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Abstract—The free-interaction influence of thermal expansion process in the boundary layer gas flow is 
analysed in this paper, using the formalism of the Triple-Deck theory. The physical model considered 
herein is the forced convection of a gas flowing over a flat plate subject to a step change in the surface 
temperature, taking place at a certain distance from the leading edge. There is a fundamental parameter 
7"w, defined as the ratio of the wall temperature to the free stream temperature. For values of Tw close to 
one, the governing equations can be linearized and solved with the aid of the Fourier transform method. 
However, for values of this parameter not close to one, a numerical treatment is required to solve the 
governing equations. Using finite-difference methods, the numerical results for the pressure, skin friction, 
thickness displacement and Nusselt number are presented for different values of T„. Finally, for a critical 

value of this temperature ratio, the boundary layer separates. 

INTRODUCTION 

SINCE the classic works by Stewartson and Williams 
[1], Messiter [2] and Stewartson [3] for the study of 
the influence on the drag coefficient of a finite length 
flat plate, using a three layer structure, there has been 
a renewed interest in applying it to a host of other 
basic flow situations, involving normally small dis­
turbances of different nature. In particular, the pres­
ence of some disturbances on the plate surface, gen­
erates an interaction with the outer inviscid flow, 
producing longitudinal pressure gradients having an 
important influence on the fluid close to the wall where 
the convective terms are small. It has been dem­
onstrated that the Triple-Deck structure can be util­
ized to explain correctly those flows and to predict 
boundary layer separation. A comprehensive review 
on this subject is given by Smith [4], where the same 
structural argument of the Triple-Deck theory can 
be applied immediately to a wide variety of other 
incompressible and compressible problems. Particular 
studies of the incompressible case come from 
Stewartson [5] for a corner, the extensively studied 
case for a hump or dent mainly analysed by Smith and 
Merkin [6], Veldman and Dijkstra [7], the slot-injec­
tion by Napolitano and Messick [8]. The compressible 
Triple-Deck structure has also received considerable 
attention in the literature for subsonic and supersonic 
flows [1, 9]. However, the majority of these works 
consider the disturbance associated with some kind of 
dynamical or geometrical discontinuity like the vel­
ocity value as boundary condition or the finite hump 

on a flat plate and similar effects. On the other hand, 
Messiter and Linan [10] study the problem of the 
vertical plate in a laminar free convection flow. In 
particular, their analyses consider the flow near a dis­
continuity in plate temperature and show that a free 
convection interaction of the same general type occurs 
near a jump discontinuity in the prescribed plate tem­
perature. This analysis can be simplified considerably 
because the boundary conditions for the velocity are 
continuous and an analytical solution for the local 
pressure distribution can be obtained. Recently, Zey-
tounian [11] has proposed to study the incompressible 
flow in a flat plate subject to a step temperature, in a 
finite interval of the length of the plate. 

In the present work, the focus is on investigating 
the fluid-mechanical structure of a gaseous boundary 
layer flow produced by the thermal expansion process 
using the Triple-Deck theory. This process is gen­
erated by abruptly increasing at a given distance the 
plate temperature from that of the free stream to a 
higher value. This problem has been studied ana­
lytically and numerically by solving the multi-layer 
governing equations, obtaining a boundary layer sep­
aration for a critical value of the temperature ratio. 

GOVERNING EQUATIONS 

The physical model analysed is the following. We 
consider a flat plate aligned parallel to a uniform 
free-stream gas flow which has a uniform free-stream 
velocity u% and temperature T%. We will assume that 



NOMENCLATURE 

A(x) nondimensional displacement thickness 
A-, (x) Airy function 
A0(x) nondimensional linear displacement 

thickness 
B(w) complex constant 
IB constant of relaxation 
C,, matrix related with the interaction law 
cp specific heat of the gas 
F0 nondimensional stream function 
G0 nondimensional temperature 

distribution 
H{x) Heaviside step function 
i imaginary number 
Im co imaginary part of co 
k thermal conductivity 
K constant depending of Prandtl number, 

9 l / 3 r (2/3) / r ( i /3) /v ' / 3 

/* longitudinal distance between the leading 
edge and the temperature step 

NuL Nusselt number based on the Lighthill 
approximation 

Nu Nusselt number, defined by Nu = 
-<9w(i+;.-5<'4/r3/8x)/(rw-i)A-3/4ir5/8 

xdT/dy\f=0 

Pr Prandtl number, fi*cp/k 
p* pressure far from the plate 
p* pressure distribution 
p nondimensional pressure, p* —/?*/p* « i 
p0 nondimensional linear pressure 
p nondimensional pressure at the 

lower-deck 
R Reynolds number, u%l*jv% 
R* ideal gas constant 
R, vector related with the interaction law 
T% temperature far from the plate 
TZ wall temperature 
T* temperature distribution 
Tw nondimensional temperature parameter, 

