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I - BASIC CONSIDERATIONS

I.1. Two feed-back mechanisms

The combustion processes are characterised by two non linear
feedback mechanisms producing self-acceleration. One is of a ther-
mal nature and the other is purely chemical.

The first one results from the fact that the overall chemical
reaction invelved in combustion is exothermal with a rate that is
a strongly increasing function of the temperature. This produces a
self-acceleration of the combustion process that is saturated by
the reactants consumption

VIpF +v'g 0 — P+ Q (1.1)
Fuel Oxidant Froducts Heat
Reactants release

v' are the stoichiometrie coefficients.

For simplicity the reverse reaction is neglected in (1.1}.

Let's define Wp, Wg and Wp as the mass consumption (per unit time
and per unit volume of reactive mixture) of fuel, oxidant and
products respectively. From (1.1) one has

Wp = Wg/v = ~Wp/(l+v), (1.1'}

with v = v'gMg/v'pMp where M; are the molar mass.

The thermal feedback is described by the nonlinear Arrhenius

law : o e_E/RT

- ngp 0
Wg pB YF YO (1.2)
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Where Y;, nj and E are the mass fracrions (Yi=pi/p) the order of
reaction and the activation energy respectively. B is the frequency
factor whose temperature dependance can be neglected in front of
exp(-E/RT). n;#v'; results from the fact that (1.1) is not an ele-
mentary reaction governed by collisions. For ordinary hydrocarbons
flames the number of elementary reactions required to transform

the fresh mixture into burnt products is of the order of 300 with
50 intermediate species ! This precludes a complete quantitative
description of the combustion. In this course we will focus the
attention on the effects that can be described by (1.1} and (1.2),
Only few words will be said concerning the effects produced by the
complex chemistry and by the diffusion of the intermediate species.
The density dependance of B can be easily calculated only in the
case of an elementary reaction where v';=n';= 1 by noticing that,
according to the elementary kinetic theory of gases the number

of reactive collisions per unit time and unit volume is given by

W -E/RT
—= =N Nop K e (1.3)
‘J‘FMF F 0 -

reaction constant

with the molar concentration N; defined by Nj = pY{/M; and where
the prefactor K is predicted to be a constant independent of p
and weakly dependent on T.

The second feedback mechanism is produced by the chain bran-
ching reactions. These reactions are autocatalytic reactions that
produce more active intermediate species than they consume leading
to a self acceleration of chemical process. Such a mechanism can be
represented schematically by

R — X chain generation {l.4a)
Reactants Active species
R+ —=> 2X + Py chain branching  (1.4b)
Products
m+ X+ X > Py +m chain terminationm (1.4¢)
Third Products

body

Because of the strong non-linearity in temperature of the
Arrhenius law (1.2), the thermal feedback dominates the kinetic
one in the ordinary hot flames. And a good insight into the pro-
blem can be obtained by ignoering in a first step the details of
the chemical kinetics aspects.

I1.2. The conservation equations

When the combustion is assumed te be contrelled by the overall
chemical reaction {1.1) with the rate (1.2), the equatiohs control-
ling the reacting flow involve the fuel and oxidant mass balance
and the conservation of the energy

292



a
SPECIES fp 5.¥i + 0¥ «¥ ¥y - VelpD, vyl = -wy , i=F,0

transient convection diffusion production (1.5)
3 -
ENERGY fo 5 (CoII+ pYeV(C,TI- YOVTI} = + qWp

Fourier law

where the energy released in the reaction per unit mass fuel q is
given by

q = Qfv'gMp (1.6)
C, is the specific heat of the reactive mixture. Dj and A are the
molecular diffusivities of the species i and the heat conductivity
of the reactive mixture respectively.

Two basic assumptions have been made in writing (1.3). The
first concerns the transport properties of the reactive mixture
where it has been assumed that the binary Fick law holds. This is
well verified when the mixture is diluted in inert gases (as
for the example the Nitrogen of the air). The second assumption
concerns the equation for the energy conservation where the com-
pressible effects have been neglected. These last effects are of a
relative order of magnitude of Mach squared, and it is legitimate
to neglect them for subsonic combustion but it is worthwhile to
mention that they have determinant effects in detonations
(supersonic-waves) that will not be considered here. This approx-—
imation is called the "isobariec approximation' where it is assumed
that, according to the perfect gas law,

pT = €t (for simplicity the change in the molecular mass
in also neglected) (1L.7)

