
DIFFUSION-CONTROLLED 
COMBUSTION 

Amable Lifian 

Abstract We devote this brief review to some relevant aspects of diffusion-
controlled combustion. After a survey of the conservation equations 
involved, we shall describe the Burke-Schumann limit, which is appli
cable when the reaction time at the flame is very short compared with 
the mixing time. Using as a protopypical example the How downstream 
from a fuel injector in a combustor chamber, we next introduce some 
phenomena related to finite-rate kinetics. We shall see how the high 
temperature sensitivity typical of combustion reactions is responsible 
for the presence near the injector of chemically frozen regions of low 
temperature where the reactants mix without chemical reaction, these 
regions being separated by thin premixed flames, with rich and lean 
branches, from regions of near equilibrium flow, where the reactants 
coexist only in a thin trailing diffusion flame. The role of these triple 
flames in the ignition, anchoring, and lift-off processes of diffusion flames 
will be briefly discussed. 

1. INTRODUCTION AND CONSERVATION 
EQUATIONS 

Most of the combustion reactions between fuels and the oxygen of the 
air occur only after vaporization or gasification of the fuel and mixing 
with the air. In many systems the reactants are unmixed when they enter 
the combustion chamber, and the reaction time is so short in regions of 
high temperature that the reactants coexist only in thin reaction layers, 
or diffusion flames. There, the reaction takes place at a rate determined 
by the rate of generation of fuel vapors, when we deal with liquid or 
solid fuels, and the rate of mixing with the oxygen of the air. 

The burning process of a typical hydrocarbon in air involves dozens 
of chemical species and hundreds of elementary chemical reactions. 
Although a detailed account of the chemistry is necessary, for instance, 
in the description of the production of such combustion pollutants as 
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carbon monoxide and oxides of nitrogen, many aspects of the combus
tion process can be understood by assuming that the chemical reaction 
between the fuel and the oxygen of the air takes place in a single overall 
step, an approach to be adopted in the following development. Thus, we 
consider that the fuel, F, reacts with the oxygen of the air, O2, to pro
duce combustion products according to the irreversible global reaction 

F + s 0 2 -> (l + a) Products + (q), (1) 

where .v and q represent, respectively, the mass of oxygen burnt and the 
amount of heat released per unit mass of fuel consumed. 

In diffusion-controlled combustion systems, different streams provide 
the fuel and the air. We let YQ2A and *FO £• 1 denote, respectively, the 
mass fractions of oxygen and fuel in their corresponding feed streams. 
Dilution is permitted in the fuel stream for generality, while Yo2A — 0.23 
in air. Correspondingly, S = SYFQ/YO2A is the mass of air that one 
needs to mix with the unit mass of gas of the fuel stream to gener
ate a stoichiometric mixture. The adiabatic combustion of the resulting 
mixture at constant pressure produces a temperature increment given by 
TS — TQ — qYpo/[cp(l+S)], with the initial temperature of the air stream, 
TA, being assumed to be equal to the fuel stream temperature, To. Here, 
cp denotes the specific heat at constant pressure, assumed to be constant 
for simplicity. We shall see that Ts becomes the maximum temperature 
achieved in adiabatic diffusion flames when the chemistry is infinitely 
fast and the diffusivities of both reactants are equal to the thermal dif-
fusivity. Two fundamental thermochemical parameters emerge therefore 
in nonpremixed combustion, namely, 

sYF0 Ts -T0 

S = and 7 = —— , (2) 
JO2A J-o 

the second being an appropriate dimensionless measure of the exother-
micity of the reaction. Typical values for S and 7 in a hydrocarbon-air 
flame are S ~ 15 and 7 ^ 6. 

It is assumed that the local rate at which the overall combustion 
process given in Eqn. (1) takes place depends on the fuel and oxygen 
mass fractions Yp and Yo2, and on the temperature T, with a dependence 
that can be represented by an Arrhenius law of the form 

WF = ^!2l = _ products = -pBe-WKfYpYg? , (3) 

where w\ represents the mass of species / produced per unit volume per 
unit time, p is the density, and R is the universal gas constant. Since 
(1) is not an elementary reaction, its corresponding rate (3) does not 



follow the law of mass action; it is a heuristic law that, with appropriate 
selections for the reaction-rate parameters, reproduces approximately 
the global combustion rate in a limited range of operational conditions. 

