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Abstract — In this paper, the implementation of a digital 

signal processor (DSP) based H.264 decoder for a multi-
format set-top box is described. Baseline and Main profiles 
are supported. Using several software optimization 
techniques, the decoder has been fitted into a low-cost DSP. 
The decoder alone has been tested in simulation, achieving 
real-time performance with a 600 MHz system clock. 
Moreover, it has been integrated in a multi-format IP set-top 
box allowing the implementation of actual environment tests 
with excellent results. Finally, the decoder has been ported to 
a latest generation DSP 1. 
 

Index Terms — IP-Set-Top Box, DSP, H.264, multi-format 
video decoder.  

I. INTRODUCTION 
In home entertainment networks, set-top boxes (STBs) are 

becoming key devices. STB usage is two-folded. On one hand, 
they are employed as digital television (DTV) receivers but, on 
the other hand, STBs are used as residential gateways to 
deliver multiple services [1]. To gain in flexibility and 
modularity in home networks, STBs functionality may be 
distributed among a main device and several peripherals, all of 
them interconnected by an Ethernet network [2]. The 
peripheral devices are IP DTV decoders. Since a user can 
locate these decoders close to each TV set, they are also called 
IP-STBs [3]. In addition, these devices can decode audio and 
video information from the Internet. 

The aforementioned distributed functionality model will be 
successful only if the IP-STBs are inexpensive and versatile 
enough. Video and audio decoders are key elements. The 
solutions based on non-programmable decoders [4] cannot 
cope with the quick evolution of audio and video decoding 
algorithms. On the other hand, the latest generation of digital 
signal processors (DSPs) [5]-[8] can support inexpensive and 
flexible multi-format decoders [9]. 

Lately, new video coding standards [10] have been adopted 
allowing more data compression. However, the complexity for 
both encoders and decoders has increased as well [11]. With 
the latest generation of Digital Signal Processors (DSPs), very 
flexible decoders can be implemented at a relative low cost. 
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The complexity of an H.264 decoder may double that of an 
MPEG-4 SP decoder [11]-[12], which in turn is more than that 
of an MPEG-2 decoder. Thus, a real-time H.264 standard 
definition DSP-based decoder is hard to obtain [13]-[16]. 

In the last years, our work has been focused on the 
development of a DSP based multi-format IP-STB for 
different audio and video standards [17]-[19]. In this paper, 
the implementation of a video H.264 decoder for the 
aforementioned IP-STB is described. 

This paper is organized as follows. In section II the IP-STB 
architecture is briefly explained for reference. In section III the 
decoder algorithm is explained. Section IV is devoted to the 
decoder optimization details. In section V simulation test 
results for the decoder alone are reported. Section VI explains 
the tests carried out with the IP-STB in an actual environment. 
Our work in progress is outlined in section VII. Finally, 
section VIII is devoted to the conclusion and future work. 

II. IP-STB ARCHITECTURE 
In this section, the IP-STB architecture is briefly explained 

for reference. Details can be found in [17]. 

A. DSP architecture 
The IP-STB has been designed using a fixed point 

video-oriented DSP [5]. In Fig 1, a simplified block diagram 
of the DSP internal architecture is shown. 

The CPU is a VLIW processor with a performance of up to 
4800 MIPS @600 MHz. There are two 16 KB level-1 caches 
for code (L1P) and data (L1D). Moreover, there is a 256 KB 
internal SRAM that can be configured as a level-2 cache (L2) 
and/or as an internal data/program memory. 

The external memory is accessed through a dedicated 
interface, EMIF, using a 64-bit data interface. The other 
peripherals are a DMA controller, two video ports, an Ethernet 
port (EMAC), an output audio interface (McASP) and several 
general-purpose I/O pins (GPIO). 
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Fig 1. Architecture of the DSP. 
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The DMA controller allows moving data between memory 
and peripherals. DMA transfers can be requested by L1P, 
L1D, L2, the user and the peripherals. The user programmable 
requests can be QDMA (Quick DMA) and EDMA (Enhanced 
DMA, more flexible but slower). 