But it is clear that because of the presence of the flow

field V, the system (1.5} is not closed. In fact because of the
expansion of the gas (described by (1.7)), the flow field is
influenced by the combustion., Thus, the masg and momentum equations
have to be added (in the general case) to the system {(1.5)(1.7/}

and general combustion problems appear as phenomena where hydrody-
namics is coupled with diffusion-reaction process. But in some
simple cases (as the l-d and steady case) this caupling disappears,

I.3. The adiabatic temperature of combustion

Consgider the case of an homogeneous and adiabatic combustion,.
In this case, eq.{(l.5) reduces to

Y _  ME _ 9{CpT/q) _ 3{¥p/v) (1.8
ot I3} at ot )
Yp = Yo/v = Ypy = You/v
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(1.8")
Yp + CpT/q = Yp, - CpTy/q

where the subscript u is for the initial mixture (unburnt gases)
Y ng n -E/kT
e oy, Yp'  Be 5/
at

(1.9}

When t+= the reaction is completed by consumption of the limiting
component. Let assume, for example, that F is the limiting compo-
nent, in that case one has
e, Yp = 0, Y5 = You = vY¥Fy
thus, according to (1.8')}, the temperature attains a maximum value
given by
t+m Tsz
Ty = Ty + 9¥Fu (1.10)
Cp
eq.{1.10) expresses the conservafion of the energy between the
initial and the final time.

I.4. The two different kinds of combustion process

One can rewrite the species conservation equations (1.5} in
the following symbolic manner

Lplvp) = - F (1.11)
P
where the linear differential operator Ly is given by :
Lp =3+ v ey - Dpo2 (1.11")

where pDp has been assumed to be constant. A similar operator Ly
and L can be defined for Yy and T.Let's define the characteristic
mechanical time 1, by the relation

Lp(yp) o _Fu (1.12)
Tm
In steady cases, 1, can be considered as the shortest mechanical
time (convection, diffusion}.
The characteristic reaction time Tr(T) is defined by

]} n
- yoF 4]
JE/RT Wy _ Yp' Yo

_1 —
o (T) = B L= _X 0
r ' s o0 {1.13)
The equation (1.£lzyl§ads to ;EF YSO
= - —_— 1.14
FLOF 1 {T) ¢ )

Two extreme cases can be considered from (1.12) and (1.14)

(L Tp 22 Ty Frozen-flow

the chemical reaction can be ignored in (1.14) that reduces to
H‘F(YF) =g {1.15a)
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(2) Ty <1 Equilibrium flow
in that case the chemical equilibrium must be realized
Wp = 0 (1.15b)

and according to the irreversible reaction (1.1) and (1.2} this
is possible only in two cases

Yo =0 or Yp =@ (1,15b"}
One introduces the Damkdhler number Da by
T
Da =_M
Tr

in such a way that the frozen flow corresponds to the small
Damkodhler nb 1imit (Da»0) and the equilibrium flow to large
Damkdhler nb limit (Da+®}, in regions of small T and high T, resp

Let us consider the instructive example of the combustion
developed at the leading edge of a mixing layer of fuel and oxi-
dant

In the early stage of the mixing layer the mixing time is
shorter than the reaction time (Da~0) and a frozen reactive pre-
mixed mixture is obtained with a rich composition on the side of
fuel flow and with a lean composition on the side of the oxidant
flow. Then a combustion proceeds in this premixed mixture to tran
form the frozen flow in an equilibrium flow (Da~=). This called a
premixed combustion. But because of the two different types of
composition {lean and rich) in the frozen flow, the burnt gases
in the equilibrium flow present two different regions of equili-
brium composition. One is defined by Yy = O but with Yp # 0
(burnt gases of a premixed combustion in a rich mixture where
there is an excess of fuel) and the other characterized by Yp= D

Premixed flame

Equilibrium flow

7/
F 7 Yp=0 , Yp#0
— // Rich {non premixed)
/
mé?rozen flow diffusion flame
\\Lean ¥o#0 , Yp=0
~ Equilibrium flow
0 ~
“~
~
\—--—v—_._—o

Mixing layer

Fig.l.1
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(burnt gases of a lean mixture) but with Yo# 0. Then, the combus-
tion takes place at the boundary of these two regions of equili-
brium flow in the form of what it is called a diffusion flame to
burn the fuel of one equilibrium flow with the oxidant of the
other equilibrium flow.

1.5. The large activation energy

The very existence of frozen premixed mixtures as well as
the thin transition layers shown in Figure 1.1 are due in fact,
mainly ta the high sensitivity of the reaction rate (1.2} to the
temperature, associated with the large values of the activation
energy encountered in combustion, E>>RT, and to the exothermicity
of the reaction.

