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In this paper, we present a two-stage approach for characterizing the structure of Pinus sylvestris L. stands 
in forests of central Spain. The first stage was to delimit forest stands using eCognition and a digital 
canopy height model (DCHM) derived from lidar data. The polygons were then clustered (fc-means 
algorithm) into forest structure types based on the DCHM data within forest stands. Hypsographs of each 
polygon and field data validated the separability of structure types. In the study area, 112 polygons of 
Pinus sylvestris were segmented and classified into five forest structure types, ranging from high dense 
forest canopy (850 trees ha 1 and Loreys height of 17.4 m) to scarce tree coverage (60 tree ha 1 and 
Loreys height of 9.7 m). Our results indicate that the best variables for the definition and characterization 
of forest structure in these forests are the median and standard deviation (S.D.), both derived from lidar 
data. In these forest types, lidar median height and standard deviation (S.D.) varied from 15.8 m (S.D. of 
5.6 m) to 2.6 m (S.D. of 4.5 m). The present approach could have an operational application in the 
inventory procedure and forest management plans. 

1. Introduction 

Forest structure can be defined by size, age, and species 
distributions of living and dead vegetation, often with a focus on 
the tree component (Spies and Franklin, 1991; Poage and 
Tappeiner, 2005). Structure includes both vertical (e.g. number 
of tree layers, understory vegetation) and horizontal features (e.g. 
spatial pattern of trees, gaps) as well as species richness (Maltamo 
et al., 2005). The conventional organisational level for forest 
structure is the stand, which in unmanaged systems represent the 
synthesis of ecological and environmental factors. Smith et al. 
(1997) define the stand as a contiguous group of trees sufficiently 
uniform in species composition, arrangement of age classes, site 
quality, and condition, to be a distinguishable unit. In many 
settings, forest stands are additionally defined by forestry activities 
as operational units in forest planning and management (Nyland, 
1996; Holmstrom, 2002; Leckie et al., 2003; Tiede et al., 2004; 
Maltamo et al., 2005). 

For example, stands are the basic survey units of most Spanish 
forest management plans. In Spain, forest inventories follow a 
traditional procedure. They are based on a systematic sampling 

design of field plots with areas ranging from 300 to 1000 m2, in 
which basic tree attributes dbh (diameter at breast height), height, 
crown size, etc. are measured. Next, stand-level mean values of 
biophysical variables such as dominant height, basal area, stem 
number, volume and growth are calculated as average field plot 
measurements. Finally, these stands are grouped in broader forest 
structure types, based on stand-level characteristics, to be treated 
as units for the purposes of management and forestry applications. 

For management purposes, stand boundaries have traditionally 
been delineated on aerial photographs by means of human pattern 
recognition, and then interpreted photogrammetrically with the 
support of local field knowledge and observation (Franklin, 2001). 
Although this traditional approach is quite useful, it is also time 
consuming, and the stand delineation process is highly subjective 
(Skidmore, 1989; Franklin, 2001). However, the identification and 
spatial delineation of clusters of similar trees in the forest stand 
inventory improves the precision of stand-level growth and yield 
predictions and stand-level inventories (Magnussen et al., 2006). 

Consequently, remote sensing, via image segmentation and 
statistical modelling, has been advanced to assist in forest surveys. 
Leckie et al. (2003) suggest that semi-automated, computer-
assisted interpretation of digital imagery offers a possible method 
of acquiring some or all of the desired information, reducing time 
and costs, and increasing consistency. This is accomplished with 
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the use of different digital imagery and, to a lesser extent, with 
lidar (light detection and ranging) data (Diedershagen et al., 2004; 
Tiede et al., 2004; Magnussen et al., 2006). 