Four different reaction-rate parameters appear in Eqn. (3), namely, 
the dimensionless reaction orders np and no, the activation energy E, 
and the pre-exponential frequency factor B. In combustion applications, 
the activation energy is so large that the exponent E/{RT) is much 
larger than unity everywhere. For instance, E/(RTs) may be of order 
10 whereas E/(RTQ) is much larger, of the order of 100. Consequently, 
the resulting combustion rate given in Eqn. (3) becomes very sensitive 
to relatively small temperature variations of order [E/(RT)]~l, and it 
changes by many orders of magnitude as the temperature increases from 
the initial value typically found in the reactant feed streams to the peak 
values found at the flame. 

The conservation equations for combustion are the Navier-Stokes 
equations of mass, momentum, and energy, supplemented with conser
vation equations for the different chemical species (Williams 1985). It is 
always convenient to write these equations in dimensionless form. The 

Figure 1 Fuel injector with coaxial air flow tor Re ~ 1 and Da » 1. 

selection of the characteristic scales of length, time, and velocity must be 
based on the geometry and boundary conditions of the particular prob
lem under study. For illustrative purposes, let us consider for instance 
the prototypical configuration sketched in Fig. 1, corresponding to a fuel 
injector of radius a with coaxial air flow. If the characteristic velocity 



of the fuel jet is UQ, then a, UQ, and a/Ua emerge as the natural scales 
for defining the dimensionless distance, dimensionless velocity v, and 
dimensionless time t, respectively. Furthermore, we shall use the values 
of the density and thermal diffusivity in the fuel stream, po and £>roi 
to define the dimensionless variables p and DT- For the chemistry pre
viously described, use of these variables enables the associated species 
and energy conservation equations to be written in the form 

f (PVM + V • <**) - jLv • ( £ £ v f F ) = „ r , (4) 

!<,?„> + V • (pvYo) - i v • ( £ £ v f o ) = A*, (5) 

1(4)+v • (""!)- î v • (*&B - -*+s>* • <6» 
In the conservation equations for reactants, the normalized variables 
Yp = Yp/Ypo and YQ — Yo2/Yo7/\. are employed, and a Fickian descrip
tion is adopted for the molecular transport, with Lp and LQ represent
ing, respectively, the Lewis numbers of fuel and oxygen (the ratio of the 
thermal diffusivity to the molecular diffusivity of the species) and Pr 
being the Prandtl number of the gas mixture (the ratio of the kinematic 
viscosity v to the thermal diffusivity). The dimensionless reaction rate 
I5F = WF/(POYFQU0/(I) appearing on the left-hand side of Eqns. (4)-(6) 
can be written from Eqn. (3) as 

tDF = - p
g yF"Fy0"o = -pD&Y^Y£° , (7) 

uo/ci 

where B = BYplQ~ YO°A 'S a n appropriately modified frequency factor. 
With the scales employed, two different dimensionless numbers appear 
above characterizing the relative importance of the different terms—the 
variable Damkohler number Da = {a/UQ)Be~BlRr and the Reynolds 
number Re = Uoa/vo, in which ^denotes the value of v in the fuel feed 
stream. As discussed below, distinguishable regimes can be identified 
when these nondimensional numbers take extreme values. 

A number of simplifications have been made in deriving Eqn. (6). For 
instance, changes in cp from the mean value have been neglected, along 
with radiative heat transfer. Since the Mach number is small in most 
practical applications of diffusion flames (except those concerning super
sonic combustion), the effect of changes in kinetic energy on the energy 
balance is negligible, and has been therefore ignored in writing Eqn. (6). 
In this low-Mach-number approximation, the spatial pressure variations 
are much smaller than the existing pressure, although temporal changes, 



which tire omitted in Eqn. (6), may be relevant in some cases (e.g. diesel 
combustion). Note that in this quasi-isobaric limit one must retain the 
small spatial pressure differences in the momentum conservation equa
tion, since they are fundamental in establishing the fluid motion, but 
may neglect pressure variations in writing the ideal gas law PT/TQ = M, 
in which M denotes the mean molecular mass of the gas mixture scaled 
with its value in the fuel feed stream. 

