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1. The fundamental problem of the theory of combustión consists 
in the computation of the so called normal velocity of combustión, 
i.e. the velocity of propagation of a combustión wave in a gas mixture, 
which is capable of a well defined chemical reaction. Instead of 
investigating the propagation of the combustión process in the gas 
mixture at rest one can consider stationary flow relative to a com­
bustión or fíame front, which is ñxed in space. We assume that the 
gas is infinitely extended in space and the fíame front is perpendicular 
to the tf-axis, so that temperature, density, chemical composition 
and velocity are functions of the ^-coordínate only. For a great 
class of combustión processes laminar flow can be assumed and it 
can be shown that the assumption of constant pressure gives a fair 
approximation 2). Also viscous forces can be neglected. According to 
a full analysis of the combustión process two physical phenomena 
are responsable to carry the combustión ahead through the gas mass: 
heat transfer and transfer of matter, especially. transíer of active 
radicáis from the zone where intensive chemical reaction takes place 
to the domain filled by the unburned gas mixture. The thermal 
theory considers heat transfer only and neglects diffusion. Although 
this means a considerable restriction, the thermal theory gives a 
fair description of the phenomena and many of its predictions are 
confirmed by experiment. 

2. Three equations express the principies of conservation of matter, 
momentum and energy. Under the simplifying assumptions given 
above, the three equations read 

1) Compare e.g. v, KÁRMÁN, Proceeditlgs of the First U.S, National 
Congress for Applied Mechanics (Chicago, June 1951, to be published 1952). 
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ov = m (1) 

P = t, (2) 

mH — X~ = mH0 (3) 

where />, Q, T and t> are the pressure, density, temperature and 
velocity of the gas mixture, at an arbitrary point. H denotes the total 
(thermodynamic + chemical) enthalpy, and A the coeñicient of heat 
transfer. The constants m, fi0 and Uü are respectively the mass flow in 
unit time through a unit cross section normal to the #-direction, the 
pressure assumed to be constant in the whole space and the initial 
valué of the total enthalpy of the gas mixture. 

Concerning the chemical reaction we assume: 
a) that the change of the number of molecules in the unit mass 

due to the chemical reaction can be neglected. This assumption 
is not essential from the viewpoint of the theory and is made mainly 
for the reduction of numerical computations. If we malee this as­
sumption the equation of state can be written in the form pjg = R0T, 
whatever the chemical composition may be; Rg is the gas constant 
of the unburned mixture. 

b) that the chemical reaction can be described by one parameter e, 
such that the chemical energy of the unit mass of the mixture in an 
arbitrary intermediary state can be written in the form (1 — e) E0-{-eEf, 
where E0 is the energy of formation of the initial and E} is that of 
the final producís. It is seen that e is a measure of the fraction of 
the reaction, which has been completed. If E0 — Ef = q is called 
the heat released by unit mass due to the reaction, it is evident that 
qe plays the role of heat introduced between the initial state and 
the state corresponding to the valué a of the chemical parameter. 
Therefore eq. (3) can be written in the form 

mh — l — — mqt: = mh0, (3a) 

T r» 

where h and h„ are the valúes of h == / CpdT and h0 = / CpdT rc-

o ú 
spectively, T0 being the temperature in the initial state and C„ the 
specific heat of the mixture at constant pressure. 
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For simplicity's sake for the following computations both Cv and X 
will be replaced by constan! mean valúes. 

The three equations together with the equation of state would 
determine p, Q, T and v if the chemical parameter E is given. Evidently 
in order to solve our problem we have to state the interconnection 
of e with the physical parameters p, Q, T and v. This statement has 
to come from chemical kinetics. First if diffusion is neglected our 
chemical parameter is connected with the "rate of reaction" w by 
the relation 

Qj-^W (A) 

or in the specific case of stationary flow 

de de .. . 

Chemical kinetics states that w is a given function of p0, T and e, 
so that the relation 

m— = w {pü, T, s) (46) 

completes the system of equations to be solved. 

3. The solution we are seeking to establish has to satisfy in the 
entire space —oo < x < co the equations (1), (2), (3a), and (46) 
with the following boundary conditions: 

for x — — oo T = T0, — = O, £ = 0; 

for x == oo T — Tf, -j— ~ ®> e = 1 • 

The symbol Tf denotes the final valué of the temperature T. Due 
to eq. (3a), with the constant valué of CP, 

q = C, (T, - T0) (5) 

and therefore equation (3a) can be written also in the form 

,dT r l— = mC 
dx 

T—T0-e(Tf — T0) (6) 
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Combining this equation with (4b) one has 

X
 w^l^T^T0-a(Tf-T0) (7) 

m2Cv da 

According to what chemical kinetics is teaching, the rate of reaction 
w for e — 0 is positive for all valúes of the temperature. It disappears 
only when T -> 0. Henee there cannot exist a solution of equation (7) 
for which e -> 0 and T -*• T0, provided the relation between w and T 
is valid in the whole domain T0^T ^ Tf. Physically speaking there 
must be a range — oo < x < xt in which the reaction does not 
take place according to the rate of reaction given by the simple 
rules of chemical kinetics; when the temperature T is inferior to an 
"ignition temperature" Tt= T (xj the gas mixture is well capable 
to undergo a chemical reaction but the reaction fails to realize. At 
this stage of the analysis we want only to state that we are forced 
to such an assumption provided we are sure that a combustión wave 
with constant velocity of propagation and unchanged temperature 
distribution exists. At the end of the paper we want to make some 
further remarks on the physical meaning of the assumption of an 
ignition temperature. 