Most forestry lidar studies have concentrated on plot-level or 
stand-level estimation of such attributes as mean height, volume 
or basal area, canopy closure and others (Jensen et al., 2006; van 
Aardt et al., 2006; Wallerman and Holmgren, 2007) with a focus on 
reducing field work effort and increasing accuracy. Naesset (2004) 
estimated principal stand characteristics with higher precision 
using lidar data than applying conventional methods in forest 
inventory in areas with terrain slopes of up to 30°-35°, and no 
mixed forest canopy formations. Naesset et al. (2004) indicate that 
area-based approaches to estimate forest stand variables from 
laser scanner data have matured and are now implemented in 
operational projects in Scandinavian countries. 

Lidar data have also highlighted the relevance of the canopy 
height as an attribute for characterising forest structure. Variation 
in tree height (e.g., standard deviation of height) is primarily 
focused on characterizing the vertical structure of a forest canopy 
(Zenner, 2000; McElhinny et al., 2005). Lefsky et al. (1999), Means 
et al. (1999) Harding et al. (2001) and Parker and Russ (2004) 
developed canopy height profiles from lidar data to synthesize the 
three-dimensional distribution of forest canopies. Zimble et al. 
(2003) used lidar-derived tree height variances to distinguish 
between single-story and multi-story classes. Parker and Russ 
(2004) used the standard deviation of lidar-derived height to 
describe the topography of the outer canopy. 

According to Lefsky et al. (2005), mean height and height 
variability derived from lidar data are strongly related to canopy 
indices related to stand structure. These authors work in plots with 
young, mature and old-growth formations, in largely closed 
canopy stands which by definition are not heterogeneous in terms 

of percentage of forest cover. However, in horizontally hetero
geneous forests (i.e., forests with variable amounts of tree cover), 
the use of mean height poses problems for the classification of 
different forest stands (Pascual, 2006; Pascual et al., 2006). These 
authors therefore suggest analyzing statistics other than mean 
height to obtain a better classification of these heterogeneous 
forest stands. 

In this context, this study focuses on lidar data to study forest 
structure in order to be of practical application in forest manage
ment. The general objective was to characterize the forest structure 
based on lidar height distributions, supplemented by field data to 
support the lidar interpretations. This involved three secondary 
objectives. The first was to define forest stand boundaries and 
cluster these stands into forest structure types based on the lidar 
height distributions. The second was to select a few lidar height 
summaries to make the present approach more effective. The third 
was to propose a methodological approach that would ultimately 
reduce the need for expensive fieldwork and which would be easy 
to implement in operational forest management. 

We therefore decided to work with the lidar derived digital 
canopy height model (DCHM) directly provided by commercial 
firms, in order to establish whether it was possible to use the lidar 
processed information to implement a feasible methodological 
approach in areas that fulfil the requirements proposed by Naesset 
(2004). 

2. Materials and methods 

2.1. Study site 

A 127.10 ha (1293 m x 983 m) area on the western slopes of the 
Fuenfria Valley (40°45'N, 4°5'W) in central Spain was selected as 

Fig. 1. Study site. Fuenfria Valley in the village of Cercedilla, northwest of Madrid (Spain). 



the study area. The Fuenfria Valley is located in the northwest 
portion of the Madrid region (Fig. 1). The predominant forest is 
Scots pine (Pinus sylvestris L) with abundant shrubs (Cytisus 
scoparious (L.) Link., C. oromediterraneus Rivas Mart, et al., Genista 
florida L) in some areas. There are small pastures on the lower 
slopes of the hillside. In the north sector of the study site there is an 
extensive rocky area. The site has a mean annual temperature of 
9.4 °C and precipitation averages 1180 mm/year. Elevations range 
between 1310 and 1790 m above sea level, with slopes of between 
20% and 45%. The general aspect of the study site is east. 

2.2. Lidar data and pre-processing 

A small-footprint lidar dataset was acquired by Toposys GmbH 
over the study area in August, 2002. The Toposys II lidar system 
recorded first and last returns with a footprint diameter of 0.95 m. 
Average point density was 5 points m~2. The raw data (x, y, and z 
coordinates) was processed into two digital elevation models by 
TopoSys using as interpolation algorithm a special local adaptive 
median filter developed by the data provider. The digital surface 
model (DSM) was processed using the first pulse reflections, and 
the digital terrain model (DTM) was constructed using the last 
returns. Filtering algorithms were used to identify canopy and 
ground surface returns for an output pixel resolution of 1 m 
horizontal and 0.1 m vertical resolution. According to Toposys 
calculations, the DSM and DTM, horizontal positional accuracy was 
0.5 m and vertical accuracy was 0.15 m. 