Equations (4)-(6), supplemented with the continuity and momentum 
equations, must be integrated with appropriate initial and boundary 
conditions. For instance, in the fuel stream Y? — 1, YQ = 0, and T — To, 
and in the air stream Yp = 0, YQ = 1, and T = T&- At the walls, the 
condition of vanishing diffusion fluxes n • VYp = n • VYo = 0 must be 
imposed, with fi denoting the unit normal vector. Writing the boundary 
conditions for the temperature at the wall surface requires in general 
consideration of heat conduction in the wall, with two limiting cases of 
practical interest being that of isothermal walls, for which T = Tw = 
const, and that of isobaric walls, for which fi • VT = 0. 

The strong dependence of the chemical rate on the temperature causes 
its value to change by many orders of magnitude across the combustor. 
This disparity, which is a consequence of the large activation energy 
E/(R'I~) present in Eqn. (3), holds also for more realistic kinetics. Near 
the injector one may find regions where the temperature is close to the 
initial temperature Tq ~ TU, and where the resulting Damkohler num
ber is Dao = (a/Uo)Bexp[-E/(RTo)} < 1. According to the scalings 
identified here, in these regions of cold flow the two streams mix without 
significant chemical reaction. 

The shortest chemical time, on the other hand, is found at the flame, 
where the temperature will approach Ts- It often happens in appli
cations that the Damkohler number constructed with this minimum 
chemical time, Das = (a>/Uo)Bexp[-E/(RTs)], is much larger than 
unity. With the Reynolds number being always of order unity or larger 
this condition of large Damkohler number guarantees that the chemical 
term dominates over the transport and accumulation terms, so that in 
the limit Da -+ oo, Eqn. (4)-(6) yield 

YpYo = 0. (8) 

Correspondingly, two different regions can be identified in the equilib
rium solution that appears—the fuel region ftp, where YQ — 0, and the 
oxidizer region fio, where Y$ — 0. The reactants can coexist only in 
infinitesimally small concentrations within the flame sheet E/ that sep
arates the fuel domain from the oxidizer domain, where the chemical 
reaction takes place at an infinitely fast rate. This singular character of 



the chemical reaction causes the normal gradients of composition and 
temperature to be discontinuous at £/. A schematic example of the 
equilibrium flow emerging for Da » 1, including transverse profiles of 
reactants and temperature, is given in Fig. 1. 

The configuration depicted in Fig. 1 corresponds to values of the 
Reynolds number of order unity, for which convection and diffusion are 
equally important in a region of characteristic length a around the fuel 
injector. For increasing values of Re, the effect of molecular diffusion 
becomes less significant, so that for Re » 1, the fuel and air streams 
do not mix appreciably in this region of characteristic length a. Mixing 
is restricted to thin mixing layers of thickness Sm separating the two 
streams, within which the diffusion time S^/DTO is comparable with 
the residence time. Since the reactants have to be mixed at the molec
ular level for the chemical reaction to occur, if the flame exists, then 
it necessarily lies within these thin mixing layers. As the flow devel
ops downstream, the thickness of the mixing layers increases, becoming 
comparable with the radius a as the flame ends at downstream distances 
of order Re a » a. The computation of the resulting slender flows can 
make use of the boundary-layer approximation, in which both upstream 
molecular diffusion and transverse pressure variations are neglected. 

The description of diffusion flames at large Reynolds numbers is fur
ther complicated by the appearance of flow instabilities and the onset of 
turbulence. The mixing layers at high Reynolds numbers become thin 
vorticity layers, which are known to be unstable to small disturbances. 
The flow in the mixing layer then becomes turbulent, with vorticity 
initially concentrated in discrete vortices that grow in size by pairing. 
Three-dimensional instabilities also enter to produce vortices of decreas
ing size. The resulting mixing layers are strongly corrugated by the 
surrounding turbulent flow, thereby enhancing the mixing process. A 
detailed account of turbulent combustion can be found in the book of 
Libby and Williams (1994) and the more recent book of Peters (2000). 