1 w / * oo 

T nondimensional temperature, T*/T% 
T0 nondimensional linear temperature up to 

terms of order 0W 

T, nondimensional linear temperature up to 
terms of order 6l 

T change of variable to follow the 
Box-Keller method, equation (66) 

u* velocity at the x direction far from 
the plate 

u* velocity distribution at the x direction 
u nondimensional velocity at the x 

direction, w*/w* 
u nondimensional lower-deck velocity at 

the x direction 
u0 nondimensional linear longitudinal 

velocity 
U change of variable to follow the 

Box-Keller method, equation (63) 

y* 

Y 

velocity at the y direction 
nondimensional velocity at the y 
direction, «*/«* 
nondimensional lower-deck velocity at 
the y direction 
nondimensional linear transversal 
velocity 
change of variable to follow the 
Box-Keller method, equation (64) 
longitudinal coordinate measured from 
the leading edge, Fig. 1 
nondimensional longitudinal coordinate, 
x*/l* 
longitudinal scale within the lower-
deck, equation (7) 
initial value for x to complete the 
numerical calculations 
transversal coordinate measured from the 
leading edge, Fig. 1 
nondimensional transversal coordinate, 
>•*//* 
transversal scale within the lower-
deck, equation (7) 
initial value for y to complete the 
numerical calculations 
edge value of the y scale 
transversal coordinate of the boundary 
layer, y = R-4I*Y 
modified longitudinal coordinate, 

Greek symbols 
8 Dirac delta function 
r\ non-similar variable, equation (15) 
9 nondimensional temperature 
9W temperature parameter defined by 

7 ^ - 1 
fi% viscosity at the free stream of the gas 
H* viscosity coefficient 
[i nondimensional viscosity coefficient, 

v J kinematic viscosity at the free stream of 
the gas,/x*/p* 

E(Pr) constant depending on Prandtl number, 
equation (21) 

p* density function at the free stream of the 
gas 
density of the gas 
wall density 
stretching variable on the linear analysis, 

nondimensional skin friction 
nondimensional linear skin friction 
high order function to determine T, 
nonsimilar stream function defined by 
equation (15) 

Pw 
<T 

T 

To 



\jj nonsimilar stream function defined by 
equation (63) 

to Fourier frequency. 

Subscripts 
B Blasius profile 
e outer edge of the lower 
F Fourier variable 

-deck 

w value of the variables at the wall 

00 value of the variables at the free 
stream. 

Superscripts 
" 
~ 

* 

bar to denote linear variables 
bar to denote the lower-deck 
compressible variables 
bar to denote the lower-deck 
incompressible variables 
asterisk to denote the dimensional 
physical variables. 

the free-stream gas temperature is equal to the wall 
temperature. However, at a certain distance from the 
leading edge, the flat plate temperature is suddenly 
changed to a uniform value T* greater than the gas 
temperature. Thus, the heat transfer will always 
occur from the flat plate to the gas, causing logically 
an expansion process in the gas flow. The physical 
situation is shown in Fig. 1. Specifically, the main 
features of the flow can be modified substantially if 
we analyse regions very close to the step temperature 
where the strong gas expansion causes the retention 
of the pressure gradients in the governing equations 
due to the free interaction phenomena. The dis­
placement thickness evolution, for this region, 
changes in an important way due to the very strong 
expansion process. It is well known, that the Triple-
Deck structure can be described by three layers 
(upper, main and lower deck) each of them satisfying 
appropriated governing equations [4]. In this case the 
lower-deck is the only nonisothermal layer, which 
is produced by the altered boundary conditions at 
the flat plate, due to the drastic change in the wall 
temperature. Because the equations of motion for the 

upper and main decks permit simple analytical solu­
tions, we must concentrate herein on the problem of 
the lower-deck. The starting point in order to arrive 
at the lower-deck equations comes from considering 
the compressible Navier-Stokes equations together 
with an appropriate energy equation for two-dimen­
sional forced flow. The nondimensional governing 
equations, assuming completely negligible Eckert 
number (low Mach number flows), are given by 
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FIG. 1. Sketch of the thermal expansion interaction process. 
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dx\tldx) + dy\fil>y (4) 

The nondimensional variables and the correspond­
ing symbols used in this work are given in the 
Nomenclature. In addition to the above equations, 
we need an equation of state. In this case for simplicity 
we take an ideal gas law given by p = pR*T. Similarly, 
if we assume for simplicity that the gas viscosity 
increases linearly with temperature (Chapman-
Rubesin parameter, C = 1), both relations are given 
in nondimensional form as : 

P T = 1, pp. = 1. (5) 

In the above equation (5) the variation in pressure in 
the state equation has been neglected, which is justified 
for these low Mach number flows. The origin of 
the two-dimensional Cartesian coordinate system is 
taken to be at the leading edge of the flat plate where 
x and y represent the longitudinal and transversal 
coordinates to the plate, respectively. Also, in the 
above equations, Pr and R represent the Prandtl and 
Reynolds numbers defined by Pr = p%,Cp/k and 
R = u*J*/v*, respectively. We also assume that the 
Prandtl number is constant. The boundary conditions 
required to complete the problem statement are speci­
fied by the following relationships: 

at y = 0: u = v = 0, T = 1 for x < 1 (6a) 

T = Tw for x > 1 (6b) 

at JC = 0; y>0: u=T=\. (6c) 

Finally, far away from the flat plate, we have 

x'+y' u^ i, r - > i . (6d) 

Clearly, for fixed values of R and Pr, the analytical 
model depends only on a parameter Tw which is given 
by the ratio of the wall temperature to the free stream 
temperature, T„ = T*/T*. and the specified values 
of it dictates the procedure to solve the governing 
equations. 