To obtain a DCHM, the DTM was subtracted from the DSM. Both 
the DTM and DCHM were validated before use by means of land 
surveying with total station in 19 points and ground-based height 
measurements of 102 trees. The vertical accuracies, (Root Mean 
Square Error, R.M.S.E.s) obtained for the DTM in open areas and for 
the DCHM under forest canopy were 0.30 and 1.3 m, respectively. 
These accuracies were acceptable for this study, and were in 
agreement with previous studies. For example, Clark et al. (2004) 
reported RM.S.E.s for DTMs ranging from 0.06 to 0.61 m, and for 
DCHMs ranging from 0.23 to 2.41 m in tropical landscapes. 

2.3. Mapping forest structure 

The process of mapping forest structure for this study involved 
several steps. These include delineating and classifying polygons 
and defining the classified polygons with DCHM hypsographs and 
additional field data. 

2.3.2. Polygon delineation and classification 
The aim of this step was to use an object-oriented segmentation 

approach to delineate forest stand boundaries (polygons) and 
classify them in the DCHM, based on lidar height distributions. 

Polygons were delineated from the lidar-derived DCHM using 
eCognition 4.0 software (Definiens Imaging GmbH, Munich 2004). 
This is an object-based image analysis package which applies a 
spatial clustering technique (Haralick and Shapiro, 1985). This 
algorithm identifies geographical features using the scale and 
homogeneity parameters, which were obtained in this study from 
the lidar DCHM. According to Suarez et al. (2005) scale relates to the 
minimum size required to identify a particular object, which 
depends on the resolution of the images. Homogeneity is described 
by a mutually exclusive interaction between colour and shape. 
Colour refers to the spectral response of the objects (lidar height in 
this study), whereas shape is divided into two equally exclusive 
properties: smoothness and compactness which respectively define 
the boundaries of the polygons (objects) and their transition to others. 

Three consecutive segmentations were applied to the lidar 
DCHM. A first segmentation with a scale parameter of 30 was 

derived, with 0.5 and 0.3 as the shape and smoothness parameters, 
respectively. These objects were later aggregated into the levels of 
higher hierarchical scales 50 and 70 by using the same smoothness 
parameter (0.3), with 0.4 as the shape values for the second and 
third segmentation. These values were demonstrated as the most 
feasible for the assessment of objects representing forest stands 
with a reasonably homogeneous structural typology. 

A total of 146 polygons were segmented, 112 containing Scots 
pines, and 34 consisting of non-forest components such as pasture, 
shrubs, rocks and bare soil. The 112 forest polygons were grouped 
into five structure types by a k-means cluster analysis. Separate 
cluster analyses were performed on two different combinations of 
variables derived from summaries of the fundamental DCHM data 
within each polygon: (1) mean and standard deviation (S.D.) of 
height (CombVl), and (2) median and S.D. of height (CombV2). In 
previous work (Garcia-Abril et al., 2006; Pascual, 2006), we have 
studied several indices and variables derived from the lidar-
DCHM: relative gap surface, landscape ecology metrics (i.e. 
Shannon index, fractal dimension, contagion index) voxels and 
texture, but these were rejected as they did not contribute to 
cluster discrimination. The coefficient of variation (CV) (i.e. 
standard deviation divided by the mean) was not considered as 
an entry variable as it depends on the rest. According to Hair et al. 
(1995) there is no objective procedure for establishing the number 
of clusters. These authors suggest obtaining various cluster 
solutions and deciding based on a priori criteria, experience or 
theoretical foundations. In this study, the decision to base the 
analysis on five structure types was an iterative process aided by 
the expert opinion of forest management personnel in the area. 

