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Abstract—This paper investigates the performance of an automatic sys-
tem for voice pathology detection when the voice samples have been com-
pressed in MP3 format and different binary rates (160, 96, 64, 48, 24, and
8 kb/s). The detectors employ cepstral and noise measurements, along with
their derivatives, to characterize the voice signals. The classification is per-
formed using Gaussian mixtures models and support vector machines. The
results between the different proposed detectors are compared by means of
detector error tradeoff (DET) and receiver operating characteristic (ROC)
curves, concluding that there are no significant differences in the perfor-
mance of the detector when the binary rates of the compressed data are
above 64 kb/s. This has useful applications in telemedicine, reducing the
storage space of voice recordings or transmitting them over narrow-band
communications channels.

Index Terms—Gaussian mixture models, MP3 compression, support vec-
tor machines, voice pathology detection.

I. INTRODUCTION

There are several studies in existing literature dealing with the au-
tomatic detection of voice disorders [1]–[4], yielding high accuracy
rates. These studies are based on the analysis of high-quality voice
recordings, characterized by different acoustic parameters, noise mea-
surements, or cepstral coefficients. In order to do this, a set of voices
from patients and normal speakers is needed, gathered under controlled
conditions, constituting a voice disorders database. There are proto-
cols [5] for acquiring the most useful signals for this purpose. These
works suggest recording various voice samples from each patient, in-
cluding the utterances of different vowel sounds, acoustically balanced
sentences, and at least 1 min of continuous speech, to allow a good
analysis. This requires huge amounts of data involving a considerable
storage space (a minute of high quality audio needs about 5 MB) in
order to have a statistically representative sample of the population
under analysis.

Taken that into account, there is a series of situations in which it is
interesting to compress these audio data: first of all, in the daily clinical
routine, storing the patients’ histories with a minimum of disk space.
Besides, the transmission of the database samples over a telecommu-
nications network can sometimes be necessary, in order to perform
the analysis in a different place or to share the recordings with other
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research groups in a collaborative environment. In the case of rural ar-
eas, communications are usually held by conventional telephone lines,
with an effective bandwidth of 56 kb/s, which does not allow a fast
transmission of high-quality audio files.

The storage problems of the speech databases in the speech recog-
nition field are highlighted in [6], proposing a solution by means of
audio compression based on the MP3 standard [7]. This algorithm is
very popular for music coding and audio transmission over narrow-
band channels. MP3 attempts to limit the loss of sound quality, taking
into account a series of physical phenomena, eliminating information
that is not perceptible by the human auditory system. The experiments
showed that binary rates above 32 kb/s have a small influence on the
accuracy of the recognition.

Recently, there has been some work on automatic detection of voice
pathologies using audio files recorded under nonideal conditions [8].
The authors developed a system with voice registers transmitted over a
telephone line. The voice signal was filtered and its bandwidth limited
between 300 and 3600 Hz before being transmitted. They employed
the typical acoustic features in this context (jitter, shimmer, noise
parameters, etc.), and the classification was carried out by means of a
simple linear discriminant classifier, showing a performance reduction
of 14.95% compared to the same system using high-quality voice
registers.

In [9], an acoustic analysis of pathological voices compressed in
MP3 format is presented, using classical acoustic parameters and show-
ing that dysphonic voices are affected in a different way to normal
voices by the compression. However, the authors conclude that regis-
ters with binary rates over 96 kb/s present a high fidelity to the original
signal and its acoustic properties are not significantly altered, although
they clearly state that in the case of severe pathology with seriously
damaged harmonic structures, this conclusion may not remain valid.

In this paper, we are interested in studying the degree to which
the MP3 format can affect the efficiency of a voice pathology detection
task, bearing in mind that some of the compression procedures can have
an important effect on the voice features, especially those related with
noise measurements that are typically used to discriminate between
normal and pathological voices.

II. MATERIALS AND METHODS

A. Database

The research was carried out with the Massachusetts Eye and Ear
Infirmary Voice Laboratory database [10]. Due to the different sam-
pling rates of the recordings, a downsampling was performed when
required, in order to adjust every utterance to 25 kHz. All the samples
are monophonic and stored with 16 bits of resolution, so the files can be
considered of mid-quality [in contrast with compact disk (CD) quality
recordings].

The registers contain the sustained phonation of vowel /ah/ from
patients with a variety of voice pathologies and were edited to remove
the initial and final samples. A subset of 173 pathological and 53 normal
registers has been taken, according to those enumerated by Parsa et al.
[2]. The asymmetry in the amount of normal and pathological records
has not been considered a problem due to the fact that pathological
recordings are approximately 1 s long, whereas normal recordings last
around 3 s. For a more detailed discussion of this database, see [11].