Introducing the reduced activation energy g defined by ;

g =~ I (yoigovich number) (1.16)
RTy Ty
ordinary values of B are close to 10;
+E/RT -
n-l = lﬁffl =& ____ = exp| ESE_El_ I (1aan
(T oHE/RTy, 1+ {8-1)

where 8 is the reduced temperature & = I-Tu | (0<8<1), and o is
the gas expansion parameter a=(Tb—TU)/TEb_ Y {in ordinary flames
0.8<a<1). Thus, for 8~ 10 and a~0.8, eq.{1.17) leads to
T (T 2.1022Tr(Tb)- As 1,(Tp) is known to be of the order of
10‘45, the reaction time at the ordinary temperature T~ 300°K
is of the order of

(T = 2.1018s (1.17")

that can be considered as an infinite time at the human scale!

In fact eq.(1.17) shows clearly that the relative reaction
rate (compared to the one at the adiabatic flame temperafure} is
transcendentally O(e™P) small everywhere except when the temperature
is close enough to the adiabatic flame temperature that is preci-
sely when 1-¢ = 0(1/8). See fig.1.2.

n
j oll/p)
1

0(e™B) il

Fig,1.2
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Thus it is interesting teo notice that, in the limit of B+ ,

a = I;I(T)/T;l(Tb) goes to the singular limit w = 0 for 0<8<1
and w =1 for 8=1. This behavior illustrates the high non-linearity
of the sensitivity of the reaction rate to the temperature,

IT - PREMIXED FLAMES

I1.1. Position of the problem

A premixed flame is a subscenic chemical wave propagating in
a premixed Erozen mixture under the diffusive transport mechanism
of mass and energy. In fact it appears as a thin transition layer
between the frozen mixture (Da»0) and the eguilibrium mixture
(Da*e). It turns out experimentally that the mass flux of frozen
mixture crossing this transition surface is a characteristic not
only of the thermodynamics conditiens {temperature and pressure)
and of the chemical composition of the frozen mixture but also of
the peometrical configuration of the flame front and of the flow.
The simplest case is the planar front moviung with a coustant
velocity. In this case, the equasions (1.5) written in the
moving frame of the front reduces to much simpler one dimensional
and steady equations. ¥ =(u,0,0} and the total mass conservation
implies that the mass Flux m=pu is constant across the front.
& further simplification accurs when the mixture is far from the
stoichiometric compogition. In this case, one can neglect the
change in the mass fraction of the abundant species and the com-
bustion is controlled only by the limiting species. Then the sys-
tem of equation (1.5) reduce to two coupled equations. In fact,
in these 1-d and steady solutions, there is no direct coupling
with the hydrodynamics and the deflagration waves are described
by ordinary equations of diffusion-reaction

d a2
R “"ZZ Y (2.1)
4 . alr _ -
m oL (LTI~ A k2 - ¥
with, according to (1.2}, W = pK yn e—E/RT

where X = BY'1 (the subscript j referring to the abundant species)

and with the boundaries conditions ,

Unburnt X = - m t Y=Y, , T =T, (Frozeﬁ £1ow)
gases
Burnt X =+ Y = Y= 0 (Equilibrium flow)
gases

See the shape of the corresponding profiles in fig. 2.0

The unknowns of the problem are the concentration and temperature
profiles {that determines the flame structure) as well as the mass
flux m appearing as an eigenvalue of the problem and defining the
laminar flame velocity up, (defined in the fresh mixture)

m = py U, T pp Y (2.2)
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In the moving frame of the flame front, up and up represeat
the flow velocity in the upstream fresh mixture and in the down-
stream burnt gases respectively, u; and u, can also be considered
as the flame velocity relative to the fresh and burnt mixture re-
spectively. Notice that because of the gas expansion (pb/pu=Tu/Tb),
the flame velocity defined relative to the burnt gas, uy, differs
from the flame velocity relative to the fresh mixture, up. A direct
integration of (2 .1) from x= -» to x= +» shows that T=T, at
x= +o  where Ty is given by (1.10). Thus, introducing the reduced
quantity

= Y/¥y and 8 ={T-T,)/(Ty-T,) (2.3)
the boundaries conditions (2.1') for & and 1-¢ appear to be iden-
tical
x= -0 1 f9=1-§ =0 and x= 4> : g§= l-y =1 (2.3")
Furthermore the equations of 6 and 1-y differ only by the value
of the diffusion coefgicient

d d 1

A A A (2.0
d d _ 1

m dx 0 - DDth Eﬁzﬁ— Yy W

where the thermal diffusivity is defined by Dgp= A/pcp. Thus, when
the Lewis number Le = Dy /D is unity, the two equations of (2.4)
are identical with the same boundary conditions, and it turns out
that