Individual polygons were assigned to the different clusters 
using the sequential threshold method, where distances in cluster 
seeds were sorted, and observations of the distances between them 
taken at constant intervals. Analysis of variance was used to test 
the statistical significance of the forest structure types derived 
from the cluster analysis. Euclidean distances between cluster 
centroids were also used as an indicator of the proximity of cluster 
groupings (Hair et al., 1995; Levia, 2003) 

2.3.2. Cluster hypsographs and field-based description 
The two sets of polygon assignment to clusters were evaluated 

for their relative value in distinguishing among the five forest 
structure types. As no tests exist to measure the weight of the 
variables used to define the clusters in the cluster statistics 
technique (Hair et al., 1995), we decided to compare the 
classifications using hypsographs. Hypsographs are the cumulative 
distribution of canopy heights as a function of proportional area 
within each polygon. Such a graph has been used in the description 
of landform surfaces and their development (Strahler, 1952). 
Hypsographs are related to canopy height profiles, and are both 
powerful tools for synthesizing the three-dimensional distribution 
of forest canopies, and have been widely used to analyze stand 
structure, either derived from lidar data (Lefskyetal., 1999; Harding 
et al., 2001; Maltamo et al., 2005) or from the DCHM (Parker and 
Russ, 2004). Hypsographs of each forest polygon were derived from 
distributions of heights contained within the lidar DCHM. 

Further analysis involved summarizing the hypsographs into 
percentiles; i.e., heights at which 10%, 25%, 50%, 75% and 90% of the 
polygon surface area occurs within each polygon (H10%, H25%, H50%, 
H75% and H90%, respectively). ANOVA and Kruskall-Wallis tests 
with Tukeys method for post hoc analysis were used to test 
whether indices describing canopy height distributions (Hi0%, 
H25%. H50%, H75% and H90%) varied significantly among forest 
structure types for both variable combinations (CombVl or 
CombV2). These results were useful for determining which 
variable combination provided better separability of structure 



Fig. 2. (a) The 112 object-based segmented polygons using eCognition. (b) Results of the cluster analysis (k-means). Numbers inside the polygons indicate the forest structure 
type (1, 2, 3, 4 or 5) to which each polygon has been ascribed by cluster analysis. Polygons without numbers correspond to non-forest stands. 



Table 1 
Descriptive statistics (mean and standard deviation) of entry variables in the two cluster combinations (CombVl and CombV2) 

Lidar height variables Forest type 1 Forest type 2 Forest type 3 Forest type 4 Forest type 5 

Comb VI 

Comb V2 

Mean height 
S.D.1 height 
No. of members 

Median height 
S.D.1 height 
No. of members 

14.3(1.1) 
5.6 (0.9) 

27 

15.8 (0.8) 
5.6(1.0) 

22 

11.4(0.8) 
4.6 (0.9) 

26 

13.0(0.8) 
4.9(1.0) 

23 

9.1 (0.7) 
5.5 (0.7) 

28 

10.3 (0.7) 
5.0 (1.0) 

29 

6.7 (0.7) 
5.1 (0.7) 

23 

7.3 (0.9) 
5.1 (0.7) 

25 

3.8 (0.9) 
4.1 (0.7) 

2.6(1.4) 
4.5(1.1) 

13 

S.D.1 = standard deviation. Parenthetical values are standard deviations of mean, median and S.D.1 of height for polygons in each forest type. 

Table 2 
Euclidean distance among 

CombVl 

r 
2" 2.17 
3" 3.72 
4" 5.41 
5" 7.55 

cluster (forest 

2" 

_ 
1.80 
3.35 
5.44 

types) centres for CombVl and CombV2 

3" 

_ 
-
1.71 
3.88 

4" 

_ 
-
-
2.17 

2" 
3" 
4" 
5" 

CombV2 

r 
2.08 
3.97 
6.02 
9.42 

2" 

_ 
1.93 
3.99 
7.37 

3" 

_ 
-
2.06 
5.45 

4" 

_ 
-
-
3.41 

1*, 2*, 3*, 4*, 5* stand for forest types 1, 2, 3, 4 and 5, respectively. 

types. All statistical analyses were done with STATISTICA v. 6.1 
software (StatSoft, Inc., Tulsa, OK, 2004). 