Starting from this corpus of files, six other corpora were developed to
carry out the experiments (Table I). They were created by compressing
the voice recordings with different qualities (160, 96, 64, 48, 24, and
8 kb/s) with constant bit rate, an output sampling rate of 24 kHz and 16 b
of resolution, using the Lame codec, version 3.92 [12]. For subsequent

TABLE I
CORPORA BUILT FOR THE EXPERIMENTS

processing, the files were decoded back and stored in WAV format
(waveform files with no compression).

B. Parameterization

The analysis is carried out on a short-time basis, so the first step
of the process is the segmentation of the voice signals into frames of
40 ms long, using a Hamming window. The length of each window is
enough to contain at least two fundamental periods of any phonation
in the database. Consecutive windows are overlapped in a 50% of their
length.

Then the windows are parameterized by means of Mel-frequency
cepstrum coefficients (MFCC) [13], a family of parameters that can be
estimated using a nonparametric [fast Fourier transform (FFT) based]
approach that allows to model the effects of pathology in both the exci-
tation (vocal folds) and the system (vocal tract) [4]. Another reason for
using these parameters is because they are also based on a perceptual
representation of the frequency corresponding to the human auditory
system response [13]. This matches well with the fact that an experi-
enced speech therapist can often detect the presence of a disorder just
by listening to it.

A number of MFCC parameters, between 12 and 20, are extracted
for every frame, with the goal of achieving the appropriate dimension-
ality for the task. The MFCC parameters have been complemented
with the energy of the frame and three noise measurements that provide
an idea of the voice quality: harmonics to noise ratio (HNR) [14],
normalized noise energy (NNE) [15], and glottal to noise excitation
ratio (GNE) [16]. These parameters are quite sensitive to any signal
manipulation that could increase the noise level, so the inclusion
of these features is justified on the basis that MP3 compression has
consequences in the fine-grain structure of the sound wave introducing
some kind of interharmonic noise and some loss of fidelity [9].

The feature vectors are formed by concatenating the MFCC along
with the energy, the noise features, and the first temporal derivative of
all of them. In principle, the derivatives provide important information
about the dynamic behavior of the temporal sequence of each feature
[4]. Every parameter is normalized into the [0, 1] interval before feeding
the detector. In the notation followed in this paper to represent the
feature vectors, N represents the noise measurements, E is the energy
of the frame, L is the number of MFCC features, and � is the set of
first derivatives. By way of example, a family of 12 MFCC coefficients
is represented with NE_MFFC12�.

C. Classification

The set of pathological and normal feature vectors is used to adjust
the parameters of a Gaussian mixture model (GMM) for each class and
to train a support vector machine (SVM). These detectors were chosen
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TABLE II
PERFORMANCE OF THE DIFFERENT CORPORA USING GMM AND SVM

on the basis of the modelling capabilities they present. The non-linear
mapping carried out by the SVMs maximizes the generalization ca-
pabilities of the classifier [17]. On the other hand, the GMMs fit the
distribution of the observed data by means of a set of weighted Gaussian
functions. The advantages of using a GMM are that it is computation-
ally inexpensive, with the robustness and smoothness of the Gaussian
parametric model, and yet it is capable of modeling complex statis-
tical distributions [18]. The modeling ability of GMM and SVM for
detection of voice pathologies has already been demonstrated in earlier
works [4], displaying a superior performance to other techniques.

The training of the SVM involves adjusting the parameter of the
kernel γ and the penalty parameter C . The aim is to identify the best
(γ, C) pairs using a subset of the voice registers (the training set), so the
classifier can accurately predict unknown data (the test set). The output
value given by the SVM for an input feature vector can be interpreted
as the likelihood that the vector belongs to a specific class (normal and
pathologic). The logarithm of this likelihood is calculated for every
frame or feature vector and is called score henceforth.

For the GMM, the number of Gaussian components M , the weights,
the means, and the covariance matrices were estimated for each of the
target classes (normal and pathological voice) using a training set. Once
a GMM is adjusted, it can produce an estimation of the a posteriori
probability that a given test feature vector would have been drawn from
the model. For every input feature vector, the probabilities produced
by the two models are divided, yielding a likelihood ratio or, in the
logarithmic domain, a score.

