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1. Abstract 

The enhancement effects of thermal expansion on the propagation velocity of 

triple flames in mixing layers have been evaluated by direct numerical simulation of 

the process. 

Numerical calculations have been used for the description of the flow, concen­

tration and temperature field in the diffusion flame attachment region in the near 

wake of the injector. The numerical analysis provides the criterium for lift-off of the 

flames. 

2. Obietive 

Asymptotic techniques, based on the existence of multiple scales, are used to identify 

the scales involved in the ignition of diffusion flames in mixing layers by triple flames, and 

to determine the structure of the reacting flow, with reactions modelled by reduced kinetic 

mechanisms. 

3. Introduction 

In combustion systems where the mixing of the fuel and air take place simultaneously with 

the chemical reaction, the propagation, after ignition, of triple flames along the mixing layers, 

in the partially mixed fuel jet in air, plays an important role in determining the lift-off distance 

of the flame, or the structure of the diffusion flame attachment region to the fuel injector, when 

the Same is not lifted-off. 
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The work carried out for this Program during the Report period dealt with both problems. 

That is, we were concerned, on one hand, with the description of the propagation of triple flames 

along mixing layers and, in addition, with the analysis of the flame attachment region of the 

diffsion flames. In both cases the analysis has been restricted to the combustion of gaseous fuel 

jets. However this work will shed light for the analysis of the flame propagation and diffusion 

flame attachment in the combustion of the turbulent fuel jet sprays in Diesel engines. The 

combustion occurs in this case in the form of group combustion of the droplets, which vaporize, 

sorrounded with hot productos of the reaction, to generate fuel vapors. These burn, controlled 

by diffusion, in envoloping gaseous diffusion flame, when they meet the oxygen coming from the 

opposite side of the flame. 

4. Numerical analysis of laminar triple flame propagation along mixing layers 

The work carried out during this period followed the theoretical lines described in the 

previous Report 1. and the analysis of Reference 2. 

It included numerical calculations of the laminar triple flame propagation in mixing lay­

ers, accounting for the effects of the thermal expansion associated with the heat release. The 

calculations were carried out using the computing facilities of the Center of Turbulence Research 

(CTR). of XASA Ames and Stanford University, with the cooperation of D. Veynante. L. Vers-

bisch. T. Poinsot and G. Ruestsch. The results are presented in the Proceeding of the 1994 

Summer Program published by CTR3. A paper, written by G.R. Ruestsch. L. Verbish and A. 

Lihan4 was accepted for publication in the Juny 1995 issue of Physics of Fluids, to which we 

refer for the details of results of the calculations. 

These were carried out up to large values of the ratio of the adiabatic stoichiommetric flame 

temperature Te to the initial temperature Ta in order to validate the square root proportionality 

of the enhancement factor, Up/Ups. for the flame front speed Up over the stoichiommetric 

planar flame speed Ups. (that is UF/UPS = 6 ^ / T E / T 0 ) , in the important practical case when 

the thickness of the mixing layer is large compared with the thickness of the planar premixed 

flame. 
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5. Anchoring; of diffusion flames in the near make of the injector 

We have also been analysing the cases when, after ignition, the triple flame front propa­

gation occurs upstream, through the cold partially mixed jet. all the way up to the fuel injector 

rim. Here it stays anchored in the near wake of the injector. 

In these cases the heat conduction from the flame to the injector palys a significant role 

in the anchoring process: particularly if the thickness of the wall of the injector is small enough, 

as we shall consider to be he case in the following. Even though, with increasing values of the 

wall, thickness we encounter, in the near wake of the injector, a recirculating zone: then, the 

recirculating flow of hot gases will facilitate the diffusion flame attachment process. 

The analysis carried out during this period follows the outline of Reference0. I deas with 

the description of the quasi-steady laminar, two-dimensional, near wake belling the rim of a fuel 

injector. We consider a gaseous fuel jet of radius a and uniform velocity UF, outside a boundary 

layer of thickess, lg, small compared with a. We shall consider that we have a coaxial air flow 

with velocity UA, of order UF, and boundary layer thickness also of order lg. 

We shall assume the Reynolds number Rg = UFIBIVO- based on the kinematic viscosity 

v0 of the ambient air. to be Rg > 1: although not so large as to make turbulent the boundary 

layer flows on the injector. 

When the two boundary layers meet an anular. but locally planar, mixing layer is generated 

between the two streams: with a deficit of momentum associated with the wake of the injector. 