Lower-deck equations 
In order to consider those regions where the thermal 

expansion becomes considerable it is required to intro­
duce the adequate Triple-Deck structure scaling. It 
can be shown [4] that in regions close to the point 
where the step change in temperature takes place, the 
value of the pressure in higher order equations can 
take an irregular form. So, when this point is 
approached, the induced pressure gradient eventually 
becomes comparable with the leading order inertial 
terms when x— 1 = 0(i?~3/8). Therefore, in order to 
analyse the effects in the lower-deck caused by a ther­
mal expansion at the field flow, the following new 
expansions and scaling are introduced : 

p = X'l2R '!4p + 

-1 = A"5,4.R-3/8jt, y = /," 
4/J-5/8>- (7) 

where k = 0.332. In this form, the above governing 
equations can be reduced to 

8 8 
^-Pu+ -^zpv = 0 
8x 8y 

8u 8u 8p 
ox oy ox oy \ oy 

8y = o(/r4'8) 

8T 8T 
pu— +pv— = -• -\p 

ox ay Pr oy \ oy 

8T 

(8) 

(9) 

(10) 

(11) 

The above compressible governing equations should 
be completed with appropriate boundary conditions 
for the lower-deck given by 

atj? = 0: u = v = 0, T=\ + (Tv-\)H(x) (12) 

where H(x) represents the Heaviside step function. 
As x-> — oo, the solution must match with the 

Blasius solution given by u ->• uH(Y), when Fis small. 
Here, Y is the inner-variable normally used to analyse 
the classical boundary layer and it is related with y 
through this relationship y = RA/SY or also, in terms 
of the transversal lower-deck variable as Y = R~ "8>>. 
Similarly, when x -> — oo the temperature must tend 
to that of the free stream, i.e. T-* 1 as x-* — oo. 
In the region x -> 0 of order (x ~ /?<?~3/4) there is 
another thin region (not resolved by the Triple-Deck 
structure) called by Stewartson 'Central Region' [3], 
where the full Navier-Stokes equations are applicable. 
The influence of the structure of this zone is not pri­
mordial and its presence is dictated by jump-con­
ditions in the Triple-Deck coordinates at x = 0. Then, 
without considering longitudinal heat transfer mech­
anism (|x| » Re"V4); T= 1 for x < 0. On the other 
hand, for large values of y, the expansions (7) must 
be matched with the main deck. However, we shall 
not discuss here the details, to be found elsewhere [3]. 
The corresponding boundary conditions are given by: 

'p+A(x), for y (13) 

where A{x) represents the displacement thickness with 
sign changed and also the velocity slip at the base of 
the main-deck, corresponding to the inviscid per­
turbation of the upstream Blasius solution by the 
induced pressure gradient. In addition, a boundary 
condition of the temperature is required to complete 
this matching with the main-deck and is given by: 

T~\, for y- (14) 

This is because in the main-deck puB dT/dx = 
0 ( / r 1 / 8 ) , thus T(x,Y)=f{Y). But similarly, 



when the function T(.x, y) is matched with the 
upper-deck the only possibility is that T = 1, which 
is dictated by the imposed boundary condition at the 
free-stream. Due to the elliptic nature of the problem, 
an additional boundary condition is required for 
values of Jc -> oo which matches with the modified 
Blasius solution for a compressible boundary layer 
heated by a step change in the temperature of the flat 
plate. From the point of view of the classical boundary 
layer theory, the neighborhood of the step change on 
the fiat plate, i.e. when x -• 1 has been analysed by 
different authors as Sparrow and Yu [12], Cebeci and 
Bradshaw [13], Lighthill [14] and the analytical treat­
ment follows that of Goldstein's analysis [15] of the 
near-wake of the aligned flat plate. In these works it 
is shown that continuation of the Blasius solution into 
the wake is possible by introducing an irregularity 
just downstream of the trailing edge. Furthermore, 
provided separation does not occur at x— 1 < 0, the 
only singularity in the solution occurs at x = 1 and it 
is due to the change in boundary conditions [3]. The 
transition of the solution from x = 1 , to x = 1 + is 
achieved by the Rott and Hakkinen [)6] modification 
of the Goldstein wake and in our case is given by 

n = 
Y 

op • b(x-\y 

l/,0 = (*~l ) 2 / 3 F 0 + 

T(x,Y) = GM + (15) 

for x -> 1 and x—\ » R~3'*. The velocity and tem­
perature fields in the neighborhood of the step region 
satisfy to the lowest order, the following equations: 

F'i;+lF0Fl-\F{f = lb 

•D-G'!, + lFgG'0 Pr 
0 

(16) 

(17) 

where primes denote derivatives with respect to r\. The 
boundary conditions are then given by 

at y\ = 0: 

at r\ -> GO : 

F0 = F'0 = 0, G„ = rw 

0.332 , 
-Y\ I ( C 0 - l ) d ^ + -

G„ (18) 

In the above equations b should be a positive quantity 
which is evaluated numerically. Because it might be 
expected that the pressure gradient in x—l < 0 is 
disfavorable, dp/dx represents the so-called 'vorticity-
induced' pressure gradient [16]. 