The scores given by the classifiers for pathological and normal voices
are used to plot the true and false score curves, respectively. The deci-
sion about the presence or absence of pathology is taken, establishing
a threshold T in a point called minimum cost point (MCP) that corre-
sponds to the minimum average error rate. Once T is chosen, the frames
with scores greater or equal to T are assigned to the pathological class,
whereas the samples with scores lower than T are labeled as normal.

In order to compare the results between the classifiers, the values
of the scores given by the detectors are normalized into the [0, 1]
interval according to [19]. This normalization allows us to consider the
normalized scores as a posteriori estimations of the probability that
belongs to each class.

The final score assigned to each record is calculated by averaging
in time the total number of frames of the record. Then, two different
accuracies can be calculated: file (number of files well classified) and

frame accuracy (number of frames well classified). The file accuracy
is expected to be equal or better than the frame accuracy.

D. Evaluation

In order to allow comparisons, the methodology proposed in [11]
has been used for the evaluation of the system. According to this
methodology, the generalization abilities of the system have to be
tested, following a cross-validation scheme, with different sets for
training and validation (k-folds). The results are presented by means
of frame and file accuracies and two curves plotted using the scores
given by each classifier that show the performance of the proposed
architecture: the detector error tradeoff (DET) [20], and the receiver
operating characteristic (ROC) [21]. The area under the ROC Curve
(AUC) and its standard error (SE) are also interesting estimators of the
performance.

III. EXPERIMENTS AND RESULTS

The database has been parameterized for each corpus changing the
number of MFCC parameters, ranging from 12 to 20. The experiments
consisted of searching for the most appropriate values of the SVM and
GMM parameters (γ and C for the SVM, and M for the GMM) to
achieve the best possible accuracies for each corpus. With respect to
the SVM, the optimum working point has been searched for inside
the grid C = [103 , 106 ] and γ = [10−4 , 10−2 ]. Regarding the GMM,
the parameter M has been evaluated into M = [1, 8]. The evaluation
of the system has been carried out by means of a cross-validation
strategy with 11 folds. Table II presents a summary of the best results
achieved for each corpus. Regarding the number of MFCC parameters,
the best results for every corpus were found in the interval from 12
to 16 parameters. Within this range, small but, due to the confidence
intervals, not significant variations in the performance of the system
have been found.

For the GMM model and regarding the number of mixtures, the
systems trained with compressed recordings needed a larger number of
Gaussian components to obtain the best results. The explanation for this
fact could lie in the lower resolution of the feature vectors produced by
the compression, causing the appearance of isolated clusters; so more
Gaussians would be needed to model the more complex feature space.
A similar behavior appeared for the SVM model, where the parameter
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Fig. 1. DET and ROC plots of the file accuracy for the different corpora using a GMM-based detector. The DET plot has been interpolated with a quadratic
function.

Fig. 2. DET and ROC plots of the file accuracy for the different corpora using a SVM-based detector. The DET plot has been interpolated with a quadratic
function.

γ (that represents the spreading of the kernel) is smaller for the lowest
binary rates.

In view of Table II, we may say that the performance of the system
that uses the voices compressed with 160 and 96 kb/s is very similar
to that of the uncompressed registers. In fact, the area under the ROC
curve of the former is even higher than for the uncompressed database.
This implies that with these compression rates, the results of the detec-
tion system are not degraded even though the storage space has been
reduced.

Even considering the files compressed with 64 kb/s, it is possible
to observe that the loss of information with respect to the original

files is not too relevant. In the remaining cases, there is a bigger in-
formation loss due to, among other reasons, the fact that the band-
width of the signals has been considerably reduced. For the case of
8 kb/s, the performance of the detector is reduced by almost 10%
due to the effect of the MP3 encoding and the important reduc-
tion of the signal bandwidth (2 kHz). Despite the encoding and the
significant reduction of the bandwidth, there is not an abrupt drop
in the performance because the signals still maintain the most im-
portant part of the harmonic structure, and this is the part of the
spectrum where most of the frequency and amplitude perturbation is
encoded.
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Figs. 1 and 2, respectively, show the DET and ROC curves for some
of the corpora using the GMM and SVM detectors presented in Table II.
The curves corresponding to the uncompressed files and those with 64,
96, and 160 kb/s are very similar, either for an SVM or for a GMM
detector, so the latter has been intentionally removed for the sake of
clarity. The degradation of the performance can also be seen as the
compression ratio increases.