We shall see below that in the limits Da «; 1 (frozen flow) and Da 
» 1 (equilibrium flow) the problem reduces to one of mixing, which 
is described in terms of conserved scalars not affected by the chemical 
reaction. This mixing process is turbulent when Re » 1, with an impor
tant role played by coherent structures, which are influenced by the heat 
release (see the review article of Dimotakis in these Proceedings). 



2. THE BURKE-SCHUMANN ANALYSIS OF 
DIFFUSION FLAMES FOR LF ^ L0 # 1 

As seen in Eqn. (8), when the chemical time is much shorter than the 
residence time, that is, for large values of the Damkohler number, the 
reactants cannot coexist. The oxygen and fueJ domains are separated 
by an infinitesimaily thin flame sheet where the chemical reaction takes 
place at an infinitely fast rate. The reaction rate then becomes a Dirac-
delta distribution whose location £ / and strength must be determined 
as part of the solution to a complex free-boundary problem. Burke and 
Schumann (1928) indicated the procedure to integrate this problem by 
introducing coupling functions not affected by the chemical reaction. 
Although the analysis of Burke and Schumann was restricted to unity 
values of the reactant Lewis numbers, it is possible to extend their pro
cedure to cover also systems with nonunity Lewis numbers (Lilian 1991, 
Lilian and Williams 1993), a development presented below. 

Following the methodology of Burke and Schumann (1928). we pro
ceed by eliminating the reaction terms by linear combinations of the 
conservation equations. For instance, multiplying Eqn. (4) by S and sub
tracting Eqn. (5) yields a chemistry-free conservation equation, in which 
the coupling function emerging in the diffusion term, (SYp/Lp —Yo/Lo), 
differs from that appearing in the accumulation and convection terms, 
SYp/Yo. It is convenient to normalize these functions to be unity in 
the fuel stream and zero in the oxidizer stream, thereby giving the two 
mixture-fraction variables 

_ SYF -YQ + 1 . f SYF -Yo + l 
Z = — and Z = = , (9) 

5 + 1 5 + 1 
where S = SLo/Lp is an appropriately modified stoichiometric ratio. 
The corresponding chemistry-free conservation equation reduces to 

! ( r f ) + V . ( ^ ) - £ v . ( g > L v * ) - 0 . (10) 

where Lm — LQ{S + l ) / ( 5 + 1) is an average Lewis number. A similar 
treatment of the energy equation leads to the conservation equation 

| ( p t f ) + V • (pvH) - i - V • (P&H) = 0 , (11) 
dtvr ' ' ' Re V Pr 

for the excess-enthalpy variables 

H=L^ + YF + Yo-l and H = f ^ + f °+ **fl. (12) 



Equations (10) and (11), together with Eqn. (8), replace Eqns. (4) -
(6) in the integration of the problem, thereby removing the singularity 
associated with the reaction term. It can be shown that the conserved 
scalars Z and H and their derivatives are continuous everywhere, while 
the gradients of the continuous functions Z and H have jumps across 
the flame sheet. Since Yp = 0 on the oxidizer side and Yo = 0 on 
the fuel side, both reactant concentrations vanish at the flame surface, 
which is therefore Jocated where breaches the stoichiometric value Zs = 
1/(5 + 1). Since Z < Zs in the oxidizer domain and Z > Zs in the fuej 
domain, the composition can be readily related to the mixture fraction Z 
through the piece wise linear expressions represented in Fig. 2, which also 
shows the supplementary expressions needed to compute Z and H — H 
in terms of Z, to be used in integrating Eqns. (10) and (11). Note that, 

Figure 2 The reactant mass fractions and the functions Z and H — H as functions 
of the modified mixture fraction Z. 

from the definitions given in Eqns. (9) and (12). it is straightforward to 
compute the temperature field from the coupling functions Z and H. 

