is finally integrated us­
ing a 4th order Runge-Kutta method. The nonlinear terms 
are calculated in physical space using the 2 /3 rule for the 
aliasing terms (see e.g. [34]), the F F T W subroutines [35] 
have been used to perform the Fourier transforms, and we 
typically have used 128 x 128 Fourier modes and dt = .001 
for the simulations presented in this section. 

In the next section we will analyze the dynamics in 
two representative points of the phase diagram: a = 0.75, 
UJ = 0.5 (pattern with dispersive scale (5d;sp ~ 1), and 
a = 0.5, UJ = 2 (pat tern with diffusive scale S^s ~ %/e)- It 
can be seen in Figure 1 tha t these two points represent pat­
terns characterized by different spatial scales. Both points 
are far enough from the parabola a = UJ2, which marks the 
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threshold for the onset of small diffusive scales, so tha t a 
final time t = 10 is sufficient to reach a stat ionary state. 
Moreover, for the one dimensional systems tha t are ana­
lyzed in the next section, a final time t = 5 turns out to 
be enough to reach the s tat ionary state. A point in space 
a-uj closer to a = UJ2, and to the right of the parabola 
(diffusive scales), could require a larger time to stabilize. 

3 Numerical validation 

We numerically check the accuracy of the CSH equation 
(5) as a reduced dynamics of the Maxwell Bloch equa­
tions ( l ) - (3 ) . The difference between both descriptions is 
computed as 

t = 0 

E{x,y,t) 
P(x,y,t) 
N(x,y,t)_ 

-
" l " 

1 
0 

Vb-(*+l ) -*"">#*,£,*) 

(7) 
Symbols 11 • 11 denote the Euclidian norm on C3N divided 

by VN, where N is the number of points of the discretized 
system. So, d is an average absolute error, that , accord­
ing to the weakly nonlinear procedure applied to the MB 
equations to derive the CSH equation, has to behave as 
d ~ e2; see equation (6). 

There is a severe numerical difficulty in integrating 
equation (5) due to the presence of two spatial scales, 
#disp ~ 1 and (5difi ~ i /e , which are very different in the 
relevant limit e —> 0 and should be simultaneously well re­
solved. We consider a one dimensional system, with peri­
odic boundary conditions, in order to reduce the size of the 
computations and be able to use a greater system length 
than would be possible in higher dimensions. We let the 
system evolve until the difference d reaches a stat ionary 
value ds. For the parameters used, a time t ~ 10 is enough 
to reach a stat ionary state, and the corresponding maxi­
mum integration time for the MB equations is t ~ 10/e2 . 
Therefore, to check the asymptotic theoretical behaviour 
for e —> 0, we need a large number of Fourier modes and 
long time. The CSH and MB equations are integrated 
in a periodic ID interval using a numerical scheme com­
pletely similar to tha t described in the previous section, 
with 1024 Fourier modes, a = b = 1, time step dt = 0.01 
(di = 2dte2), space step dx = 1/1024 (dx = dx/(2e)), 
and e in the range between 0.0011 and 0.025. 

The initial condition for </> is filtered Gaussian noise of 
amplitude 1. Since equation (5) does not include spatial 
scales smaller than S^s ~ %/e, the modes with wavenum-
ber greater than k ~ 1/%/e are initially filtered. The initial 
condition for (E, P, N) is obtained from the one for </> using 
equation (6). In Figure 3 we show the real and imaginary 
part of </> at £ = 0 and t = 5, for e = 0.0011, a = 0.5 and 
UJ = 2. 

In order to calculate an average relative error, we di­
vide d by e, the typical magnitude of the fields in the 
Maxwell Bloch equations (note tha t </> is of order 1). In 
Figure 4 we plot d/e in log scale against i, for different 
values of e and for a = 0.5 and UJ = 2. 
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Fig. 3. Real (continuous line) and imaginary (dashed line) 
parts of 0 in a ID system of size 1 and periodic boundary 
conditions. Top: the initial condition given by filtered Gaussian 
noise. Bottom: final state for t = 5. Parameters are e = 0.0011, 
a = 0.5 and UJ = 2. 
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Fig. 4. Average relative error d/e in log scale against 
time t for different values of e. From top to bottom, e = 
0.025, 0.018, 0.013, 0.0088, 0.0063, 0.0044, 0.0031, 0.0022, 0.0016 
and 0.0011. Parameters are a = 0.5 and UJ = 2. 