B. IP-STB Hardware Architecture 
A block diagram of the IP-STB hardware architecture can 

be seen in Fig. 2. The DSP interfaces to an Ethernet port, two 
external memories, a video encoder, an audio digital to analog 
converter (DAC), an infrared receiver and a JTAG emulator 
using a minimum amount of glue hardware. The DSP reads 
from the Ethernet port an MPEG-2 Transport Stream (MP2TS) 
encapsulated over IP/UDP containing, among others, the 
program selected by the user. The DSP outputs the video data 
to the encoder in ITU-R BT.601 format and the PCM audio 
(Pulse Coded Modulation) to the DAC. The video encoder 
generates composite video (CVBS) and S-video (Y/C) to 
interface with a standard TV set. The audio DAC outputs a 
stereo analog audio signal. An infrared sensor connected to a 
general purpose DSP input port allows the implementation of a 
remote control system. Finally, 1 MB of Flash memory and 16 
MB of SDRAM are provided as program and/or data memory. 
The prototype shown in Fig. 3 implements the IP-STB with a 
600 MHz system clock. 
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Fig. 2. IP-STB hardware architecture block diagram. 

 

Fig. 3. IP-STB prototype. 

C. IP-STB Software Architecture 
The IP-STB software has been developed using an RTOS 

[20] that supports the definition of tasks, several inter-task 

communication methods and interfaces to the hardware. The 
IP-STB software architecture is based on RF5 [21]. 

A block diagram including tasks, algorithms, buffers, 
SCOMs and SIOs is shown in Fig. 4 (see [21] for notation 
details). There are six tasks: the Transport task reads the 
MP2TS from the Ethernet port and splits the audio and video 
streams in two buffers. The Video dec task reads the video 
stream from one of these buffers, decodes the pictures and 
stores them also in a buffer. The Video play task reads the 
decoded pictures and writes them to the video port. The Audio 
dec and Audio play tasks perform similar operations with the 
audio stream. Finally, the Application task implements the 
interface with the user and configures the other tasks.  
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Fig. 4. The IP-STB software architecture based on RF5. 

III. H.264 DECODER ALGORITHM 
The decoder implements the Baseline Profile and the Main 

Profile of H.264 video coding standard [10], [22], [23] at level 
3. Interlaced video, Multiple Slice Groups (MSG) and 
Arbitrary Slice Ordering (ASO) are not currently supported. 

In Fig. 5, a simplified flow diagram of the decoding process 
for a Network Adaptation Layer (NAL) unit is shown. The 
decoder reads the H.264 stream from an input buffer and 
decodes the NAL units in sequence. After decoding the NAL 
header, the NAL unit content is identified as a slice header or 
another syntax element (e.g. an SPS or a PPS, see [10], [22], 
[23] for details). When the NAL unit contains a slice, the 
decoder executes a loop for each macroblock (MB). 

Fig. 5 also shows the MB loop for INTER coded MBs. Data 
read from stream is entropy decoded using Context Adaptive 
Binary Arithmetic Coding (CABAC) or Context Adaptive 
Variable Length Coding (CAVLC). After decoding the slice 
header, up to 32 motion vectors may be read for a unique MB 
(e.g. sixteen 4×4 luma blocks with bidirectional prediction in 
the Main Profile). Afterwards, the Integer Cosine Transform 
(ICT) coefficients are read and the Inverse Integer Cosine 
Transform (IICT) is computed to obtain the residual MB. The 
different reference blocks are read from previous decoded 
pictures using the motion vectors and then, the predicted MB 
is obtained. The residual MB is motion compensated by 
adding the prediction and the result is filtered (with the 
deblocking filter) and written to the current decoded picture.  

For INTRA coded MBs there are neither motion vectors nor 
reference data; instead, an INTRA prediction computed from 
the neighbor MBs is used. 
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Fig. 5. Simplified flow chart for decoding a NAL unit. 

IV. H.264 OPTIMIZATION PROCESS 
The starting point in the implementation of the algorithm 

outlined in section III was a standard compliant raw-C decoder 
fully tested first in a PC environment and moved to the DSP 
environment afterwards. Initially, the code was located entirely 
in external memory and spent typically about 109 clock cycles 
per frame to decode H.264 MP Level 3 streams (i.e., it was 
able to decode less than 1 fps). 

In this implementation, the CPU executed all the MB loop 
operations in sequence as it is shown in Fig. 6. The CPU was 
continuously accessing to external memory allocated data. 
Moreover, the CPU parallelized instructions were not used 
because the algorithm was executed at a pixel basis. 

 

IICT
MB X

Decode
Header 
MB X

Decode
MVs
MB X

Read
Referenc.

