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1. INTRODUCTION 

THE fundamental problem of laminar fíame theory consists of determining 
the structure and properties, specially the propagation velocity, of a com
bustión wave which advances through a homogeneous combustible mixture 
at rest, of given thermodynamic state and chemical composition. 

In recent years important progress has been accomplished in the study of 
this problem, including its formulation, mathematical methods of solution, 
application to specific cases and development of experimental techniques. 

Though a significant effort has also been devoted to the study of other 
problems of the theory, such as those of quenching, internal stability of 
the wave, ignition and flammability limits, the progress realized in them 
has been, in general, considerably smaller. 

In particular, with respect to the existence of the inflammability limits, 
whose origin is yet unknown, in 1957 D. B. Spalding(1) proposed as their 
cause the heat losses which can occur in the fíame either by convection 
or by radiation effects. The most important result of his work consisted in 
showingthat such heat losses can produce two different propagation velocities 
for the fíame which approach each other when the heat loss increases and 
finally coincide for a limit valué of it, above which the combustión does 
not propágate through the mixture. According to Spalding, the point of 
coincidence of them would determine the burning velocity corresponding 
to the limit of inflammability of the mixture while the lower of both ve
locities cannot usually be observed because it is unstable. Similar results 
have been also obtained by von Kármán and Penner(2), for a simplified 
model in which the influence of diffusion is neglected and the rate of 
chemical reaction is constant; while Zeldovich and Barenblatt(3), starting 
from an unsteady state and by numerical integration of the fíame equations, 
have also obtained a limit velocity determined by the heat loss, even when 
in their solutions the double velocity of Spalding does not appear. Finally, 

* This research has been performed at the National Institute of Aeronautical Tech-
nique, Madrid, Spain. It has been partially sponsored by the Air Research and Development 
Command, United States Air Forcé, through Contract No. AF61(514)-221. 

[447] 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148653124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


448 GREGORIO MILLAN and IGNACIO DA RJVA 

Hirschfelder(4) has shown lately that when the heat losses are localized in a 
porous stabilizer located at the cold limit of the fíame, two propagation 
velocities are also obtained for each valué of the heat transfered to the 
stabilizer and he has tried to relate this result with those of Spalding who, 
on his side, has published experimental measurements<5) which seem to 
confirm the real existence of both velocities. 

The present work constitutes a theoretical analysis ot the problem, 
with the object of clearing, by means of a systematic formulation and 
discussion of the different cases considered, until what point the existence 
of both velocities depends on the choice of the boundary conditions or 
the use of the adequate parameters. The study is performed on a simpli-
fied fíame model, easily integrable in exact form, with two unique chem
ical species, reactants and products. The effect of the diffusion as well 
as the influence of the concentration in the reaction rate is taken into 
account, but not, at least in a systematic way, that of the activation energy-
However, qualitative conclusions can be deduced about the influence 
of the same, on the basis that its valué does not alter the multiplicity ñor 
the properties of the solutions. 

The cases considered in this study and the results obtained are the fol-
lowing: 

1. Fíame with heat loss localized at the stabilizer. It is shown that the 
two velocities of Hirschfelder reduce to only one, by means of the choice 
of the adequate parameter, pointing out the apparent contradiction be-
tween Spalding's experimental results and the theoretical conclusions. 

2. Fíame with distributed heat losses. It is shown that the two velocities 
of Spalding reduce to only one by varying slightly the boundary condi
tions at the hot limit, both when an ignition temperature at the cold boun
dary is assumed as well as when the porous stabilizer of Hirschfelder is 
used. This result is particularly significant when the activation energy is 
different from zero, because then such modification is made imperceptible 
and the lower of both velocities is very small. 

3. Finally, as a new cause of disturbance, for the same fíame model, 
the effect of a dilution of the mixture produced by the lateral diffusion of 
the active species is considered, obtaining the result that the dilution 
diminishes the fíame velocity, which vanishes for a limit valué of the lateral 
diffusion coefficient. 

2. ADIABATIC FLAME 

With the conventional assumptions<6) and the notation which is speci-
fied in the Annex and assuming a first order chemical reaction rate n of 
the Arrhenius type: 

n= We~0'"(l-Y) (1) 
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the system of differential equations for an adiabatic fíame, written in 
dimensionless form and referred to a coordínate system £ which propa-
gates with the fíame is the following: 

(a) Energy equation: 

d^ 

"dT 
(b) Diffusion equation: 

= 0 - l + ( l - 8 „ ) ( l - 6 ) (2) 

dY 
~df = L(Y~^ (3) 

(c) Reaction equation: 

ds 
H í - - j e ' (l-Y) (4) 
d f <p¿ 

In this last equation, 

y c a>==m-|/ 2—- (5) 

is an unknown parameter which measures the velocity of propagation 
of the fíame in dimensionless form. 