5 = 1-9 xe (e, +=) (2.5)
and the problem is reduced to solve only one non linear thermal
equation of reaction-diffusion type

d . d2 . _p
e O 7 00eh g2 8 T T w(®) (2.6)
with (2.6")
) K (1-8)
3Ty = YUEXP(—E/RTb) and w(e)=(1—e)“eXP{-'%;;(5?1)}

w(p)=(1-0)0m(p) where=w has been
defined in § I.5
With the boundary conditions

x= -= : 8=0 3 x= +» : §=1 (2.6")

From an historical point of view, Mallard and Le Chatelier
(1883) were the first not only to consider a premixed flame as a
progressive chemical wave but also to give the basic mechanism of
propagation and to provide the first experimental data on flame
speed. They introduce the notion cof inflammation temperature Tj
under which the reaction is quenched and they consider the thermal
propagation of a flame as successive inflammations of slices of
frozen flow. A part of the heat released in a reacting slice is
used to warm up the frozen slice just ahead where the combustion
will start when the temperature will reach T;. Thus, the combus-
tion precess was explained ro possibly propogate in a frozen flow.
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Taffanel (1913} and Jouguet (1913) wrote the corresponding differ—
ential equation similar to (2.6} and Taffanel obtained the correct
expression of the laminar flame speed in terms of Dy and of the
characteristic chemical time T,

up, o /Dth/Tr(Tb) (2.7}
Such an expression can be directly obtained by a dimensional ana-
lysis. With Dy ~ 0.3 em?/s and 1 (Tp)~ L0"*s one obtains up~ 53cm/s.

IT.2. Existence and unity

11.2.1. The cold bourdary difficulry

From a mathematical point of view, the problem (2.6,6',6")
is hill posed. A necessary condition for the existence of the solu-
tion is that the production term be zero in the upstream condition
{frozen flow) ;

w(8=0) = 0 (2.8
This condition is not exactly satisfied by the Arrhenius law
{2.6')., But from a physical point of view, as shown by (1.17') and
the discussion under fig.l.2, this problem is rather academic for
the usual combustion problem. From a mathematical point of view,
the problem has to be treated as an unsteady problem(pyg ¢ must be
added on the left hand side of 2.6) and according to Aldushin,
Khudyaev and Zeldovich (198l) one has to look for travelling waves
in a non steady, but homogeneous medium that evelwves "in bulk' with
the characteristic chemical time of the frozen flow :
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d 1

at 07 T (o)
This problem can be accurately solved by a two time scales method
when the two time scales t.(T,;) and 1,(Ty) are largely different
fm,<<{1). But, according to (1.17'),m, is so small in combustion
problems fmuav10‘22) that w(8=0) can be physically considered as
zero. In the past many different tentatives have been developed to
modify the Arrhenius law in the "unburnt" side but, clearly,
this modification has not to appear in the final result. It wil}
be seen in the following that the intreduction of such modifics-
tions is not necessary and that the problem is completely cured
by considering the asymptotic limit o,

, 0 close to 01, close to 1,(T,) (2.9)

II.2.2. The unicity

But, even when (2.8) is satisfied (cold boundary difficulty
cured}, it turns out that the uniqueness of solutions depends cri-
tically on the behavior of w(8) near 9=0. Since the work of Fisher
(1937) and of Kolmogorov, Petrovsky and Piskonov (1937), it is
known that (2.6,6") may admit a continucus set of solutiens
corresponding to a continuous spectrum of travelling speeds, m, as
5000 as wy = d 4(o)| _ >0. The problem is to determine what are
the solutionsd® selecred by the physical situations. In the above
mentioned work of (K.P.P.)(concerned with a biological problem
where w{8)a 6(1-8)), it has been shown that the asymptotically
stable solution {(that is the only one relevant from a physical
point of view) corresponds to the lower bounds mgpp of the spec-
trum. Moreover mgpp is found ko be directly proporticnal to JET;.
But on the other hand in the case of an inflammation temperature
where

w{@)= 0 for 0<8<g;<1l and w(8)>0 for &Kol (2,10

and where the inflamation temperature §; is a given positive constant
(0<p;<1), it has been proven that the system {(2.6.6'") admits only
a unique solution (see Zeldovich (1948), Johnson-~Nachbar (1963)
and Gel'fand (1959)). As this unique solution corresponds to m#(Q,
it is clear that this solution is not related to the K,P.P. solu-
tion .The problem has also been proved to have a unique solution
when 4,<0 and when w(8) has only one zero for 0<8<I. An intensive
literature has been devoted to the general problem of the propaga-
tion of plane wave fronts centrolled by equations of reaction and
diffusion (see f.e. P. Fife (1978))and alsc Murray (1977)), but
few comments are usually found concerning the transition from the
K.P.P. solution to the unique solution of the 6;-model.. The most
pertinent ones have been developed by authors concerned by combus-
tion phenomena namely Adulshin, Kudyaef & Zeldovich (1981). It is
also worthwhile to consult the books of Frank-Kamenetskii (1969)
and the one of Zeldovich & co-authors (1980). Interesting comments
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can also be found in the monography of P. Fife (1979).