MB X
MC 

MB X
t

Deblock
Filter 
MB X

Write
Reconst.

MB X
IICT
MB X
IICT
MB X

Decode
Header 
MB X

Decode
Header 
MB X

Decode
MVs
MB X

Decode
MVs
MB X

Read
Referenc.

MB X

Read
Referenc.

MB X
MC 

MB X
t

Deblock
Filter 
MB X

Deblock
Filter 
MB X

Write
Reconst.

MB X

Write
Reconst.

MB X

 
Fig. 6. Scheduling of decoder execution for a MB. 

This initial implementation was optimized to increase the 
execution speed in about two orders of magnitude using, 
among others, the techniques described in [17] and [24]-[25]. 

In this optimization process, several code and data sections 
have been allocated in the internal DSP memory. In particular, 

the data used in the MB loop algorithm were allocated in 
internal memory and moved from/to external memory using 
explicit DMA transfers2. The loop has been re-scheduled in 
order to increase the parallelization of DMA transfers and 
CPU execution. Moreover, the deblocking filter and its related 
data flow have been heavily optimized. Finally, several code 
sections have been written directly in assembly language. The 
details of this optimization process are given in the following 
subsections. 

A. Allocation of the MB loop data in internal memory 
In this optimization, the data used in the MB loop are 

allocated in internal memory to increase the execution speed. 
As can be seen in Fig. 7, several buffers are allocated in 
internal memory. The reference data pointed by the motion 
vectors are moved from the reference picture buffers to the 
REF buffer. Actually, there are three REF buffers: one for 
luma (REF_Y) and two for chroma (REF_CR and REF_CB, 
not shown in Fig. 7 in sake of clarity). The ICT_COEFFS 
buffer is used to store the ICT coefficients and also to store the 
residual MB. A ping-pong buffer, REC, is used to store the 
MB prediction, computed using the data stored in the REF 
buffers. Then, the residual MB is added to the prediction and 
stored also in the REC buffer. Finally, this reconstructed MB 
is filtered and moved to the current picture buffer afterwards. 
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Fig. 7. Transfers between internal and external memory and use of 
internal buffers to decode one MB. 

The implementation of the REF buffers needs a more 
detailed description. The REF_Y buffer is 3456 bytes length. 
This room is enough to store all the reference blocks and their 
borders in the worst case (thirty-two 4×4 blocks). The blocks 
must be moved with their borders because 1/4 pixel arithmetic 
may be further applied to them. Fig. 8-a shows, only for 
luminance, all possible block sizes with their borders, and Fig. 
8-b is an example of how different block types can be 
combined in a MB. Finally, Fig. 8-c shows the content of the 
REF_Y buffer for a reference used to predict a MB like the 
one presented in Fig. 8-b. In Fig. 8-c, the memory size (shown 
in brackets) needed to allocate blocks, is higher than the block 
size shown in Fig. 8-a; this is to allow the 32-bit aligned DMA 
transfers that will be mentioned in the next paragraph. The 
REF_CR and REF_CB buffers are implemented similarly. 

 
2 QDMA transfers have been used in all cases (see section II.A). 
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Fig. 8. Contents of the REF_Y buffer. 

To move the reference and reconstructed data from/to 
external memory to/from internal memory, explicit 32-bit 
aligned DMA transfers are used. The new MB loop flow chart 
can be seen in Fig. 9. After each motion vector is read, three 
DMA requests are started to move the luma and chroma 
reference data from (one or more) picture buffers in external 
memory to the REF buffers in internal memory. The data 
movement of a block is parallelized with the (CAVLC or 
CABAC) decoding of the next motion vector. The data 
movement of the last reference blocks is parallelized with the 
IICT computation. After the motion compensation and the 
deblocking filter are performed, three DMA requests are 
started to move luma and chromas from the ping-pong buffer 
to the current picture buffer. The time scheduling of Fig. 10 
shows how the CPU processing is parallelized with the DMA 
transfers. The use of a ping-pong buffer allows the CPU to 
write on a buffer while the DMA controller is transferring data 
from the other one. 

 
Fig. 9. Flow chart for decoding a MB including DMA transfers. 
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Fig. 10. Scheduling of DMA transfers and CPU processing. 