The problem consists in determining the eigenvalue of q> which makes 
compatible all the boundary conditions that must be satisfied by these 
equations at its cold and hot limits, as well as the solution of the system 
corresponding to this valué. 

As it is known(6), for solving this problem it is neccessary to assume 
the existence of an ignition temperature 6¡, greater than that of the cold gas 
00, such that the rate of the chemical reaction be zero for valúes of 8 lower 
than 0¡. If the origin of distances is chosen at the point where 9 = #¡ 
and the wave propagates in the negative direction then the above system 
of equations is only valid for the reaction zone of the fíame £ > 0, while 
for the heating zone f < 0, equation (4) must to substituted by the fol
lowing : 

5 < 0 , £ 3 0 (6) 

so that in this región the variable e disappears and the only unknown 
quantities are 0 and Y. 

Moreover, the solutions corresponding to both regions must join without 
discontinuity at the point £ = 0 where the chemical reaction starts.^ 

With these hypothesis, the boundary conditions of the system are the 
following: 

For the reaction zone | > 0 : 

1 = 0, fl = 0íf . 0 | 
: = Y= 1 J £=oo, 6 = 1, 

89 
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(8) 

For the heating zone f < 0: 
í = 0, 6 = 6, 1 
£ = - < » , e = ee, Y=O J 

The condition of continuity of Y at the origin is: 
• | = 0, YT = Yf (9) 

The continuity of 0 and e is automatically satisfied, due to the preceding 
boundary conditions. 

The solution of such system determines a unique eigenvalue of q> for 
each valué of d¡. 

Figure 1 shows, in the continuous line, the variation of cp with 6¡ for 
a reaction with zero activation energy 6a = 0, in which case the complete 
solution of the system can be obtained in explicit from. In this figure, the 
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FIG. 1. Adiabatic fíame. Variation of the burning velocity with 
0¡ for da = 0 and 6a = 8. 

dotted line represents the solution corresponding to a typical valué of 
the activation energy da = 8, obtained by an approximate semi-analytical 
method. Here it can be seen that the activation energy does not alter the 
number of the solutions and it only does determine, among the infinite 
valúes of <p corresponding to the different valúes of 0¡, which is the ade-
quate one. This valué results in being independent of the unknown valué 
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of d¡. Similarly, Fig. 2 shows the curves of variation of 6 and Y as func-
tions of s, corresponding to these solutions. 

The existence of ignition temperature can be substituted, like Hirsch-
felder has done<4), by that of a porous stabilizer located in the boundary 
of the ñame f = 0, at the temperature 60 of the cold gas, which absorbs 
a given amount q of heat which substitutes in this model the unknown 

FIG. 2. Adiabatic fíame. Variation of Y and 0 with e for 6a = 0 
and 6a = 8. 

ignition temperature. The conclusions obtained in this case are similar to 
the previous ones. In fact, when the heat transfered to the stabilizer is 
very small with respect to the heat released by the fíame and the activation 
energy of the reaction has an appreciable valué, the fíame velocity takes 
a definite valué, which coincides with that obtained in the model of the 
ignition temperatures and that, as in this, results in being independent of 
the amount of heat transferred to the stabilizer. 

On the contrary, when the heat transfered to the stabilizer is appreciable, 
the velocity of propagation of the fíame depends, naturally, on it. In this 

29* 
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case, Hirschfelder(4) has shown recently that two different propagation 
velocities of the fíame exist for each valué of q, suggesting a cióse rela-
tion of this fact with the two velocities obtained by Spalding(1) and 
by von Kármán and Penner(2), when the heat losses are continuously 
distributed along the fíame. In the following paragraph this case is studied 
and it is shown that the duplicity of solutions of Hirschfelder is due to 
an inadequate choice of the parameter of reference. Moreover, in the 
following paragraphs it is shown that this case and the one of heat losses 
distributed along the fíame are essentially different, so that one of them 
cannot be justified by means of the other. 