It should be noted that if we use the approximation 
F0 ~ 0.332jy2/2 for the energy equation (17), it can be 
integrated and after some manipulations we obtain : 

C0 = rw +0.7764(1 -Tw) 
'(03 3 2/>r/9)l: 

e """ du. (19) 

These solutions for Fa and Ga are required to initialize 
the numerical problem of the lower-deck. In this sense 

and after some manipulations, it can be demonstrated 
that the displacement thickness and the pressure are 
given by the following expressions : 

A(x) = - E ( P r ) ( r w - l ) ( x - l ) " 3 

p(x) = -S(Pr)(T„-l)(x-\y213 (20) 

for x -> 1+ and S(Pr) is a Prandtl's function given by : 

S(Pr) 

exp ( — v3) dv du 

(21) 

exp ( — v3) dv 

Complementary, it can be shown that the cor­
responding expressions for the displacement thickness 
and pressure for x -> 1 ~ are given as 

A(x) = 0 ( ( x - l ) , / 3 ) 

p(x) 
2(7; 

3 . 

•1) S(Pr)_ (22) 

The relationships given by equations (20) and (22) are 
needed to complete the boundary conditions 
upstream and downstream for the thermal expansion 
process. 

Finally, an interaction condition, which is derived 
by the thin airfoil linearized theory is required in order 
to match with the upper-deck solution and cor­
responds to the well-known pressure-displacement 
relation [3]: 

p(x) = 
A'(xx) dxx 

(23) 

where in the last equation prime means derivative with 
respect to the dummy variable x, and the integral 
represents the principal value of the Cauchy-Hilbert 
integral. The set of equations define the thermal 
expansion problem within the longitudinal scale 
x— 1 = x " 5/4/?~ 3/Rx. However these equations can be 
simplified even more by employing the Howarth-
Dorodnitzyn transformation [17] giving an equivalent 
set of incompressible governing equations. Therefore, 
defining the following nondimensional variables: 

P , By 
x = x, y =\ p(x,y) dv pu = pu v = pv+ —-u 

J " °x 
(24) 

we obtain the corresponding incompressible equa­
tions needed to solve the thermal expansion statement 
and are given by: 

du dv 
T- + T= = ° ox oy 

(25) 

du oil 1 dp d fdu\ 
il-~ + o— = - - -f_ + - -• 26 

ox oy p dx oy \oyJ 

JT JT _ 1 d fdT 

dx dy Pr dy \ dy 
(27) 



pT=\, pn=\ (28) 

with the following boundary conditions 

a t ^ = 0: ti = v = 0, T = 1 + ( J W - l)H(x) 

x-> — co: w—>j, 7"-> 1 

^ ->oo : u-*y + A(x) + (T—\)dy 

x->oo: /5->0, u->(jt-l) , /3F0(>7), T->G0 (29) 

together with 

1 f'10 I ( x , ) d x , 
/ 5 ( x ) = - ( ) - V V ' (30) 

where F0, y, Ga satisfy the equations (16)—(18). 

LINEARIZED THEORY FOR r„ -• 1 

Defining 0W as 0W = Tw — 1 « 1, the equations can 
be linearized around the undisturbed boundary layer 
profile by expanding the flow variables as follows : 

u = y + 0„ii0 + 

P = flwPoH 

r = \+ewT0+elfu T = i+flwf0 + (31) 

where T corresponds to the nondimensional skin fric­
tion defined by T = du/dp. It is relevant to pay atten­
tion that the expansion proposed for the temperature 
includes terms of order 6$. It is required because in 
this linear theory the thermal expansion process pro­
duces significant changes in the temperature profile 
only within this order. Otherwise, terms of order 6W 

in particular for the temperature profile retains only 
the well-known Lighthill's solution for the Nusselt 
number. Therefore, the linear nondimensional 
governing equations are then transformed to : 

du0 dv0 _ 
dx dp 

-8u0 , _ dpa d2u(t 

ox dx oy 

_df0 l d2f0 
y dx Pr dp1 

df, df0 df„ 1 <?2f, 
y"d¥+Uo^x~+Vo^p-pr W 

with the boundary conditions : 

(32) 

(33) 

(34) 

(35) 

v = 0: 0, 

-oo : 

T, H(x), 

-»0 

T, = 0 

A0+\ T0(x,p)dy 

and 

Po 
1 
n 

T0 

f, 

f; 

-»0 

^ 0 

A'B(x 
X-

) dx. 
-Xi 

(36) 

The first step is to obtain the solution up to term of 
order 9W. In this case, the energy equation decouples 
from the continuity and momentum equations. There­
after, we proceed to include the correction to the 
Lighthill solution for the Nusselt number within 
the formalism of Triple-Deck theory. Therefore, from 
equation (34) we can obtain a self-similar solution for 
f 0 after some manipulations given by : 

r l 
T0 = 

Pr 

r'(i/3) 
- H(x) (37) 

where F(l/3, Pr yJ/9x) represents the incomplete 
gamma function. The issue of T0 serve us to complete 
the momentum boundary layer problem which it is 
now reduced to: 