B. Loop reorganization 
In the schedule shown in Fig. 10, when there are several 

block references for a MB, a lot of simultaneous DMA 
transfers are requested so, usually, the CPU must wait for the 
reference data in order to perform the MB motion 
compensation. Moreover, while a reconstructed MB is being 
transferred to external memory several DMA transfers are 
requested to obtain the references for the next MB. In this 
case, the DMA controller can collapse and then the DMA 
transfers may become slower. 

To solve these problems, the MB decoding loop has been 
re-scheduled in such a way that the deblocking filter of the 
current MB has been delayed until the decoding of the next 
MB. The new flow diagram is shown in Fig. 11 and the time 
diagram of the new schedule can be seen in Fig. 12. To 
minimize CPU waits, the DMA transfers of the reference data 
for MB #X are overlapped with the deblocking filter of the 
MB #X-1. In addition, as the DMA transfers of the MB #X-1 
filtered data (from the ping-pong buffer to the current picture 
buffer) are further from the DMA transfers of the reference 
data for MB #X+1, the amount of simultaneous DMA requests 
is reduced. 
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Fig. 11. Loop reorganization to reduce the CPU waits. 
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Fig. 12. Improved scheduling of DMA transfers and CPU processing. 

C. The deblocking filter and its related data flow 
The deblocking filter operation adds more complexity to the 

decoder data flow. To filter the current MB, the 4 bottom rows 
from the top MB and the 4 rightmost columns from the left 
MB (see Fig. 13-a) are used. The REC (ping-pong) buffers are 
dimensioned to provide enough room for these pels (Fig. 
13-b). After the unfiltered current MB has been moved to the 
REC buffer, the following operations must be performed prior 
to filter: 

• The 4 rightmost columns of the REC buffer that were 
used to filter the former MB (MB #X-1 in Fig. 13-c) 
are moved to the 4 leftmost columns of the current REC 
buffer (the one used to filter the current MB, MB #X). 

• The rightmost column in current REC buffer is saved in 
a small buffer allocated in internal memory (Fig. 13-d). 
These data will be eventually used to compute the next 
MB prediction, if INTRA. 

• The bottom row is also saved in an internal memory 
buffer (Fig. 13-e). This information may be used to 
compute the MB INTRA prediction of the bottom MB 
(Fig. 13-a) so it must be stored in a line (picture-width) 
size buffer.  

• The 4 bottom rows of the top MB are moved from an 
internal buffer to the current REC buffer (Fig. 13-f). 

After these steps, the current REC buffer is ready and the 
current MB can be filtered. After filtering, two operations must 
be performed: 

• The filtered MB must be moved from the current REC 
buffer to the current picture buffer (Fig. 13-g). 

• The 4 bottom rows of the current REC MB are not 
moved to the current picture buffer. Instead, they are 
moved to an internal memory buffer (Fig. 13-h) so as 
they will be available in the bottom MB filtering 
process. Actually, the 4 rightmost pels in each row are 
not saved until the next MB filtering operation. 

The chroma blocks are processed in a similar way using 
additional buffers. 
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Fig. 13. Deblocking filter related data flow. 

D. The deblocking filter optimization 
The deblocking filter can be applied to any 4×4 adjacent 

blocks in both directions, horizontal and vertical. In Fig. 14, 
the flow chart of the filter algorithm for luma horizontal edges 
is shown. This filter operation concerns to the current and top 
blocks as shown in Fig. 15. The target samples are the 3 lower 
rows of the top block and the 3 upper rows of the current 
block. Up to 24 FIR filtering operations may be needed to 
carry out the filtering in the vertical direction (horizontal 
edges). 

Three parameters must be obtained that determine the 
characteristics of the filter. The Boundary Strength parameter 
(BS) is derived from a complex set of conditions (see [10] for 
details) and determines the strength of the filters for each 4×4 
block. The two threshold parameters, α and β, are derived 
from the quantification parameters used for the current and top 
blocks coding and essentially determine which samples are 
filtered. The value of  α and β remains constant for the entire 
MB.  

The algorithm shown in Fig. 14 is repeated four times per 
block, once for each column. The parameters BS, α and β are 
used to evaluate if a sample is to be filtered and, if so, to 
compute the six conditions described in Fig. 14 (cond1,…, 
cond6). When these conditions are true or false, different 
algorithms may be applied to compute a sample. For example, 
the sample in position p0X (X=0…3) can be computed using 
four different algorithms (denoted as P0X0,…, P0X3 in Fig. 
14): P0X0 when cond1 is false, P0X1 when cond1 is true and 
cond4 is false, P0X2 when cond1 and cond4 are true and 
cond5 is false, and P0X3 when cond1, cond4 and cond5 are 
true. 
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Fig. 14. Horizontal edge filter for column X of a luma  4×4 block (X=0...3). 
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Fig. 15. Pixels used to filter a 4×4 block horizontal edge. 