We collected field data to provide an independent assessment 
of the forest structure types. Ten plots were established, consisting 
of two different sets; one with two plots of 2400 m2 each and 
another with 8 plots of 1260 m2. Two field plots were located in 
each forest type. They were inventoried duringjuly 2003. The DBH 
(diameter at breast height) and height of all trees on each plot were 
measured, the latter with a Vertex III hypsometer. These data were 
used to describe the five structure types. Plot centres were geo-
referenced using Differential Global Positioning System (GPS). A 
Trimble Geoexplorer 3 receiver observing the C/A-code and carrier 
phase (LI) was used. Collection of data lasted about 40-60 min for 
each plot, with a 5-s logging rate. Post-processing was computed 
using GPS Pathfinder 2.70 software. Correction data were down
loaded from the Crustal Dynamics Data Information System 
(CDDIS) using a base station 30 km away. According to the 
positional errors reported by the software, the horizontal accuracy 
of the plot coordinates ranged from 0.6 to 2.8 m. 

3. Results 

3.1. Polygon segmentation and classification 

Lidar data segmentation with eCognition provided 112 
polygons (Fig. 2a) varying in size from 0.138 to 3.982 ha, with 
an average area of 0.926 ha (S.D. of 0.666 ha). The clustering of 
polygons into five forest structure types based on either mean 
(CombVl) or median (CombV2) and standard deviation of DCHM 
within-polygon heights (Table 1), revealed that both combina
tions were able to separate all 5 types (analysis of variance F-ratios 
between cluster centres: (i) CombVl (meanF = 376.58; p < 0.001 
and S.D. F=8.58; p< 0.001), (ii) CombV2 (median F= 526.91; 

p < 0.001 and S.D. F= 3.67; p < 0.001)), however, CombV2 was 
slightly better in doing so (Table 2). 

3.2. Hypsographs 

The hypsographs and related height histograms reveal mean
ingful differences among the five forest structure types (Fig. 3). 
This is confirmed by analysis of the hypsograph percentiles 
(Tables 3a and 3b). Both percentile indices for CombV2 and 
CombVl were able to discriminate all structure types, whereas for 
CombV2, only the Hi0% percentile was not statistically significant 
for distinguishing between structure types 1 and 2 and types 4 and 
5. This result, together with Euclidean distance separations among 
cluster centroids for CombV2 (Table 2), suggests that median and 
standard deviation of the DCHM are better suited to distinguishing 
among the five P. sylvestris structure types defined in this study. 

3.3. Field verification of structural differences 

The data collected from the 10 plots in order to describe the five 
forest structure types in the study site, independent of the lidar 
data, reveal meaningful differences among types. 

Type 1: Uneven-aged forest (multilayered canopy) with very high 
crown cover. These forest stands are located in the lowest part of 
the hillside, between 1330 and 1470 m in the study area (Fig. 2b). 
The slope ranges from 20% to 30% and the general aspect is 
northeast and southeast. This forest type corresponds to a 
multilayered, uneven-aged Scots pine formation (Fig. 4a). Crown 
cover ranges between 75% and 85%, and density is over 
850 trees ha - 1 . This forest type includes the tallest trees in the 
study area (Table 4 and Fig. 4a). 