We consider the stat ionary value of the relative error 
for long times (d/e)s, and check the theoretical asymptotic 
behaviour (d/e)s ~ e. In Figure 5 we plot (d/e)s against 
e for two points in parameter space: a = 0.75, UJ = 0.5: 
and a = 0.5, UJ = 2. In both cases, the linear behaviour 
(d/e)s ~ e is confirmed. But the numerical result offers a 
new important figure: the slope. The slopes are 3.6 ± 0 . 1 
for a = 0.75, UJ = 0.5; and 18 ± 1 for a = 0.5, UJ = 2. 
The increase of the slope in the second case is related to 
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e 

Fig. 5. Stationary relative error [d/e)s against e. Plus symbols 
correspond to a = 0.75, UJ = 0.5 (slope 3.6±0.1); and asterisks 
to a = 0.5, w = 2 (slope 18 ± 1). 

the fact tha t pat terns with smaller length scales appear 
for a = 0.5, u> = 2 (see Fig. 1). 

An experimental confirmation of the CSH equation 
would require to know a specific value of the appropriate 
distance to threshold for which the equation is valid. Let 
us suppose tha t the sought experimental confirmation has 
a maximum relative error of f 0% and make the favorable 
assumptions tha t the Maxwell Bloch equations accurately 
describe the experiment and tha t the chosen parameters 
correspond to a simple pa t tern with characteristic length 
equal to S^isp ~ 1 as, for example, for a = 0.75, LU = 0.5. 
Then, using the slopes of Figure 5, we can calculate tha t 
the distance to threshold should not exceed r — 1 = 0.003, 
and the pump must be tuned with a relative error smaller 
than 0.3%. For a = 0.5, u> = 2, where pat terns with diffu­
sive scale (5difi ~ i /e arise, the situation is worse since the 
maximum distance to threshold is r — 1 = 0.0006, and the 
relative error of the pump should be smaller than 0.06%. 

4 Conclusions 

We performed numerical integrations of the Maxwell 
Bloch equations and the corresponding CSH equation, for 
a class C laser. The CSH equation gives a simplified and 
reduced dynamics of the original Maxwell Bloch equations 
for small detuning. Comparing the results produced by 
both set of equations, we obtain an average relative error 
of the CSH equation solutions. The numerical results con­
firm the following theoretical prediction: (d/e)s ~ e, where 
(d/e)s is the s tat ionary relative error tha t is reached for 
long times (the small parameter e is introduced in the 
deduction of the CSH equation and is directly related to 
the detuning and distance to threshold). Therefore, as ex­
pected, the CSH equation with terms of different asymp­
totic order [31] is the appropriate envelope equation to 
accurately represent the behaviour of the Maxwell Bloch 
equations when e —> 0. The behaviour (d/e)s ~ e was 
numerically reproduced in Figure 5 where two different 
slopes were obtained for two points in parameter space 
a-uj. The plot shows tha t , as expected, the difference in­
creases faster for a = 0.5 and u> = 2, i.e., for the more 
complex case where small diffusive scales are present. 

Note tha t the fact tha t the CSH gives a good approx­
imation of the MB for small deviations from the lasing 
threshold, |r — 1| ~ e2 <C 1, does not constitute any nov­
elty; this is in fact an expected result since the CSH is 
precisely derived from the MB in the e —> 0 limit. Wha t 
constitutes the main point of this paper is the numeri­
cal confirmation tha t this CSH contains terms of different 
asymptotic order, see [31]. This asymptotic nonuniformity 
of the CSH has been systematically overlooked in the lit­
erature (see e.g., [12,13]), and it is essential in order to 
correctly model the laser dynamics near threshold. 

The numerical results also allow us to estimate the 
distance to threshold range for which the CSH equation 
holds. Assuming an average relative error of 10%, the max­
imum distance to threshold is between 0.003 and 0.0006 
for the parameter values analyzed: a = 0.75, u> = 0.5, and 
a = 0.5, u> = 2. The most restrictive value (0.0006) corre­
sponds to the case when the resulting pa t tern has diffusive 
scales (Jdifi ~ i /e) . Although it is not unfeasable to ex­
perimentally establish such small distance to threshold, it 
requires a fine tuning of the pump tha t is not usually avail­
able in s tandard lasers. Another important experimental 
difficulty is to obtain a wide enough beam for the pat terns 
to develop. 

Finally, it is important to mention that , despite of the 
problems for setting up an accurate laser experiment in the 
CSH range, the numerical results on this paper confirm­
ing the validity of the CSH equation are interesting and 
valuable from the more general point of view of Pa t te rn 
Formation. The CSH equation is an envelope equation and 
it is universal in the sense tha t its s tructure depends only 
on the kind of instability of the problem and not on the 
particular physical problem under consideration. 
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