 
For the vertical edge and the filtering of the chroma samples 

the algorithm is analogous. Since there are many complex 
operations and conditional branches, these algorithms are 
difficult to parallelize efficiently. 

The following optimization quits the branches and increases 
the parallelism. The new algorithm consists of four steps: 

• First, all samples needed to filter the entire 4×4 block 
are read using word-aligned instructions. Eight 
variables are defined to store the 32 pixels needed to 
filter the block. 

• Second, the six conditions used in the algorithm are 
computed for all the filtered pixels. Four-byte 
instructions for comparison and subtraction (subabs4 
and cmpgtu4) are used for this purpose Finally 1-bit 
conditions are converted to 8-bit masks using extension 
instructions (xpnd4), in a similar way as it was reported 
in [25]. 

• Third, all possible filter outputs for each pixel are 
calculated (e.g. P0X0, P0X1, P0X2 and P0X3 are always 
computed for p0X sample), in spite of only one of them 
will be used. This is not inefficient because these results 
are calculated in parallel by different functional units. 
As the results of several intermediate operations are 16-
bit wide, unpacked instructions (unpklu4 and unpkhu4) 
for pixel variables are used. This way, two 16-bit pixels 

are computed in parallel. After obtaining all the results, 
four pixels are packed again in one 32-bit variable 
(spacku4). 

• Fourth, the filter outputs are combined with the masks 
calculated in the second step to get a single output for 
each sample (see [25] for details). Finally, six 4-bytes 
store instructions are used to save the modified pixels.  

 
Fig. 16 summarizes the optimized algorithm. No branches 

are used and all pixels of a 4×4 block are calculated in 
parallel. Moreover the number of CPU cycles used to execute 
the algorithm is constant because of the lack of conditional 
branches. The same methodology has been used to optimize 
the luma vertical edges filter and the chroma filters. The 
described optimization improves the execution speed in about 
one order of magnitude regarding to the non-optimized version 
of the filters. 

 

 
Fig. 16. Optimized algorithm for luma horizontal edge filter. 

E. Assembly language. 
To improve the execution in speed, several critical modules 

have been written in assembly language: 
• The CABAC core has been optimized, encoded in 

assembly language and parallelized by hand. 
• The IICT and the CAVLC functions have been coded 

using intrinsic (pseudo-assembler) instructions. In 
addition, frequent arithmetic operations for Motion 
Compensation (MC) have also been coded using 
intrinsic instructions with the same techniques that were 
described in [17]. 

V. SIMULATION TESTBENCH 
A set of simulation tests has been carried out to verify the 

decoder and to measure its performance. Actual DVD movies 
like “Star Wars: episode I” and “Finding Nemo” and a football 
sequence from a digital TV channel have been used to 
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generate both BP and MP H.264 test streams3. The testbench 
is shown in Fig. 17. First, a test stream is read from a file on a 
picture basis and written into a stream buffer allocated in 
external memory. Then, the decoder reads the stream from this 
memory, decodes it on a picture basis and writes the decoded 
picture into a buffer. The picture is also written into a file. 

 

 
Fig. 17. Testbench used to profile the H-264 decoder in simulation. 

Table I contains the profiling results, in average clock 
cycles per frame, for the decoder and its main parts: CABAC 
(MP), CAVLC (BP), IICT+MC, deblocking filter and others. 
The last two rows of Table I show the percentage of CPU load 
when working at 720 MHz and 600 MHz system clock 
respectively. 