Boundary conditions for Z and H are Z — 1 = H = 0 in the fuel 
stream and Z = H - {TA - T0)/{TS - T0) - 1/LQ + l/LF = 0 in the 
air stream. At the combustor walls, the condition of nonpermeability 
yields fiVZ = 0, while the boundary condition for His in general more 
complicated. Two limiting cases of interest are that of an adiabatic wall, 
for which n • VH = 0, and that of an isothermal] wall at T = Tu,,for 
which H = {TW- TQ)/(TS - To) + Z # ( l - Z/Zs) - L?1 if Z < Zs and 
H = (TW~ To)/(Ts - To) - £px( l - Z) / ( l - Zs) if Z > Zs. 

The present formulation simplifies to the classical Burke-Schumann 
analysis when when Lp = Lo — 1. In this equidiffusional case, Z = Z 
and H = H. Furthermore, if the combustion walls are adiabatic and 
TA = To, then H = H = 0 everywhere, and the flame temperature 
reduces to Tj = Ts, as can be obtained from Eqn. (12). In the more 
general case, the flame temperature depends on the value of H — Hj at 



Sy according to (T/—To)/(Ts - T0) = H/ + 1/Lp, yielding in general a 
value that differs from the adiabatic flame value Ts-, a noticeable result 
of the differential diffusion effects. 

The Burke-Schumann formulation can be used for instance to calcu
late the solution of the injector problem sketched in Fig. 1 in the limit 
of infinitely fast combustion. In the calculation, the Reynolds number 
of the fuel jet is assumed to be sufficiently large for the boundary-layer 
approximation to hold, and yet sufficiently small for the laminar solu
tion to remain stable. In the resulting description, upstream molecular 
diffusion can be neglected, along with the effect of the pressure gradient. 
For simplicity, the solution was calculated with constant density and 
constant transport properties and with unity Lewis numbers. A fully 
developed parabolic profile is assumed for the jet exit velocity, and no 
coaxial air flow is considered (UA = 0). 

The mixture fraction field corresponding to different values of the 
Prandtl number is given in Fig. 3, where the injector radius a and the 
characteristic length Re a are used as characteristic scales for the radial 
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Figure .? The isolines Z = 0.9. 0.6, 0.4, 0.3, 0.2, and 0.1 for Pr = 0.7 (solid lines). 
Pr = 1.0 (dot-dashed lines) and Pr = 13 (dotted lines). 

and axial coordinates r and x, respectively. The Reynolds number Re 
= U^a/v used in the calculation is based on the momentum flux of 
the fuel jet. ,/. according to UQ = [J/{np)]l/2/a. Mixing is initially 
restricted to a thin annular mixing layer located near rla = 1, which 
was first described by Goldstein (1930). The thickness of this layer, 
6m/a ~ Re~1/3(a:/a)'~"1/3, increases with distance to become of the order 
of the jet radius when.v/(Re«) is of order unity. Diffusion of the mixture 
fraction continues indefinitely downstream, leading to a wider transverse 
distribution with a decreasing peak value. For sufficiently large values of 
.v/(Re«), the profiles of axial velocity u and mixture fraction approach 



the Schlichting self-similar solution (Schlichting 1933, Squirre 1951) 

/i— \ i / P r 

8 x u I / l x 16Z \ 1 
3 R e a t / 0 \ V 3 Rea 2Pr + l 1 / .. ^ 2 

1 + J / " 64 \x/Re 

in which peak values at the axis decrease monotonically with the recip
rocal of the downstream distance. 

As previously mentioned, the flame lies where Z equals the stoichio
metric value Zs = 1/(5"+ 1). Therefore, the isolines of Fig. 3 give the 
flame shape for different values of Zs- In systems where undilute fuel 
feed is employed, the stoichiometric mass fraction S = Su = S/YQ2A 

is very large, and the corresponding value of Zs = Z$u = l/(Su + 1) 
is very small. For instance, in methane-air combustion, s = 4, Su = 
4/0.23 ~ 17, and Zsu — 0.05. In these undilute systems, the flame 
lies in the self-similar region described by Eqn. (13), which can be used 
to compute approximately the flame length xj according to x//a = 
(2Pr + l)(v/3/16)(Re/Zs). This result suggests that one may reduce 
the flame length by diluting the fuel stream to increase the value of Zs-
Since l/Zs — SuYpo for SuYpo » 1, moderate dilution may be expected 
to lead to a linear decrease in (lame length from the undilute value Xfu 