Type 2: Multi-diameter forest with high crown cover. These 
polygons are distributed between 1310 and 1600 m in the southern 

Table 3a 
Tukey HSD test 

Type 2 
Type 3 
Type 4 
Type 5 

signifii :ant differences (p < 0.05): hypsograph 

Type 1 

H25%, H5o%, H75%, Hgo% 

Hio%. H 2 5%, H 5 0 %, H 7 5%, H 9 0 % 

Hio%, H25%. H5o%, H75%, Hgo% 

Hio%, H25%. H5o%, H75%, Hgo% 

indices, CombVl 

Type 2 

Hio%, H25%, H50%, H7 5 % 

Hio%, H25%. H5o%, H75%, Hgo% 

Hio%, H25%. H5o%, H75%, Hgo% 

Type 3 

H25%, H5o%, H75%, Hgo% 

H25%, H5o%, H75%, Hgo% 

Type 4 

H50%, H75%, Hgo% 



Fig. 3. This figure is based on the 112 segmented polygons. Hypsographs of DCHM data for each forest stand polygon, by forest type. Numbers represent the identification code 
for each polygon (left); DCHM lidar height histograms (right). 



Fig. 4. Field measurements for the 10 plots used to describe forest structure types. Tree height distribution (left); diameter class distribution (right). Loreys height is a mean 
tree height weighted by the normal section of trees. 



Table 3b 
Tukey HSD test significant differences (p < 0.05): hypsograph indices, CombV2 

Type 2 
Type 3 
Type 4 
Type 5 

Type 1 

H25%. H 5 0 %, H 7 5 % , Hg0% 

Hio%, H25%. H50%, H75%, Hgo% 

Hio%, H25%. H50%, H75%, Hgo% 

"10%. " 2 5 % . H5o%, H 7 5%, Hg0% 

Type 2 

Hio%. H25%. H50%, H75%Hgo% 

Hio%. H25%. H50%, H75%, Hgo% 

" 1 0 % . " 2 5 % . "50%. " 7 5 % . " 9 0 % 

Type 3 

Hio%. H25%. H50%, H75%, Hgo% 

" 1 0 % . " 2 5 % . " 5 0 % . " 7 5 % . " 9 0 % 

Type 4 

H25%. H 5 0 %, H 7 5 % , Hg0% 

Table 4 
Forest attributes from 10 field plot measurements in the five forest structure types 

Forest type 

1 
2 
3 
4 
5 

Mean 

9.9 
14.7 
11.4 
11.4 

8.7 

height (m) S.D. 

6.2 
4.6 
5.4 
4.1 
3.5 

of height (m) Loreys height (m) 

17.4 
17.3 
15.4 
13.1 
9.7 

Basal 

39.9 
40.7 
35.3 
26.2 

6.6 

area (m2 ^ a - 1 ) Density (trees ha ') 

850 
640 
378 
175 

76 

Loreys height is a mean tree height weighted by the normal section of trees. 

portion of the study area with some discontinuous polygons in the 
north sector (Fig. 2b). The general aspect is east, and slopes range 
between 20% and 50%, with a mean of over 35%. This forest type can 
be described as having a multi-diameter distribution and a two-
story vertical distribution (Fig. 4b). Canopy cover is over 65%-70% 
and density is 640 trees ha -1 . Trees included in this forest type have 
slightly lower height and diameter than in the previous one (Table 4) 
(Fig. 3b). 

Type 3: Multi-diameter forest with medium crown cover. This type 
occurs discontinuously across the elevation gradient of the study 
area (1310-1790 m) (Fig. 2b). Predominant aspect is east. The 
mean slope is 40%, crown cover is over 55% and density is 
178 trees ha~\ This type of forest has a multi-diameter distribu
tion, but is less dense than type 2 above (Fig. 4c). In some polygons 
the pines form clumps of trees. 

Type 4: Even-aged forest (single-story) with low crown cover. 
These stands are distributed throughout the higher elevations of 
the study area (1500-1790 m), which has a predominantly eastern 
orientation. Slopes range between 40% and 55%. The distribution of 
diameter classes is close to an even-aged formation and height 
distribution represents a single-story condition (Fig. 4d). This 
forest type includes mature trees of greater diameter but with a 
slightly lower height and larger crown diameters than other types 
(Fig. 4d). Crown cover is relatively low, and is generally less than 
40% and density is 175 trees ha -1 . In this type a subtype was 
identified, consisting of a two-layered structure with emergent 
trees over a regenerating stand. 