 
TABLE I 

H.264 DECODER PERFORMANCE IN SIMULATION 

Nemo  Star Wars Football  Nemo1M 
# cycles×106 

BP MP BP MP BP MP BP MP 

decoder 16.6 22.1 16.0 21.7 16,2 21.5 13,2 20.4 

CAVLC/CABAC 4.9 8.2 4.7 7.8 4,9 7.6 3.9 7.0 

IICT+MC 5.1 6.7 5.1 6.8 5.1 6.7 4.3 6.0 

Deblocking filter 4.2 4.4 3.9 4.2 3,9 4.2 3.2 4.6 

others 2.4 2.8 2.3 2.9 2,3 2.9 1,8 2.8 

CPU% @720Mz 57.6 76.7 55.6 75.3 56.3 74.7 45.8 70.8 

CPU% @600Mz 69.2 92.1 66.6 90.4 67.5 89.6 55.0 85.0 

VI. INTEGRATION OF THE H.264 DECODER IN THE IP-STB 
The decoder has been integrated into the IP-STB. The BP 

has been tested using the board shown in Fig. 3, based on the 
DSP @600 MHz. The testbench can be seen in Fig. 18. A 
commercial encoder [26] generates the test sequences4 
encapsulated in MP2TS over IP. The board decodes and 
presents the audio and video information on a TV set. The MP 
has also been tested with the testbench in Fig. 18, but using a 
commercial board [27] based on the DSP @720MHz instead 
of the board shown in Fig. 3. 

In Table II, the percentage of CPU load spent by the 
decoder and by the overall system is given. These data have 
been measured using an internal DSP timer instead of the 
profiler. The decoder performance is worst than in simulation 
because of the interaction with other tasks and the operating 
system scheduling. This loss is estimated in about 8%.  

 
3 Length: 100 pictures. Format: 720×576 pels @ 25 fps. Average bit rate: 

2Mbps (“Nemo1M” has 1 Mbps). BP: 5% I, 95% P. MP: 4% I, 48% P, 48% 
B. [online] http://www.sec.upm.es/gdem/en/test_sequences.php. 

4 The video streams have the same average bit-rate and IPB distribution as 
those used in simulation. The audio streams have been encoded with MPEG-2 
layer II. [online] http://www.sec.upm.es/gdem/en/test_sequences.php.  

 
Fig. 18. Testbench used in real-time tests. 

TABLE II 
H.264 DECODER PERFORMANCE WHEN INTEGRATED  IN THE IP-STB 

BP with DSP @600MHz MP with DSP @720MHz 
CPU% 

Nemo Star 
Wars Football Nemo 

1M  Nemo  Star 
Wars Football Nemo 

1M  

Decoder 79.9 77.5 78.4 65.8 85.7 84.3 83.7 79.8 

Total 94.0 91.6 92.5 79.9 99.8 98.4 97.8 93.9 

VII. WORK IN PROGRESS 
Currently, we are evaluating a new generation DSP [8]. For 

the sake of simplicity, this new generation DSP is named as 
DSP-B while the DSP used in previous sections is named as 
DSP-A. The H.264 decoder has been ported with minimum 
changes to DSP-B. A testbench has been developed to 
compare DSP-B with DSP-A in a fair way. Afterwards, several 
basic optimizations have been made to adapt the decoder to 
the DSP-B architecture and a testbench have been developed 
to evaluate them. In the next subsections DSP-B architecture 
will be outlined for reference, and more details about our work 
in progress are given. 

A. DSP-B Architecture. 
DSP-B includes several improvements that may be used to 

optimize the decoder: new internal memory architecture, new 
SIMD instructions and a new enhanced DMA controller. 
Actually, this processor consists of a DSP, a general purpose 
processor (GPP), several video-oriented processors and 
several peripherals (see Fig. 19). The DSP is a fixed point 
VLIW core with 32 KB level-1 memory (L1P) for code and 
80 KB level-1 memory (L1D) for data. Both can be configured 
as cache memories (up to 32 KB) or program/data memories. 
A 64 KB internal SRAM memory is available also. It can be 
configured as a level-2 cache and/or an internal data/program 
memory [28]. The GPP is an ARM9 RISC with 16 KB 
instruction cache, 8 KB data cache, 16 KB of internal RAM 
memory and 8 KB of internal ROM memory. The 
video-oriented processors allow several usual display 
functionalities as On Screen Display (OSD), image resize, etc. 
Finally, the set of peripherals includes a DMA processor, 
video and audio ports. Currently, we are using only the DSP 
and the peripherals. 
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B. Porting the decoder to DSP-B. 
The H.264 decoder has been ported to the DSP-B with a 

minimum set of changes, needed to adapt the code to the new 
DMA architecture. Actually, DSP-B has two DMA controllers: 
an internal DMA (IDMA) and an Enhanced DMA (EDMA). 
The IDMA transfers data between the internal memories while 
the EDMA may transfer data between internal and external 
memory. To increase the efficiency of DMA transfers, we have 
used the IDMA to program the EDMA registers. Moreover, 
the new DMA controller allows to link transfers, this means 
that when a transfer finishes it starts automatically a new 
preconfigured transfer. This allows, for example, configuring 
all the transfers (luma and chromas) for a reconstructed MB 
and start only the first DMA transfer. 