3. FLAME WITH HEAT LOSSES LOCALIZED AT THE COLD BOUNDARY 

In this case, the equation (2) of the fíame system must be replaced by 
the following: 

- ^ - = 0 - l + ( l -0« ) ( l - f i ) + * 00) 

the equations (3) and (4) remaining invariables. 

In this equation the parameter d is a dimensionless measure of the heat 
q transferred to the stabilizer per unit área and per unit time, defined 
by the following expression: 

' d ^ - ' (11) 

It is evident that, instead of q, the significant parameter for the process 
is <5, since it measures the fraction of the heat released by the combustión 
which is transferred to the stabilizer. d plays here the same role as 00 for 
the previous model. 

The boundary conditions corresponding to the model of Hirschfelder 
are the following: 

1 = 0, 6 = 60, £ = 0 J 
£ = o o , 0 = 1-0, e = y = l j 

The solution of the differential system also determines here, as in the 
case of 6¡, a unique valué of cp for each valué of d. In particular, for zero 
activation energy, in which case the exact solution of the differential sy-
to stem can also be obtained in explicit form, the valué of <p corresponding 
each valué of d is given by the following expression: 
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Similarly to what was done in the case of the adiabatic fíame, in 
Figs. 3 and 4 the valué of cp as a function of ó and those of 6 and Y as functions 
of e respectively, are represented. Also here it can be shown that the pre-
sence of an activation energy different from zero does not alter the number 
of solutions and it only determines, as has been said before, the valué 
of (p corresponding to the adiabatic model S < 1. 

1.6 

14 

1.2 

.6 

ea = 8 

.1 .3 

FIG. 3. Fíame with localized heat loss. Variation of the burning velocity 
with <5 for 6a = 0 and 6a = 8. 

If we want now to obtain the two velocities of Hirschfelder from the 
preceding results it will suffice to represent q> not as function of d, but 
as function of q, or of any dimensionless measure of it that does not 
depend on the propagation velocity of the fíame. Such dimensionless meas
ure independent of <p is the parameter y defined by the expression 
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It is easily realized that between y, d and <p the following relation exists : 

y^dtp (15) 

which allows us to express the results as functions of y, from the previous 
solutions. Such results, for 6a = 0, are given in Fig. 5, where it can be 
seen that the two valúes of the fíame velocity corresponding to each valué 
of the heat y transferred to the stabilizer are a consequence of the two 
valúes of d corresponding to each valué of y. 

Lately, Spalding<5) has published the experimental results of the measure-
ments performed with a porous stabilizer which intended to realize 
physically the model of Hirschfelder. Apparently, he obtained two dif-
ferent propagation velocities of the fíame for each valué of the heat fraction 
transferred to the stabilizer. Essentially, his graphs, contrarily to those 
of Hirschfelder, are equivalent to a representation of <p vs. <5, so that the 
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two solutions obtained cannot be attributed to the action of the heat 
transferred to the stabilizer, since, in such case the solution should be 
unique, as it has been shown. 

On the other hand, the two solutions which Hirschfelder obtains when 
the fíame velocity is represented as function of y have very little in com-
mon with the duplicity which results also in the case of the heat losses 
distributed along the fíame, so that its experimental verification does 
not serve to justify the existence of two velocities in the case of distributed 
losses which, as it is shown in the following paragraph, is really very 
doubtful, since it suffices a small modification of the boundary conditions 
at the hot limit, imperceptible in the flames with appreciable activation 
energy, for the two solutions to be reduced to a single one. 

4. HEAT LOSSES DISTRIBUTED ALONG THE FLAME 

Let Tf be the final temperature of the fíame and suppose that the local 
heat loss q¡, per unit length and per unit time, due, for example, to the 
lateral transfer of heat or to radiation, is given by the' expression 

qt = k(T-Tf) (16) 

where A; is a coefficient which is constant. 
In this case, the energy equation of the fíame system must be substi-

tuted by the following: 

^L = O-l+(l-6o)(l-e)+^f(d-0,)de (17) 
í. 

while the equations (2) and (3) remain invariables. 
In equation (17), K is a dimensionless coefficient of heat loss, which 

is given by the expression 

K^ -e (18) 
We~e« Cp 

and | 0 is the point where the loss starts. For example, if the final tempera-
ture coincides with that of the cold gases, the only case considered by 
Spalding, and the loss takes place through all the fíame, then is 6f = 0O, 
f 0 = — co . 