OUg 

dx 

OX 

oy 
= 0 

dA, 
dx dy: 

(38) 

(39) 

The boundary condition for ua as y -> co is now given 
by 

9 l /3F(2/3)x l /3 

(40) 

leaving the other boundary conditions unaltered. The 
solution now can be obtained using the Fourier trans­
form with respect to x. Denoting the variables in the 
Fourier space by subindex F, wc obtain the following 
system of equations: 

iwy -
duv 

dp 
cuv 

with the following boundary conditions: 

p = 0: uv• = vv = 0 

Pv = \a\Av (interaction condition) 

9l/3F(2/3) r(4/3) 
y- uv -*Ab + 

/ V ' T ( l / 3 ) 2OT4/3(U4 

(41) 

(42) 

(43) 

for any value of the wave number co. Equation (41) 
represents the well-known Airy equation for the first 
derivative of uv. Specifically, for this case the solution 
is given by 

duv 

"dp 
B(w)Ai[(ia>yily] (44) 

T0 -> o, r , -> o where A-, is Airy's function and £(o>) can be found 



through the use of the boundary conditions (42) and 
(43), giving 

B{w) = 

if w > 0 
3Kr(4/3)co"'3 

-3Kr(4/3)w' /- ' 
.2ni2!j(A4l3~-Tlia*'T) lf'"<0 (45) 

with A = [-3^'i(0)]- , /4 = 0.8272 and K = 91 /3T(2/3)/ 
Pr' 3r( l /3) . Using the Fourier inversion theorem, we 
obtain the pressure distribution, skin friction and dis­
placement thickness which are given by: 

K0wr(4/3)A : 

Pix) = . - -
In 

[0 +_V3^3)_cos (Asx) 

'« s^^+^'+s*'3) 

(y/3_+*4'^) sin (Asx)] 

s " - , ( l + v / 3 s 4 " + s , , ' V 
ds> (46) 

= 3Kr(4/3)0w 
T " 2w,4, ' (0) 

[.s1'1 cos (A.?x) + ( ^ 3 + 2.v43) sin (Asx)] ds 

( l + v / 3 ^ 4 , 3 + ^ 5 ) 

(47) 

I(.v) = -0 W K<LY ' / 3 / / ( .X ) -
r(4/3) 

"2TIA"3 

1 + ^ :-.y4/3 )sin ( A H ) - J " 1 cos (Asx) 

)+j3s4/3+s» 

d.n 

(48) 

where all the equations arc valid for positive and 
negative values of x and the variable s is related to 
co through s = to/A. Clearly, the different forms of 
solutions for x < 0 and x > 0 correspond to closing 
the contour of integration in Im w > 0 and Im co < 0, 
respectively. The asymptotic behavior for the main 
variables for x -> ± co, obtained from equations (46), 
(47) and (48), are 

(T(4/3) 1 
A(x) ~ -K0 W j - ^ y - ± - + ( + .*)' 3//(x) + • 

/K*) 

x -> ± oc (49) 

- (3) ' / 2 IK^/x 2 / 3 +-- - , if.x-»oo 

2 (3 ) , / 2 K0J( -x ) 2 ; 3 +- - - , i f .x->-oo (5()) 

0vvKr(4/3)/li(0)/ 

3w2r(2/3)(Ax)4/3 + •••, i f x ^ x 

- 2 0 ^ ( 4 / 3 ) 4 ( 0 ) / 

3 l / 2 r (2 /3) ( -Ax) 4 / 3 +-- - , i f x ^ - o o 

(51) 

these asymptotic relationships agree with that 

obtained with the Blasius solution as x -> — oo and to 
the modified solution as x-> co, as shown by equa­
tions (22). In both limits the pressure reaches 
asymptotically the free stream value. The non-
dimensional skin friction tends also to unity in both 
limits, which in this case are exactly the same because 
of the introduction of the Howarth-Dorodnitzyn 
transformation. On the other hand for |x| -> 0, the 
asymptotic solution for the nondimensional pressure 
and the displacement thickness are given by 

K0WT(4/3)A2/3 

p(x) ~ 3.12336—— V - — +0(x 2 ' 3 ) 
2JT 

K0wT(4/3) 
A(x) ~ - 2 . 9 3 4 8 - ^ ^ ; ^ +(9(x) 

while the skin friction jumps from 1 —0.3731 0w/.Prl/3 

at x = 0 to 1 +0.6218 0JPrxli at x = 0+ . The jump 
of the skin friction at x = 0 and the jump in the pres­
sure gradient at the same position are a result of the 
existence of the central region not resolved by the 
Triple-Deck, the structure of which is not considered 
in the present analysis. However, the singularity in 
the displacement thickness gradient has been removed. 
Using this linearized theory we can obtain a critical 
temperature ratio for separation (z = 0), as 

(0JC = 2.68025 Pr' 