IV. CONCLUSION

In the last years, an increasing interest to develop pathological voice
databases for research purposes has emerged. These databases are
the first step for developing automatic detectors of pathologies, voice
teletherapy systems, evaluation of voice quality, training experts in
acoustic analysis, and so on. The volume of the recordings is consid-
erable by now, representing a problem for storing and specially for
transmitting them in voice tele-health applications over narrow-band
channels. The compression of the audio samples is a possible solution
for these problems, and we think that it can also be useful in different
situations, including the ones mentioned before.

For this reason, our goal was to study if MP3 audio compression
was a possibility for the detection/evaluation of voice pathologies. The
results of this study suggest that it is possible to reduce the size of
the recordings about four times (or even more if the original files
had more quality than those used in this paper), without compro-
mising the validity of the conclusions and the quality of the voice
registers.

Binary rates above 160 kb/s were not taken into account because
their quality was considered enough for the detection of voice disorders
without loss of efficiency. In view of the results, this assumption was
confirmed: a good tradeoff is to use a binary rate of 96 kb/s because it
gives similar results to those of the corpus with no compression.

Furthermore, the performance is reduced as the binary rate is
decreased: the accuracy of the system working with the original
uncompressed WAV files is similar to that using the MP3 compression
with 160 or 96 kb/s. Below 96 kb/s, the fidelity of the speech samples
is decreased, introducing more important alterations in the voice signal
that affect the efficiency of the detector. Working at low bit rates,
if the encoder runs out of bits, it will not encode some bands with
the required fidelity, which will have consequences in the fine-grain
structure of the sound wave.

We can conclude that there are no clear differences between the
first three corpora (uncompressed, 160 kbps, and 96 kbps), either with
a GMM or with an SVM-based detector. This is also supported by
the fact that the harmonic structure of the recordings remains almost
untouched in the low-frequency bands when the binary rate is 96 kb/s
or higher.

Consequently, it is possible to consider the use of registers with
compression rates over 96 kb/s. On the other hand, the discriminative
capabilities of the detectors are seriously affected for binary rates
below 64 kb/s. These tests open the possibility of using MP3
compression at high binary rates to store and/or transmit the speech
recordings used for the automatic detection of voice disorders, with
no alteration of the efficiency of the system.

Regarding the parameterization approach, the MFCC parameters
can be considered to be adequate for our purposes because they are
based on perceptual grounds similar to that of MP3 standard. The
MP3 coding transforms the energy in bands in a similar way to the
MFCC parameters. The loss of information due to the compression
is not meaningful for the detection of pathology. The performance
of the compressed corpora is lower in most of the cases than for
the original files, but conversely, they need far less free space on

disk for their storage and can be transmitted easily through low-speed
networks.

The use of a commercial database for evaluating the results ensures
that the conclusions presented can be reproduced by other authors. Nev-
ertheless, the results presented here should be validated using another
database of voice disorders in order to better generalize them.
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Vilda, “Methodological issues in the development of automatic systems
for voice pathology detection,” Biomed. Signal Process. Control, vol. 1,
no. 2, pp. 120–128, 2006.

[12] Lame MP3 Encoder. (2007). The Lame Project [Online]. Available: http://
lame.sourceforge.net

[13] J. R. Deller, J. G. Proakis, and J. H. L. Hansen, Discrete-Time Processing
of Speech Signals. New York: Macmillan, 1993.

[14] G. de Krom, “A cepstrum-based technique for determining a harmonics-
to-noise ratio in speech signals,” J. Speech Hear. Res., vol. 36, no. 2,
pp. 254–266, 1993.

[15] H. Kasuya, S. Ogawa, K. Mashima, and S. Ebihara, “Normalized noise
energy as an acoustic measure to evaluate pathologic voice,” J. Acoust.
Soc. Amer., vol. 80, no. 5, pp. 1329–1334, 1986.

[16] D. Michaelis, T. Gramss, and H. W. Strube, “Glottal-to-noise excitation
ratio—A new measure for describing pathological voices,” Acustica/Acta
Acustica, vol. 83, pp. 700–706, 1997.

[17] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York: Wiley, 2000.

[18] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted Gaussian mixture models,” Digit. Signal Process., vol. 10,
pp. 19–41, 2000.

[19] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classi-
fiers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226–239,
Mar. 1998.

[20] A. F. Martin, G. R. Doddington, T. Kamm, M. Ordowski, and M. A.
Przybocki, “The DET curve in assessment of detection task performance,”
in Proc. Eurospeech 1997, Rhodes, crete, vol. 4, pp. 1895–1898.

[21] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under
a receiver operating characteristic (ROC) curve,” Radiology, vol. 143,
pp. 29–36, 1982.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on June 24, 2009 at 04:26 from IEEE Xplore.  Restrictions apply.