As for the boundary conditions, those corresponding to the cold limit 
are the same for the adiabatic fíame, while those of the hot limit must be 
substiíuted by the following: 

oo, 6 = 0f, y = e = l (19) 
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As it results from (17), between 0f and the total heat lost by the fíame 
there exists the following relation: 

K ef = i-^j(e-of)^ (20) 

Similarly to what occurs in the previous cases, also in this, when the 
activation energy is zero, exact solutions can be obtained in explicit form, which 

FIG. 6. Fíame wíth distributed heat loss. Variation of the double burning 
velocity with K, for a final temperature equal to 60. 

permits easy discussion of the results and extensión of the conclusions 
to the case in which the activation energy is different from zero, since 
the valué of 0a does not alter, as it has been seen, the number of the solutions 
which result for 6a = 0. Such solutions are obtained below for the two 
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cases of greater importance in which the final temperature coincides, 
respectively, with that of the cold gases d0, case of Spalding and von Kár-
mán, and with the ignition temperature 6¡. 

(a) df — 0o.—In this case, the solution of the system of the fíame equa-
tions shows that for each valué of the coefficient of heat loss K, two 
different valúes of the velocity 9? exist, which are given by the equation 

W^A +(L-1)«-Z , 

being 

K+(L-l)u-Ly 

w 
>+£ 

1-6 
(21) 

qo*L 

2 
(22) 

1 
e = 0.2 
X = 1 

K = 0 

\ ^ 

K=0 .2 

y ¿ / 

K = 0 . 2 

4 .5 
F. 

.7 

FIG. 7. Fíame with distributed heat loss. Variation of 0 with e for 
a final temperature equal to 00. 

Contrary to what happened when the heat losses were localized at 
the stabilizer, the two velocities corresponding to each valué of the coef
ficient K cannot be reduced here to a single one by means of an adequate 
definition of this parameter. On the contrary, for obtaining a single velocity 
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it would be necessary to assume that the losses take place according 
to a different law which would make the valué of k dependent on that 
of m, that is, on the fíame velocity. 
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Fio. 8. Fíame with distributed heat loss. Variation of the unique burning 
velocity with K for a final temperature equal to 9¡. 

Figures 6 and 7 show the corresponding results for a typical case. 
The previous conclusions are equally valid when the heat losses only 

take place in the reaction zone as well as when they occur through all 
the fíame. 
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(b) df = 0¡.—When the temperature of the burnt gases coincides vvith 
the ignition temperature, contrary to what occurs in the previous case, 
it results that a single propagation velocity of the fíame exists for each 
valué of the coefficient of heat loss. The valué of this velocity is given by 
the system 

K 

K 
u M 

1- (p1- 1-

u = 

1-6 
(23) 

(24) 

e-e„ 

/ 

K=0.5 
^ 

/ 

K=0.5 

^ ^ 

/>-*' ̂  \K=0.S \ \ />-*' ̂  \ \ 

y 

^ ' \ \ 
\\ 
\\ 
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Z- -— ——-\ yK=0.S -— ——- 1 \ -— ——-

~~̂  
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FIG. 9. Fíame with distributed heat loss. Variation of 0 with e for a final 
temperature equal to 0¡. 

Figures 8 and 9 show the corresponding results for this case. In them, 
the dotted Unes show, for comparison, the two solutions corresponding 
to the case 0f — 60. 

The preceding conclusions exist wholly, as can be verified easily, 
when the diffusion effects are omitted as well as those of the influence of 
concentration in the reaction rate, by assuming it constant, as has been 
done in previous works already mentioned. Also, it can be proved that, 
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in general, when 6f< 6¡, two fíame velocities exist, which reduce to only 
one for 6f^ 0¡. 

Moreover when the ignition temperature condition at the cold bound-
ary is substituted by the porous plug of Hirschfelder and distributed 
heat losses are assumed with final temperature 0„ equal to the temperature 
of the plug, a single propagation velocity is obtained for each couple of 
valúes of ó and K. 

The significance of these conclusions lies in the fact that a small var-
iation in the boundary conditions at the hot limit, since 6, can be chosen 
arbitrarily cióse to 60, reduce the two propagation velocities to a single one. 
Such conclusión reduces considerably the practical interest of the double 
solution, specially when the influence of the activation energy is taken 
into consideration. In fact, in such case, while the larger of the two veloc
ities corresponding to each valué of K for 6f = 60 (actually the only 
one that has been experimentally observed with complete certitude) is 
independent of 0¡ as occurs in the adiabatic case, this does not happen 
for the smaller velocity which must depend on the valué assumed for 
the ignition temperature and vanishes when the final temperature is equa 
to 9¡. 