This mixing layer will eventually become turbulent, due to the Helmholtz-Kelvin instability. 

However our analysis deals with what is happening in the near wake of the injector, where 

the convective instabilities had not yet grown significantly if the upstream boundary layers are 

laminar. 

In the anular mixing layer we can neglect the effects of upstream heat conduction and 

diffusion downstream of a small region, close to the injector rim. The size of this Navier-Stokes 

region is /,v = \Jv0jA. evaluated in terms of the wall value. A. of the fuel boundary layer velocity 

gradient at the end of the injector, and the kinematic viscosity of the gaseous fuel, of the order 
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of that v0 of the air. This value of /y and the value. Us = \/v0A, of the characteristic velocity 

in this region are determined by the double requirement that: i) The Reynolds number must be 

of order unity in this region; i.e. Uylv/i/0 = 1. And ii) that the characteristic value. tr.v//:v, of 

the velocity gradient in this region is of the same order as the characteristic value. UF/IB = -•!• 

of the velocity gradient in the boundary layer, forcing the flow in the Xavier-Stokes region. Thus 

we generate the relations 

UslUF = ls-llB = Rgl/-

The non-dimensional conservation equations are written in terms of the spatial coordinates 

x and y. measured with /,v as scale, for the velocity components u. v, measured with the scale 

U.v, the non-dimensional concentration YF and X,, which are the mass fractions, YF and Y0, of 

the fuel and oxygen devided by their values YFo and Y00 in the feed streams. The conservation 

equations are written for an irreversible Arrhenius reaction of activation energy E with a mass 

consumption s of oxygen, and a heat release q per unit mass of fuel consumed in the reaction. 

Table I 

ox oy 

du On dp' d / du\ d ( (du dv\\ 
puFx+p% = - U + T* V'%) + d7j \ " {di-+ d7j) \ 

dv dv dp' d f (du dv\\ d /' dv\ 

dYF 0YF d (n dYF\ d (ii 0YF\ 
PU dx +PV dy dx \Pr dx ) dy \Pr dy ) 

= L (YF) = L (Ya/S) = L(~cpT/qYF0) = -WF/YF0 

P = T0/T 

Then the conservation equations take the form given in Table I. When writing the equation 

of Table I, the Lewis numbers othe fuel and oxygen are assumed to be equal to 1, and the Prandtl 

number Pr constant. The bulk viscosity is assumed to be zero, and the ordinary viscosity p. 

is measured with its ambient air value. For simplicity the mean molecular mass is considered 

constant and the spatial variations of pressure are neglected in the equation of state, which then 

simplifies to p = To IT. 
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The nondimensional burning rate, WpjYfo, is, for an Arrhnius reaction, of the form 

-WFjYF0 = (B/A)e-B/RTYFY0 

where B is the frequency factor. 

The parameter S = s l V o / ^ ' o o is the stoichiommetric mass of air required to burn the 

unit mass of the fuel stream, is one of the important parameter appearing in the description of 

the flame at tachment process. Other parameters appear in the boundary conditions: 

One is h = dp/'2ly. the half thickness of the plate measured with the Navier-Stokes length 

/y . Other is a — the ratio of the air and fuel boundary layer wall velocity gradients. 

The appropriate boundary conditions are 

Y0 = 0. YF = T/To = 1. u- y + h= v - 0 

when y > h. x oc and at y — oc 

YF = 0. Ya = T/To = l. u + a{y + h) = v - 0 

when y < — 1. x oc and at y oc 

At the interface with the injector: 

T = Ta, dYF/dn = dYo/dn = 0 L L - C - cJ 

at y = ±h. x < 0 and at \y\ < h. x - 0 

Here d/dn is the derivative normal to the injector surface. The solution of the system of 

equations of Table I must approach, downstream, for x > 1 a self-similar form, involving the 

single independent variable n = y / c / i . including a thin diffusion flame if the nondimensional 

frequency factor of the reaction B/A is large enough for the diffusion flame to be attached in the 

Navier-Stokes region. This asymptotic form of the solution satisfies the boundary layer form of 

the equations of Table I. with the upstream diffusion effects neglected, but including a pressure 

gradient term —dp'/dx = i i - 1 ' 3 in the stream-wise momentum equation. The parameter k is 
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determined to insure that the boundary conditions at \y\ — ioc do not involve any displacement, 

as imposed in the boundary conditions written above. 