4. The commonly used relation for the rate of reaction can be 
written in the form 

where K is a constant which has the dimensión of the reciprocal 
of a time, and QS is a density of reference. The energy A is called 
the activation energy. 

The exponent n is in general an integer which designates the order 
or "molecularity" of the reaction (mostly n — 1 or 2). 

We assume equation (8) ís valid for T ^ Tit whereas w = 0 for 
T0^T< TV 

Then our problem consists of two parts: 
a) For T < T2- we ha ve to intégrate the differential equation 

X~ = nCAT-T0) (9) 
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with the boundary conditions 

x = — oo T = T0 (10) 
% = Xi T=Tt) 

b) For T > T{ we have to intégrate the clifferential equation: 

A 

&Kp„n fTÁn . IfdT __ 

with the boundary conditions 

e = °' r = T " ! (12) 

5. It is seen that equation (H) is an ordinary differential equation 
of the first order for T (e) where T has to satisfy boundary conditions 
at each end of the interval 0 ¿ e ^ 1. Therefore we have to solve 
an "eigenvalue" problem. Evidently the only parameter which is 
not given by the statement of the problem is the massflow m. We 
have to determine the valué of m for which T can satisfy both con-

/yin 

ditions (12). Denoting this valué of m by m0, cp — —2 will be the 
Qo 

normal combustión velocity, which evidently depends on p0, Tf 

and the assumed ignition temperature Tt. 
When the valué of the parameter m is determined, the equations (9) 

determine uniquely T as function of x for T < Tv This zone is 
called the "heating zone". The zone x > x{ can be called the "reaction 
zone". The reason for this terminology is self explanatory. Evidently 
heat transfer from the reaction zone to the heating zone serves to 
elévate the temperature of the gas in front of the flamefront to the 
ignition limit. 

I t is seen from equations (11) that if we use the form of law for 
the rate of reaction given by (8), the governing parameter is 

mw(r- <i3> mK„ R.»Q«-1Tf
n mK, 

Therefore it can be stated that the expression for the normal 
combustión velocity cp must have the form: 
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In the following section an example oí approximate solution is 
given for a first order reaction (n — 1). The method of approximation 

is based on the peculiar behavior of the exponential function e RT 
which has bcen first introduced by Arrhenius into the theory of rate 
of reaction. 

6. First \ve want to introduce some notations for simplification 
of the computations. 

The parameter A is defined as 

A-"MT) (,5) 

We introduce the nondimensional parameters 

"-T/ "-"W/ (,6) 

The valúes of ü for T = Tn and T = Ti will be denoted by Bfí 

and 6 { respectively. 
For n = 1, wc ha ve from Eq. (11) 

Oa 

A ~ ~ e~ 6 ^ == 0--\ + (\ -0o) (\ --*)• (17) 

It is seen that Eq. (17) has a singular point at E — 1, 0 — 1. The 
solution near this point must sat.isfy the condition 

This condition íixes the tangent of the 6 (e) curve at 0 = 1, e = 1 
as function of A. 

The idea of our approximation is to considerer tvvo domains, 
one near E == 1 and another one near e — 0 1). 

a) In the domain near E = 1 the expression (18) is considered 
as fair approximation to be substituted for 0 — 1 on the right side 

1) J. CÓRNER and S. F. BOYS use an iteration-method startíng from the 
solution valid near T = Tf (Proc. Roy. Soc. London, Vol. 197 (1949) p. 90—106). 

64 



of Eq. (17). Then Eq. (17) can be solved by quadrature and one 
obtains with e — 1 for 0 = 1 : 

£ = 
1 ~\- Aer^a. Ce ® 

(1 ~ 0o) e-6uJ o 
e 

dO. (19) 

b) Near e = 0 we approximate Eq. (17) by 

*2 

^V-^T^ 0 -^ (20) 
e ° dO 

0 de 

from which it follows, with e = 0 for 0 = #,.: 

'-Ajeje^oj*6- (21) 

It is supposed that the expression (19) is valid between a "tran-
sition temperatura" 0t and 0 = 1 , whereas the expression (21) is 
valid between 6 = 0¿ and 6 ~ 0t. The valué of 0{ is determined in 

such a way that £ and -=-r are continous at the point of transition. 

These conditions of continuity yield the equations 

A, -6JL i _ ? s 

> - ¿ í 9 l ¿ j * + [-rá£ "['-r "• <22> 
1 -\-Ae~Q* A 

( 1 - f l J H . 0 , - 0 / 
(23) 

for the determination of 0t and A. The Eq. (22) and (23) give the 
solution of our problem, since A determines the "eigenvalue" m0 

oí the massflow, i.e. the normal combustión velocity. 