according to xj ~ X/UY"FO-

It is interesting to note that, unlike the flame length, the flame temper
ature Ts is rather insensitive to fuel dilution, as can be seen by expressing 
T$ in terms of the undilute peak temperature Tsu = TQ + ?/[cp(l + Su)} 
to yield (Ts - T0)/{TSu - T0) =s [1 + l/(S„yFo)]_1. Clearly, to pro
duce significant differences in flame temperature, one needs to dilute 
the fuel stream with Su parts of inert gas to give YFO ~ l/Su, whereas 
moderate dilution does not change significantly the value of Ts- For 
instance, to reduce the temperature in atmospheric methane-air com
bustion {Tsu - 2400 K) to values near extinction {Ts ^ 1600 K), one 
needs to decrease the fuel content of the fuel feed stream to yp0 — 0.08. 

3. FINITE RATE EFFECTS 
We have seen how small values of the Damkohler number correspond 

to chemically frozen solutions in which the reactant streams mix with
out significant chemical reaction, while large values of Da yield chemical 
equilibrium solutions, in which the reactants can coexist only in a thin 
flame sheet separating the fuel and oxidizer domains. Because of the high 
sensitivity of the chemical rate to temperature variations, the Damkohler 
number evaluated at the feed temperature Dao and that corresponding 



to the adiabatic flame temperature Das typically differ by many orders 
of magnitude. Since the Damkohler number in the combustor necessarily 
lies in the intermediate range Dao < Da < Das, the condition Dao S> 1 
guarantees the existence of equilibrium flow, whereas frozen mixing is 
the solution that appears necessarily if Das < 1- As previously antici
pated, in both limits the problem reduces to one of mixing. To illustrate 
the analogy further, one may note that the distribution of Z given in 
Fig. 3 for the equilibrium flow corresponds also to the distribution of 
reactants Yp = 1 — l b = Z resulting from frozen mixing of the fuel jet 
with the surrounding air in the limit Da <S 1, with the Prandtl number 
representing in this equidiflusional case the Schmidt number Sc = PrLp 
= PrLo of the reactants. 

Multiple solutions may exist when Dao «C 1 < Das, a condition often 
satisfied in practical systems (Linan 1994). In the absence of an exter
nal ignition source, the weak reaction rate at T = TQ is not sufficient 
to produce a flame. The mixing of the fuel jet with the surrounding air 
proceeds then without significant chemical reaction, giving the frozen 
reactant distribution calculated in Fig. 3. Ignition can be forced exter
nally, however. An ignition source (a spark or a hot body) applied 
somewhere in the reactant mixture downstream from the injector may 
increase locally the reaction rate sufficiently to trigger the combustion 
process. For the large values of the Reynolds number typical of most 
practical applications, the flame front resulting after ignition is thin 
compared with the jet radius, and its local structure is that of a planar 
premixed flame, whose propagation velocity is known to reach a maxi
mum value SL where the mixture is stoichiometric (or slightly rich), and 
to decay rapidly as the mixture becomes either leaner or richer. Cor
respondingly, the premixed flame that forms moves both upstream and 
downstream along the stoichiometric surface Z = Zs and exhibits a char
acteristic structure with a lean branch and a rich branch (Linan 1988, 
Dold et al. 1991). On the lean side the premixed flame consumes all the 
available fuel, leaving behind oxygen that reacts in a trailing diffusion 
flame with the fuel left behind by the rich branch. Due to their reduced 
propagation velocity, the lean and rich branches of the flame front curve 
backwards from the leading stoichiometric point with a radius of curva
ture that is of the order of Sm = Zs/\VZ\s, a characteristic measure of 
the local mixing-layer thickness. 