(T„)c = 1 +2.68025 Prxn = 3.391 for Pr = 0.71 

which is not very far from that obtained using the 
nonlinear numerical calculation (7"w)c x 3, to be 
shown in the next section. This critical temperature 
ratio as expected increases with the Prandtl number 
because the expansion effects are reduced as the 
Prandtl number increases. In order to conclude this 
section, we develop a solution for the thermal problem 
which is required to modify the Lighthill solution for 
the Nusselt number [14]. This complementary analysis 
confirms the importance that the Triple-Deck struc­
ture introduces, through the thermal expansion which 
provides a higher order correction of the heat trans­
fer. Therefore, in order to deduce the role of the ther­
mal expansion within the lower-deck, we need to 
obtain the temperature correction of order 02, T",, by 
solving equation (35) and the corresponding bound­
ary conditions. Using the Lighthill approximation, 
by introducing the following appropriate coordinate, 
a = y Prl!i, equations (32), (33) and (35) transform 
to 

(52) 

(53) 

dila 
-^-+Prx 

ox 

a dx0 

Pr ox 

•3 dv0 

do " 

d2fn 

~ ' t V 



Pr] 

d2f{ 

~do~2' 

a 5T, 

Pr'13 ~dx~ 

dT0 

where 

Ta 
r(l/3,a3/9x) 

-v0Pr»3-^ (54) 
Off 

H(x) 
r(i/3) 

leaving the restant boundary conditions unaltered. 
The parabolic equations can be solved easily and the 
results are given by 

f £(1/3) 
)T(2/3) Pr] ^A(x) + 

H(x) 
Pr1'3 (55) 

r( l /3) j(9x)>/3A'(x)-3A(x)(9x)-213 

2T(2/3) | (9x)2 '3 

a 

Pr2 

8{x)a2 

~2Pr~ 
(56) 

where S(x) is the Dirac delta function. Clearly, within 
this approximation the velocity profiles u0 and v0 

appear linear and quadratic functions of the co­
ordinate a, respectively. On the other hand, the dis­
placement thickness A(x) is provided by the solution 
obtained with the Fourier transform, i.e. equation 
(48). The specific form of the dependence of u0 and va 

on a arises from the fact that the thermal boundary 
layer grows downstream of the momentum boundary 
layer. Therefore, the equation for 7",, after sub­
stituting ii0, v0 and f0 in terms of a, is transformed 
to: 

d2f, 5f, r(l/3,s3/9x)d(x)Pr"3 

dx 

T(l/3)i(x) 
r(2/3)Pr"3(9x)"3 

9ff2 

r(i/3) 

H(x)[ Pr 
Pr2 r(l/3)(9Jc)' 

x H(x) 

-3Pr1'3 

9x 

r( l /3) A(x) H(x) 

_f(273J]V73 (9Y)T'T + T?'\ 

•r(i /3) 
r(2/3)Pr2/3 

(9x)'!3A'(x)-3A(x)(9x)-

(9x)2'3 

with the boundary conditions : 

CT = 0 : f, = 0 , ff-

x < 0 : 7\ = 0, x -

t5(x) ff2 

"PT" T 

r, =o 
f, =o. 

(57) 

(58) 

In order to simplify the above equation, it should be 
observed that <5(x) terms are irrelevant for all range 
of x, because it can be shown that for finite values of 
x and also for values of x tending to zero, those terms 
are identically zero, due to the properties of the Dirac 

delta function and similarly to the asymptotic expan­
sions for the gamma incomplete function. Therefore, 
the restant equation of T, can be solved if we assume 
a solution fl=ae"'9x(t)(x)H(x). The resulting 
ordinary differential equation for 0(x) is then given 
as 

d<f> 120 

dx 9x 

x <A(x) + 

"2r(2/3)(9x)5/3 

xA'(x) 2r(2/3) (9x) l /3//(x) 

3 r ( l /3) Pr' 

with the condition: 

0 = 0 for x -* co. 

The solution for T, is then given as 

(59) 

(60) 

, - ( T J / 9 - V ) 

T, = --
2r(2 /3) (9x) 4 ' 3 J 0 

. xA'(x) 2r(2/3) (9x 
H(x) 

(9x)' 
-d.xH(x). 

(61) 

Finally, the comparison between the modified Nusselt 
number and the Lighthill solution, after some manipu­
lations, can be written as 

Nu* = Nu/NuL -1 = 

A(x) 2 

r(l/3)0w 

2r(2/3) 

F(2/3) 7 
(9x) , / 3 3 3r(l /3)Pr l / 3 27x. 

*A(.x)dx 
H(x) 

(62) 

where NuL corresponds to the asymptotic solution 
due to Lighthill [14] given by 

,'3l/3Pw Pr"3R"2x 
Nu, = — ' 

r(i /3) ( x - i ) 1 

with A(x) given by equation (48). The asymptotic 
solution for the Nusselt number is given by 

Nu 
2r(2/3) v 

1 

for x ->0 and the corresponding Nu when 

NONLINEAR ANALYSIS 

It is clear that for values of Pw not close to one, 
the complete solution of the problem defined by 
equations (25)-(30) requires a relatively sophisti­
cated numerical analysis. Diverse numerical tech­
niques have been implemented and discussed in the 
past in order to solve interaction problems within the 
framework of the Triple-Deck structure. However, 
for subsonic flow, the feedback mechanism due to the 



outer flow introduces the interaction law (31), which is 
global in character. In this paper we use the numerical 
scheme developed by Veldman and Dijkstra [7], 
adapted for the present thermal expansion process. 