Type 5: Zones with scarce tree coverage. This type consists of 
dense coverage of shrubs (Rosa spp., Adenocarpus hispanicus (Lam.) 
DC, Cytisus scoparius (L.) Link, Pteridium aquilinum (L.) Kuhn and G. 
florida L) under isolated pine trees. Crown cover is between 10% 
and 15%, with very low density (75 trees ha - 1) (Fig. 4e). These 
polygons are located at the highest elevations (1550-1750 m), 
with a mean slope of up to 40% and a predominantly northern or 
eastern aspect. 

4. Discussion 

Modern remote sensing tools, lidar data and object-oriented 
segmentation approaches are making possible to automate many 
of the processes involved in forest structure stand delineation. In 
this study we demonstrate the utility of airborne lidar data for this 
purpose, as lidar directly provides forest canopy height that has 
traditionally been estimated using a combination of aerial photo 
interpretation and photogrammetry. 

The present study proposes a three-step methodological 
approach for forest structure characterization. The first step is 

the segmentation of the laser scanner DCHM in forest stands; the 
second is to cluster these stands into forest structure types based 
on the lidar height summaries; and the final step is to validate the 
procedure with field data and hypsographs. 

Some authors propose automated forest stand segmentation 
procedures in homogeneous forest formations (Diedershagen 
et al., 2004). Our results show the utility of the combination of 
eCognition algorithms with knowledge of the study area in order to 
obtain an automated segmentation of forest stands in horizontally 
heterogeneous forest formations. 

Lidar DCHMs provide a vast amount of information on forest 
structure stands that can be used in a variety of ways to cluster the 
stands into forest structure types. Pascual (2006) and Garcia-Abril 
et al. (2006) carried out several cluster trials considering multiple 
combinations of entry variables derived from a binned and non-
binned lidar DCHM: mean height, median, S.D., relative gap surface 
area (i.e. number of grid of zero height divided by total number of 
polygon grids), mean and S.D. of texture in a 5 x 5 window, and 
different landscape indices (fractal dimension, Shannon index, 
contagion index and others). These authors have proved that most 
of these variables were redundant in the study area. 

Our results showed that the mean and standard deviation of 
height provided valuable characterization of the forest structure 
for types 1 and 2, which have height distributions which tend to be 
closer to normality (Fig. 3a and b). This result is in accordance with 
(Zimble et al., 2003; Lefsky et al., 2005). However the median and 
standard deviation were better at distinguishing structure types 3, 
4 and 5, which had more pronounced non-normal height 
distributions (Fig. 3c-e). This is because, for such distributions, 
the most representative central value is the median (Quinn and 
Keough, 2002). Of course, for normal distributions, mean and 
median are nearly identical. We therefore conclude that, in general, 
median height derived from DCHMs is better related to structure in 
forests with heterogeneous height distributions. 

In conclusion, our results show that median and S.D. of height 
derived from lidar DCHM were useful for distinguishing among 
horizontally heterogeneous forest structure types based on cluster 
analysis. They met the requirements for this present approach, in 
that they were flexible and easy to implement in operational 
management plans for Spanish forests. However, the original lidar 
point cloud might contain additional information of special 
interest in horizontally heterogeneous forests that could be 
analyzed in future research. 

Finally, in order to apply the results of the present methodo
logical approach in forest inventories, we considered it especially 
useful to validate this approach to creating a model of forest 
structure types with field data measurements. Our proposal for 



validation based on hypsographs and percentiles allow a quick 
validation. 
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Appendix A. Abbreviations 

DSM Digital surface model 

DTM Digital terrain model 

DCHM Digital canopy height model 

CombVl Mean and standard deviation of lidar height as 
combination of entry variables for cluster analysis 

CombV2 Median and standard deviation of lidar height as 
combination of entry variables for cluster analysis 

S.D. Standard deviation 

CV Coefficient of variation 

R.M.S.E. Root mean square error 
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