 

 
Fig. 19. DSP-B internal architecture. 

C. Comparison between DSP-A and DSP-B 
The testbench shown in Fig. 17 has also been used to 

compare both DSPs in simulation. The same video sequences 
have been used and the same profiles have been obtained for 
both DSPs. To carry out a fair result comparison, each DSP is 
configured as follows. First, L1D and L1P cache memory sizes 
are set to 16 KB. Secondly, L2 cache memory size is set to 64 
KB and lastly, program functions are stored in external 
memory. In contrast, intermediate buffers of DSP-B are stored 
in L1 SRAM while those of DSP-A are put in L2 SRAM. 

Table III contains the profiling results for the DSP-A5. 
Results are given in average clock cycles per frame for the full 
decoder and its main functional blocks (CABAC, CAVLC, 
IICT+MC, deblocking filter and others). Table IV presents the 
same information for DSP-B. These results show that DSP-B 
improves DSP-A in terms of speed in more than 20%. 

 

 
5 Data presented in Table I and Table III are quite different because in 

simulation tests (Table I) the most CPU-demanding functions are allocated in 
internal memory while in real-time tests (Table III) all the functions are 
allocated in external memory. 

 

TABLE III 
DECODER PERFORMANCE FOR DSP-A. 

Nemo  Star Wars Football  
# cycles×106 

BP MP BP MP BP MP 
decoder 41.4 56.9 39.7 58.8 40.6 58.9 

CAVLC/CABAC 13.6 21.7 13.2 22.4 13.7 21.7 
IICT+MC 13.2 17.2 13.1 18.1 13.2 18.7 

Deblocking filter 10.6 12.7 9.3 12.8 9.6 12.9 
others 3.8 5.3 4.1 5.4 4.1 5.6 

 
TABLE IV 

DECODER PERFORMANCE FOR DSP-B. 
Nemo  Star Wars Football  

# cycles×106 
BP MP BP MP BP MP 

decoder 31.8 45.5 30.3 45.2 30.4 45.0 
CAVLC/CABAC 11.3 16.8 10.8 16.4 11.0 16.1 

IICT+MC 7.8 11.1 7.6 11.4 7.5 11.4 
Deblocking filter 9.5 11.7 8.5 11.5 8.5 11.3 

others 3.2 5.9 3.4 5.9 3.4 6.2 
 

D. Basic optimizations for DSP-B. 
Basic optimizations have been performed for DSP-B in 

order to increment the execution speed. Specifically several 
code and data sections have been moved to the internal DSP 
memory, L1P cache is configured to 16 KB and both, L1D and 
L2 caches, are configured to 32 KB. With these changes, the 
DSP performance has been re-evaluated with the results shown 
in Table V. These results can be compared with the ones given 
in Table I. In spite of the results given in subsection C, DSP-B 
performs slower than DSP-A. The lower amount of L2 
memory seems to be the reason of this performance 
degradation. 

 
TABLE V 

PERFORMANCE FOR DSP-B INCLUDING BASIC OPTIMIZATIONS. 
Nemo  Star Wars Football  

# cycles×106 
BP MP BP MP BP MP 

decoder 23.0 33.1 22.0 33.0 22.1 31.8 
CAVLC/CABAC 8.4 14.1 8.1 13.8 8.2 13.4 

IICT+MC 5.5 8.0 5.4 8.1 5.3 8.0 
Deblocking filter 6.8 7.7 6.2 7.7 6.2 7.2 

others 2.3 3.3 2.3 3.4 2.4 3.2 

VIII. CONCLUSION AND FUTURE WORK 
In this paper, the implementation of an H.264 decoder on a 

low-cost DSP [5] and its integration on a multi-format IP-STB 
have been shown. Tests in a real environment show that 
real-time can be achieved for BP@L3 with a 600 MHz system 
clock. Real-time performance for MP@L3 requires a 720 
MHz system clock. Currently, we are working on the 
evaluation of a new DSP [8]. We have ported the decoder to 
the DSP and we have developed testbenches to compare both 
DSPs. Our future work will be focused on the improvement of 
the optimization process for the new DSP. 
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