The method used in order to solve equations (25)-
(30) can be resumed under the following general steps : 
By using the linear solution given by equations (46) 
and (48) for the pressure and displacement thick­
ness distributions, it is possible to produce initial 
values of the profiles which can be used to solve sim­
ultaneously the Hilbert integral and the boundary 
layer equations. The previous known values at any 
station are incorporated after some iterations for each 
station, input to the next station. The problem should 
be completed with a global convergence criterion. 
Here, the parameter chosen to implement this cri­
terion is fundamentally the displacement thickness 
A(x) and it is imposed to be 

and T, so that the transformed momentum and energy 
equations can be written as 

I ™ new < 10" 

which gives about five figure accuracy for most pre­
dicted quantities. Therefore, comparing the new A(x) 
with the A(x) from the previous iteration determines 
if the program has converged. If not, A(x) is replaced 
according to the formula 

A(x) = BAM + (\-B)Ancu 

until the differences between succeeding A(x) iterates 
is less than 10 "6. It has been found by trial and error 
that IB = 0.85 will produce a convergent iteration 
scheme. For B> = 0.5, this global criterion does not 
converge and strong oscillations mainly at the skin 
friction and the heat flux are presented. The parabolic 
equations (25)-(27), together with the corresponding 
boundary conditions are numerically solved using the 
implicit method due to Keller [18], which is widely 
known in the literature as the Box Method. This 
method has several very desirable features which make 
it appropriate for the solution of all kind of parabolic 
partial differential equations. The main features of 
this method can be resumed as follows: second order 
accuracy with arbitrary nonuniform x and y spacing; 
allows very rapid x variations and also permits easy 
programming of the solution of large numbers of 
coupled equations. The solution by this method can 
be obtained by the following four steps : 

(1) Reduce the equations at the lower-deck to a 
first-order system. 

(2) Write difference equations using central differ­
ences. 

(3) Linearize the resulting algebraic equations 
through Newton's method and write them in a matrix-
vector form. 

(4) Solve the linear system by the block-tridiagonal-
eliminations method. 

If we follow the above steps, previously having intro­
duced the change of variables u = dij//dy, v = — dijjjdx 
into the governing equations (25)-(27), it is possible 
to define new dependent variables U(x, y), V(x, y) 

U 
dil/ 

'dy 

du 

dy: 

dV 1 dp dli # 
oy p ox ox ox 

oT 

dy 
= T 

up dl dT dd/ 
3 — — = (U— - - - T . 

Pr dy dx dx 

(63) 

(64) 

(65) 

(66) 

(67) 

The corresponding boundary conditions except the 
interaction condition, are to be omitted for simplicity. 

RESULTS AND DISCUSSION 

Figures 2-5 show the linear solution for the Triple-
Deck equations, for the reduced nondimensional 
pressure (j5/0w(/>r/O.71)"3), skin friction ( ( f -1 ) / 
<?W(/Y/0.71)1/3), displacement thickness (A/0w(Pr/ 
0.71)l/3) and the reduced Nusselt number (Nu*), 
respectively. In Fig. 2 we can see how the pres­
sure first increases due to the expansion effects in 
the lower-deck. This positive pressure gradient has a 
big influence in regions close to the wall, where the 
convective terms are rather small. The central region 
causes a jump in the pressure gradient but not in the 
pressure itself. For positive values of x, the pressure 
decreases strongly reaching values lower than the 
ambient pressure, increasing asymptotically to this 
value for large positive values of x. Figure 3 shows 
the reduced nondimensional skin friction or shear 
stress at the wall. For negative values off, the disfav-
orable pressure gradient produces a decreasing shear 
stress at the wall. From the linear analysis, the critical 
conditions for separation can be obtained f = 0, giv­
ing 0Wc = 2.391 for Pr = 0.71. For positive values of 
x, the shear stress jumps to positive values decreasing 
asymptotically to that given by Blasius as x->co. 
Figure 4 shows the displacement thickness evolution 
obtained by the linearized theory. Figure 5 shows the 
modified Nusselt number Nu* resulting from com­
parison with the asymptotic solution by Lighthill. 
For Nu* = 0 we recover Lighthill's solution. We 
show that this correction is also singular due to 
the free interaction with the outer inviscid flow. 
Strong corrections are obtained for small values 
of x. 

In relation to the numerical results of the nonlinear 
governing Triple-Deck equations, all computations 
for the present algorithm have been performed on an 
IBM/4381 computer. The base calculations presented 
here were chosen for a nonuniform grid which has the 
numerical end point x = + 5 and the outer edge of 
the lower-deck located at y = 8. Because the grid is 
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FIG. 2. Results for the pressure distribution dictated by the linearized theory. 
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FIG. 3. Skin friction on the wall given by the linearized theory. 