7. The solution of (22) and (23) involves rather elabórate numerical 
calculations. Since we did not have human, mechanical or electronic 
computers to our disposal, we introduced an approximation in the 
integral in the first term on the right side of Eq. (22), which is well 
justified with the exeption of the case, in which 0t- -v 60. Since the 
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exponential function e e decreases very fast which decreasing valúes 
of the variable 0 we write instead of 

o 
6a 

o(o-e0)~Q{dt—e0y 

Then the computation becomes rather simple, since by elimination 
of 0t — 0o between (22) and (23) one obtains a single equation for A, 
which reads 

1 = 
1 - f A<H>a a fe * 

\—Qn 

e&a 
e 

dO (24) 

The integral 

i -b 

de 
*< 

^Ei[-^-EA-ea). 

The function Ef is tabulated. Then we have 

A = <0a 

or from the definition of A (Eq. (15)): 

1 --o0 

e^a 

['•(• 
-E*(-

qfi — 
QaC» ]—0n 

e°a 
(1< 
6, 

E< ( ~ 6*) 

(25) 

(26) 

Also, one obtains from Eq. (19), by substituting the valué of A from 
Eq. (25) an explicit expression for s as function of 6, valid for 
0t<0< 1: 

*,(-£)-*/ '• 
E | - ^ E< 

(27) 
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If we use for the domain 0i< 0 < 0t the same approximation 
for the computation of the íunction e == e (0) which we used for 
the determination of A, Eq. (27) becomes a fair approximation for 
the whole domain between the ignition temperature 0t and the 
final temperature 6f = 1. 

Fig. 1 gives the computed valúes of 

i/áfe 
f Q0CV 

as function of the ratio 0, = TJTf for the following choice of the 
activation energy and the T0jTf ratio: 0a = 8; 0o = 0,15. 

One sees that for Bt = 1 (Ti = Tf), q> =. 0, as expected; between 
0{ — 0,8 and 1, the valué of <p increases from zero to a valué which 
remains almost constant until 6i approaches 80. For 0i -»- 60, <p -> co. 
Our method of approximation is not valicl for valúes of 0{ very cióse 
to 0C. However the consideration of the e vs 6 curves, calculated for 
0t = 0,8; 0,7 and 0,4 and given in Figure 2, leads to the conclusión 
that the change of cp from its almost constant valué to infinity occurs 
in a very narrow range of 0Í; cióse to 0o. 

One sees from Figure 2 that the inclination of the tangent to the 
curve 0 vs e at s = 1, 0 = 1 changes gradually from the horizontal 

Fig. 1 
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direction which corresponds to cp = 0 to an angle of inclination 
vvhich is almost independent of 0¡ between 0¿ — 0,8 and Qi — 0,4. 
At the same time the inclination of the tangent at 0 = 0¿ increases 

from the valué (~) - 0,51 for 0, = 0,8 to 1,76 for 0< = 0,7 and 
\rfe/e=o 

2480 for ú¿ = 0,4. 
This behaviour of the tangent at the lower cold end of the reaction 

zone is caused by the rapid increase of the valué of e e< with 
decreassing Q¡. In fact we have 

In this expression the denominator is almost constant, according 
to Fig. 1. Henee the exponential function in the numerator has the 
dominating influence, which prevails, till 0, — 60 becomes very 
nearly equal to zero. If this oceurs the curve 0 vs e which before was 
practically uninfluenced by the choice of 0t, rapidly changes its 
shape and tends to approach the straight line 0 = 0o + (1 — 0o) e 
which is also shown in Figure 2. At the same time cp increases to 
infinity. 

8. TI e main conclusions of this investigation are, that 
a) with the exception of the limiting case 6i-^ 0o the overwhelming 

bulk of the chemical reaction oceurs at temperatures relatively near 
to the final temperature, practically independently of the choice of 
the ignition temperature 1). 

b) The mass flow i.e. the normal combustión velocity which makes 
the process stationary, is practically constant and independent of 
the choice of the ignition temperature, with the exception of a range 
near the final temperature (of the order of 20—25% of the whole 
interval between T0 and Tf) and a very cióse range near the initial 
temperature of the unburned gas mixture. 

]) N. SEMENOW (N.A.C.A. Tcchn. Mem.-1026, 1084), Y. ZÍÍLDOVICH and 
D. A. FKANK-KAMENETSKI (Acta phys. chim. U.S.S.R. 9 p. 341 and C.R. Acad. 
Se. U.S.S.R.) recognized this fact and concluded that the ignition-temperature 
can be "elhninated" from the theory of the flame-velocity. The correct con­
clusión is given under b). 
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These conclusions may reconcilíate the conscience of the chemist, 
who believes that the experimentally found ignition temperatures 
are not significant for the buraing process in a combustión wave, 
and the conscience of the mathematicien, who believes that without 
defining a definite ignition temperatura the problem is undetermined. 
However we are afraid that this reconciliation of the two different 
viewpoints is a rather superficial one. It remains as a serious problem, 
what physical or chemical process determines the beginning of the 
reaction. No mathematical artifice orany unjustificed physicochemical 
assumption can replace the fundamental conceptual knowledge of the 
real process. 
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