5. FLAME WITH LATERAL DIFFUSION 

A possible cause of disturbance in the behavior of the fíame with respect 
to the ideal adiabatic solution considered in paragraph 2, which seems 
not to have been analysed yet, lies in the lateral diffusion of active 
chemical species which are substituted by the inert gases surrounding 
the fíame, giving place to a dilution of the mixture. 

This problem can be studied in similar form to the previous cases of 
heat losses, when the cooling term k(6—6f) of the energy equation is 
substituted by a term of lateral diffusion, whose action must be included 
as well in the reaction equation. If it is assumed, as in the case of distri
buted heat losses, that the local loss of active species by effect of the lateral 
diffusion, per unit length and per unit time, is proportional to its con-
centration r(l — Y) where r is a constant coefficient, and if moreover, 
it is assumed that the activation energy is zero, in which case the exact 
solution of the problem can also be obtained, the equations of the fíame 
for this case are the following: 

(a) Energy equation: 

i 

^ = 0 _ l + ( 1 _ 0 o ) ( 1 _ e ) + i^iZ^J(i_F)d! (25) 
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(b) Diffusion equation: 

4f-^-> 
(c) Reaction equation: 

de 1 

d | (p2fi 
(l-Y) 

(26) 

(27) 

e 5 U 2 

Fia. 10. Fíame with lateral diffusion. Variation of the burning velocity 
with n for da = 0. 

In the equations (25) and (27), (i is a dimensionless measure of the effect 
of lateral diffusion, defined by the expression 

W 
¡i = W+r 

(28) 

The elimination of (1 —Y) between equations (25) and (27) allows the 
substitution of the energy equation by the following: 

Í ? . = 0-0O-(1_0O)/Mfi (29) 

The boundary conditions that must satisfy this system are the same 
as in the adiabatic case, except for the final temperature of the burnt 
gases, which, evidently, must be smaller than the adiabatic one, since part 
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of the reactant is lost by lateral diffusion without being burnt. Such tem-
perature 0O is related with ¡x by the expression 

0 / = l - ( l - 0 o ) ( l - ¿ > (30) 

The solution on the differential system leads to the following expression 
for the fíame velocity: 

2 \ 2 n-1/2 

(31) <P 
)/fiL 

l + ^ * - | - l 
1-

£*-l 
Consequently, it results that the lateral diffusion does not alter the 

unicity of the solution corresponding to the adiabatic case, but reduces 
the fíame velocity when the diffusion increases. The velocity of the fíame 
vanishes for a valué of the coefficient of lateral diffusion which is given 
by the expression 

Figure 10 shows the variation of cp as a function of ¡i for a typical case. 
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A P P E N D I X 

NOTATION 

Cp = specific heat at constant pressure. 
D = diffusion coefficient. 
E = activation energy of the chemical reaction. 
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k = heat-loss coefficient. 
k 

K = = dimensionless heat-loss coefficient. 
Cp We~e" 

L = —=-=- — Lewis-Semenov number. 
QDCP 

m = QV ~ Constant = mass flow rate. 
q = heat transferred to the stabilizer. 

q¡ = local heat-loss. 
r = coefficient of lateral diffussion. 

R = molar gas constant. 
T — temperature. 

Tf = temperature of the burnt gases. 
Tía = temperature of the burnt gases for the adiabatic 

fíame. 
v — velocity. 
n = reaction rate per unit volume. 

W — frequency factor of the chemical reaction. 
x = coordínate normal to the combustión wave. 
Y — mass fraction of combustión products. 

ó = -—Jf ^ = dimensionless fraction of heat transferred to the 

stabilizer. 
mCpTfa 

= = dimensionless heat transferred to the stabilizer. 

e = mass flow rate fraction of combustión products 
X = thermal conductivity. 
Q — density. 

T 
0 = —— = dimensionless temperature. 

E . , . . 
= dimensionless activation energy. RTfa 

T 
6f = —f- = dimensionless temperature of combustión products. 

6¡ = dimensionless ignition temperature. 
60 = dimensionless temperature of cold gases. 

mC 
i = —-J- x = dimensionless coordínate. 

m 1 / ~ ^r~ = dimensionless propagation velocity of the fíame. 
k We~e« 

W 

W+r 
— dimensionless coefficient of lateral diffusion. 