FIG. 4. Displacement thickness given by the linearized theory. 
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FIG. 5. Modified Nusselt number employing linearized theory. 

nonuniform, the initial step sizes for both x and y 
were A.v = Ay = 0.05, and also the ratio of lengths of 
any two adjacent intervals was taken as 1.04 and 1.02, 
respectively. We have taken 57 grid points in the trans­
versal coordinate of the lower-deck, which is sufficient 
for most laminar-flow calculations and for the longi­
tudinal streamwise coordinate we used 80 stations. 
For a given set of calculations presented here we used 
a Prandtl number of Pr = 0.71 and the Chapman-
Rubesin parameter C = jip = 1. Figure 6 shows the 
pressure distribution for several values of the tempera­
ture parameter rw. Here, as the value of the wall tem­
perature Tw increases, the expansion process modi­
fies substantially the pressure distribution up to a value 
of 7"» close to 3.0, where the increase in pressure 
distribution which is disfavorable, causes a decrease 
in skin friction too strong to yield values of skin fric­
tion identical to zero, indicating a separation of the 
lower-deck. This evolution of the skin friction for the 
corresponding values of T„ given above is shown in 
Fig. 7. For values of T„ greater than 3.0 the skin 
friction goes to zero and the present analysis is no 
longer valid in order to study this new structure where 

recirculation and reattachment zones appear. In a 
similar way as was observed by the pressure distri­
bution, the skin friction reaches asymptotically the 
Blasius and modified Blasius solution for values of x 
far away from the origin. The displacement thickness 
is shown in Fig. 8. Clearly, the displacement thickness 
is practically zero for x < 0 as predicted by the Blasius 
solution. Otherwise, for values of x > 0 the function 
A(x), interpreted as the velocity slip in the higher 
order at the base of the main-deck, has a significant 
contribution necessary to cause the pressure dis­
turbances. From the physical point of view, the 
derivative of A(x) is the negative of the normal velo­
city to the plate at the lower edge of the upper-deck 
and as is shown in Fig. 8, the vertical velocity is not 
discontinuous at the point where the step temperature 
takes place. Therefore, the maximum normal velocity 
occurs immediately after the step change in the wail 
temperature. 

On the other hand, Fig. 9 shows the non-
dimensional heat flux, q = dTjdy, evaluated at the 
wall, predicted by the strong thermal process for 
different values of Tw. It can be seen from this figure 
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FIG. 6. Pressure distribution for different values of the wall temperature parameter, 7"w (numerical 
calculations). 
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FIG. 7. Skin friction for different values of the wall temperature parameter, Tw (numerical calculations). 

°1 
• 

- 5 

-5; 

• 

' °r 

T W 

T 
T w 

" * V ^ - X ! \ ^ - _ _ _ _ _ _ 
= 1.2 " ^ ~ ~ ~ 
= 1.6 ! ^ N \ ^ 
= 2.0 i \ \ S s ^ -

- ?* ! \ \ s 
= 2.8 \ v v 

l v N - • 

% s 

» s 
1 v v

 t 

Pr - 0.71 | \ " - - -
i 

i v 
i 
i - - -
i 
i 

FIG. 8. Displacement thickness for different values of the wall temperature parameter, 7*w (numerical 
calculations). 
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values of the wall temperature parameter, Tw (numerical calculations). 

that when the value of Tw increases, the heat flux 
increases notably and more specifically close to the 
origin. Clearly, just at x = 0 the heat flux is singular 
due to the singular boundary condition. Figures 10 
and 11 show the effect of the nonlinear terms on the 
pressure and the skin friction, respectively. The linear 

analysis overestimates both the maximum pressure as 
well as the minimum skin friction. The critical value 
of 0„ obtained from the linear analysis is 2.391, for a 
Prandtl number of 0.71, while the numerical pre­
diction for separation from the full nonlinear equa­
tions was very close to 2. 



FIG. 10. Comparison between the linear pressure distribution and that predicted for the numerical analysis. 
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FIG. 11. Comparison between the linear skin friction and that predicted for the numerical analysis. 
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CONCLUDING REMARKS 

The thermal expansion process for a step change in 
wall temperature was analysed with the formalism 
of the Triple-Deck theory. The pressure gradient is 
disfavorable up to the position of the temperature 
change, steeply favorable immediately after this posi­
tion. In the last part, the pressure finally increases 
asymptotically to the uniform pressure solution. The 
skin friction, however, decreases from the Blasius 
value arriving at a zero value if T„ is close to 3.0, for 
a Prandtl number Pr = 0.71, causing a separation, 
where the present analysis is no longer valid. This is 
because the appearance of a recirculation zone, for 
values of T„ greater than this critical value. The pre­
sent analytical model should be modified to include 
recirculation and reattachment zones. As the sep­
aration takes place, heated gas is convected upstream, 
therefore a cooling process must be established in 
order to maintain the temperature of the plate at 
the same level, upstream to the point of temperature 
change. If, however, an adiabatic boundary condition 

is applied to this upstream portion of the plate, then 
after separation takes place, the upstream portion 
of the plate is heated, reducing the strength of the 
singularity, until separation disappears. This phenom­
ena could lead eventually to an oscillatory behavior 
in the boundary layer flow. More work is needed to 
elucidate these type of interaction problems. 

The linear theory predicts the critical value of the 
temperature ratio Tw within an error of 15% and then 
can be used in any order of magnitude analysis. 
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