In the Burke-Schumann limiting case. B/A — oc, the reaction is diffusion controlled. The 

reactants do not coexist, YfYo = 0. and. together with the temperature, are given in terms of 

the mixture fraction Z by the relations 

% = 0 . YF = {Z- Z,)',\ \-Z,) = (T, -T) = /(T, - To) 

forZ > Z, = 1/(5+ 1) and 

YF = 0 . Y0 = {Z- Z,)I(T - r0)/(Te -7b) for Z < Z,. 

Here Te is the adiabatic flame temperature 

T, = Tb + qYnlcv(S + 1) = Zb( 1 + 7) 

The parameter -/. the nondimensional flame temperature rise above the ambient temper­

ature, is the additional parameter ecountered in the Burke-Schumann limit of infinite reaction 

rates. 

For finite values of the reaction rates two additional parameter to 5. 7, and a play an 

important role. One is the non-dimensional activation energy, or Zeldovich number 3 — EjRTe. 

The other is the reduced Damkohler number 

S = 3\B/A)e-B'RT' 

Flame lift-off will occur, for the realistic values of 3 moderately large compared with unity, 

when S becomes smaller than a critical value SL, of order unity, which will depend on S, 7, and 

a. 

6. Discussion of the numerical results 

In the following we give a sample of the numerical results that we have obtained when 

analysing the flow field in the Navier-Stokes region. 
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We began by calculating the flow field in the absence of heat release for increasing values 

of the parameter h = cip/2/.v, the non-dimensional measure of the plate thickness. Some of the 

results are summarised in Fig.l. where we sketch the form of the streamlines for values of h 

below the critical value hc = 0.46 and above hc. When the plate is thin the streamlines adjust 

to the plate without any recirculation zone. For values of h > hc a recirculating bubble is formed 

with transverse size LT and longitudinal extent Lg growing with h. 

In Figure 1. LB and Lj (measured with the Navier Stokes length /.v) are given as functions 

of h. An asymptotic analysis for large values of h (which is the local effective Reynolds number 

of the flow) shows 

LT/h - 1 and LB/h — 0.39 hr 

The calculations of the flow were repeated to account for the effects of heat release, mea­

sured by the parameter 7 = (T.-To)/To, in the Burke-Schumann limit of infinitely fast reactions. 

The results, as represented in Fig.2 for h = 2. show that the effects of the heat release cause 

a reduction of the bubble size or even its disappearence for finite h and large enough 7. The 

variations of the viscosity with T play an important role in the size of the bubble. 

As indicated before, the solution of the Navier-Stokes region must approach for x > 1 a 

self-similar form, described using the boundary layer approximation, including the effects of a 

self-induced pressure gradient, required to minimize the deflection of the flow outside the mixing 

layer. The existence of these similarity solutions for the momentum mixing layer downstream of 

a splitter plate was discovered for the non-reacting case by Rott and Hakinen5. When we take 

into acount the effects of the heat release, associated with a diffusion flame in the mixing layer, 

the temperature and velocity fileds are of the type shown in Figure 3. The pressure gradients 

are. adverse for 7 < 1.2 and favorable for 7 > 1.2. those required to avoid the axial displacement 

of the velocity profile. 

An example of the temperature distribution and the streamlines, when we acount for the 

effects of heat release in the Burke-Schumann limit, is given, in Fig.4. for the symmetrical case 

5 = 1 and a ~ 1. 

Examples of the effects of the finite rate chemistry are given in Figs. 5-8 where the stream 
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function, v velocity, temperature and reaction rate level surfaces are shown for decreasing values 

of the reduced Damkohler number Si = d) for 7 = 2, 3 — 10 in the symmetrical case a — 1. 

S = 1, for an infinitely thin plate (h = 0). 

Finally in Fig.9 the flame stand-off distance (measured with ly) and the heat reaching the 

plate from the flame, represented by a Nusselt number, are shown in terms of 8. 

7. Concluding remarks 

The effort, during this period, has been devoted to the development of the methods of 

calculation and numerical schemes required for the description of the dynamics and structure of 

triple flames in mixing layers, and with the description of the region of anchorage of the diffusion 

flames to the rim of the injector. The calculations can be extended in the future, to reduced 

kinetic schemes other than the Arrhenius one-step reaction. 

Considerable numerical effort will be required to obtain more information from the anal­

ysis. 
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