The triple flame moves relative to the flow with a propagation velocity 
Uj of the order of SL, that depends on the exothermicity of the reac
tion through the parameter 7. The flow in the nose region downstream 
from the flame is rotational, with overpressures that deflect the incoming 
streamlines outwards, and slow the flow velocity along Z = Zs- Cor-



respondingly, the front propagation velocity £//, relative to the unper
turbed flow, is somewhat larger than Sx (Ruetsch et al. 1995). As seen 
by Dold and coworkers (1991), when 8m is of the order of the character
istic thickness of the flame front, i.e. Si = DTO/SI, the front velocity 
Uj is also a function of Si/Sm, becoming independent of &i,/$m when 
&Ll$m ^ 1- For instance, for the laminar jet of Fig. 3, for which the 
thickness of the Goldstein mixing layer increases with distance from 
the injector rim according to 5m/o ~ Re_ 1/3(x/a)1 ' / 3 , Uj is no longer 
dependent on Si/6m at distances x such that x/a » Re_2{£/o/<Sx)3. The 
previous estimate of 6m yields Sm/a <C 1 for x <S Re a, indicating that 
triple flames propagating at such distances are locally two-dimensional. 
For x > Re a, on the other hand, the value of Z at the axis is compara
ble with the value of Zs- The associated flame fronts, which satisfy the 
condition 8i/8m <C 1, exhibit a radius of curvature of the order of the 
local jet radius, and possess therefore an inherendy three-dimensional 
structure that can be expected to influence the value of Uf when thermal-
expansion effects are nonnegligible. 

For the triple flame to move upstream, its propagation velocity Uf ~ 
SL must be larger than the flow velocity us along the stoichiometric 
surface Z = Zs, whose distribution is exhibited in Fig. 4 for the lam
inar jet flow of Fig. 3. The curves in Fig. 4 correspond in particu
lar to Zs = 0.1, a realistic small value for which the velocities found 
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Figure 4 The velocity distribution along the surface Z = Zs = 0.1 for Sc = 0.7, 1.0, 
and 13. 

1/Sc 
are small, of order Zs' . In the vicinity of the injector, the stoichio
metric surface is embedded in the Goldstein mixing layer, and thereby 
exhibits a velocity that increases with the cube root of the distance to 
the injector rim. The behavior of us as the jet develops for values of 
x > Re a is given by the first equation in (13), which yields the depen
dence US/UQ ~ Zg^lx/iRea)}1/^-1, revealing that departures of the 



Schmidt number from unity affect in a fundamental way the velocity dis
tribution (Lee and Chung 1997). Thus, a value of the Schmidt number 
above unity results in values of Us decreasing with x for x » Re a, which 
in turn causes the associated velocity distribution along the stoichio
metric surface to possess a maximum value at an intermediate location 
x ~ Re a. On the other hand, the velocity distributions corresponding 
to Sc < 1 increase monotonically with distance, a characteristic that 
precludes the existence of lift-off flames as explained below. 

Using the plot, one may easily determine the downstream location 
where us equals Uj. If the flow velocity is decaying with distance at the 
given location, as may occur sufficiently downstream when the Schmidt 
number is above unity, then the solution found is stable, and corresponds 
to a lift-off triple flame (Lee and Chung 1997, Chen and Bilger 2000). 
On the other hand, if us is an increasing function of x where us = Uf, 
as occurs for Sc < 1 and also close to the injector for Sc > 1, then the 
resulting solution is unstable. The value of x determined in this manner 
corresponds to the farthermost location where, by applying an ignition 
source, one may generate a premixed front that propagates upstream 
to the injector rim. The dependence of the velocity distribution on the 
Schmidt number explains why lifted-off solutions are typical of heavy 
hydrocarbons, but do not appear for instance in laminar methane or 
ethane combustion (Lee and Chung 1997). 

The structure of the diffusion flame edge (Buckmaster 1996) in its 
anchoring region, in the near wake of the injector, is obviously strongly 
dependent on the Reynolds number Uaa/va, typically much larger than 
unity in applications, and also on the thickness dp <g. a of the injector 
wall. The wall value of the velocity gradients near the injector rim is 
going to enter in the scales of the anchoring region. This value is equal 
to A = 4Uo/a in the fuel stream when the fuel jet flow corresponds 
to a Poiseuille solution, as occurs with long injectors of length Re a or 
larger. Otherwise, the value of the velocity gradient is determined by 
the thickness of the boundary layer that forms adjacent to the injector 
wall in the fuel stream. In systems with co-flowing air, a boundary layer 
also develops at the wall in the air stream. These boundary layers merge 
to form a mixing layer when they separate from the injector wall. If the 
fuel boundary layer has developed in a length of order a, and if it is 
laminar, the resulting thickness 6B will be of order oRe - 1 ' 2 , leading to 
a wall value of the velocity gradient A of order (UO/O,)RQ~1/2. A similar 
wall velocity gradient aA will be encountered in the air stream, where 
the factor a is zero if the jet mixes with stagnant air. 

When the mixing layers begin to merge, the mixing layer is thin com
pared with 6B and its structure is that of a Goldstein mixing layer, 



which is determined exclusively by the wall velocity gradients (in the 
limit dpj'6B < 1). Because Re » 1, the effects of upstream heat con
duction and diffusion will be negligible in the annular mixing layer out
side a small Navier-Stokes (N-S) region, at the rear end of the injec
tor. The characteristic size 6^ = S/VQ/A and characteristic velocity 
ttjv = \/VQA of this region are determined by the fuel boundary-layer 
wall velocity gradient A and the condition ttjv^/v/^o = li required to 
allow for upstream heat conduction and diffusion there. For the diffu
sion flame to remain attached to this N-S region, one can anticipate 
that UN should not exceed Si significantly, or equivalently, the local 
Damkohler number D^ = S\/{VQA) should not be lower than a critical 
value (DN)C of order unity. 

In order to calculate (JDJV)CJ and the diffusion-flame edge structure for 
DJV > {DN)CI one should solve the locally two-dimensional and steady 
form of the reacting N-S equations nondimensionalized with the scales 
SN and ujv, as done recently by Fernandez et al. (2000). The main 
parameters determining the solution are D^, S, 7, and the air/fuel ratio 
a of wall velocity gradients, together with the nondimensional thickness 
dp/Sff of the injector wall and the nondimensional activation energy 
E/(RTs) (if an Arrhenius law like that of Eqn. (3) is adopted for the 
chemistry description). With the scales of this N-S region, the incoming 
air and fuel flows are seen as uniform shear flows at the temperature of 
the wall, intermediate between those of the two streams To and TA- It 
is worth noting that the structure of the edge flames that form in the 
near-wake of the injector is similar to that of the edge flames emerging 
in flame spread over solid fuel. 

When the Reynolds number based on the boundary-layer thickness 
UQ5B/VO exceeds a critical value, the boundary layer can be expected 
to become turbulent. In this case, the average values for the scales of 
the flame attachment region are the friction velocity and the thickness 
of the viscous sublayer, where the local Reynolds number is of order 
unity and the Reynolds stresses are no longer dominant. The analysis 
of the attachment region can be anticipated to be similar to that of the 
laminar case, with the effect of turbulence introducing in this case time 
variations in the wall velocity gradients. 

As a final remark, one should mention that finite-rate kinetics is also 
responsible for the phenomenon of strain-induced extinction. In most 
combustion applications, the Reynolds number is so large that the flow 
becomes turbulent. Then diffusion flames appear embedded in thin 
mixing layers that are locally strained by the turbulent motion. The 
maximum strain rate, of order R e ^ t / b / a is associated with the small
est eddies, whose characteristic size and velocity are given according 



to Kolmogorov by /& ~ Re - 3 / 4 a and n* ~ R e - 1 / 4 ^ - As seen by Linan 
(1974), local flame extinction may occur for sufficiently large strain rates, 
when the rate of mixing (or, equivalently, the rate of fuel burning per 
unit flame surface), measured by l/8m = ZgX\VZ\s, is increased above 
a critical value, defined in order of magnitude by l/8m ~ I/SL ~ SLI^Q. 

Note that, with the wall value of the velocity gradient A ~ (Uo/a)Ke~ ' 
corresponding to injectors of characteristic length a, the scales emerging 
in the N-S region <5jv = y/vofA ~ Re~3/4a and ujq — \/VQA ~ Re~l^Uo 
are the Kolmogorov scales 5k and Uk of the associated turbulent flow. 
For these systems, the criteria for lift-off 8^ ~ 8i and that of local 
extinction Sm ~ 8i coincide, so that both phenomena may be expected 
to happen simultaneously. 