After having cured the cold boundary difficulty as in the
paper of Aldushin & Co (1981), the production term (2.6') reduces
0 w(0) = (1-0)7 {exp(B(0-1))-exp(-B) (2.11)

For simplicity one has neglect the term af{6-1) in (2.6') that will
be proved to unot be important. The shape of the production term {(2.1})
appears as an intermediate case that goes from a "mild" to a
"sharp" non linear form as B increases from O to infinity (see

fig. 2.1). For very small values of 8 w(8) ~5 6(1-8) and for large
values, when the transcendentally small temms 0(e”B) can be neplec~
ted, w(9) can be considered as a 0; model but, in addition, with
1-9;= 0(1/8). This last property allows to neglect the term a{6-1)
in eq.{2.6') as well as the density change in the r.h.s. of eq(2,6}
where p can thus be replaced by py,. These approximations are used
here for simplicity but they can be removed without difficulties

A simple change of space variable put the eq(2.6) in the following
simpler form

£ =x/d , d = /pDip1(Ty}/pp, and pDpp=ct (2.12)

dg  d?2
MTE a2 © T w(8) > 0 (2.13)
With the boundaries conditions £ = -« B=0 Fresh mixture
£ = 4= a=1 Burnt gases

and with 0<8<1l for w<lg{d=
the reduced front velocity M is related to m by :

M o=m : {Tp)/ppd = m V1, (T /0ppDep-

In the following, the attention is restricted to the cases w{8)>{
and (0<8<1),

11.2.3. Orbits in the phase space

In order to get a better insight into the problem, it is
worthwhile to consider the phase space {(6,P) with P defined by :

P = M do/fdg (2.14)
and eq{2.13) takes the form :

12£E=_P'w (2.15)

M« de P

The singular points {w=0} are (1,0) and 0,0). The first one, corres-
ponding to the burnt gases, is a saddle {see fig.II1.2a) with two
principal directions QE (QE(O, QEbO). Only the negative one QE
is relevant because + when «w>0 one must have P>0 as well as

g1, 2
Q? =% (1+ Jl—ﬁw'lll’iz) (2.16)
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where wy = dela=1 <0 for nm 1.(m1 0, n=2}

The second singular point (0,0) is related to the unburnt mixture
(fresh gases), it is a spiral point when M<ZVET and a node In the
opposite case (see fig.II.2b)

1

M > 2 vu, (2.17}

When w>0, the sclutions are associated with non negative values of
8 and thus one has to consider only the case (2.17). No travelling
waves can be obtained from (2.13) when the condition (2.17) is not
satigfied., The two principal directions at the mode have a positive
slope 2

Qu =M% (14 Sl-bug/M2)>0 (2.18)
+ 2
where 1 _ dw
o = dglg=0 O

The solutions (2.13) are represented in the phase space by orbits
leaving the saddle point (1,0) with the slope QE to reach the
mode (0,0) with one of the two possible slopes QY Qf . The
differential equation (2.13) being of first order, for each value
of M one cannot have more than one trajectory linking the two sin-
gular points. The question is to determine the set of values of M
{spectrum)associated with a solution. It is worthwhile to notice
the following points : Q?

1 \\\\‘féfili"f
Q+

node

(1,07
(0,0}

Fig.2,2
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- a) For a given value of M, only one orbit can leave the saddle
peint tangent to QP and also only ome can reach the mnode with a
tangent equal to QY. But this is not the case for the other prin-
cipal direction QY where a family of orbits P (@) tangent to Q¥
can reach the node with the following behavior

P(8) QU 6 + e (MI-QEI/QY L (2.19)
where « is an arbitrary constant (Notice that according to {(2.18)
2 o1y51)

Q4

- b) In the limit M+, P=u{8) is, according to (2.15), the trajec-
tory as soan as dP/d8 remains bounded everywhere.

- ) 0<igbi<iu!| and M2>Q¥>2m;>QE>mé . Thus the trajectery P(8)
has to cross w(f) where according to (2.15) gg.? 0.

- d) For the minimum value M=2vV wl, Qff = QY = 24,. For My=
QY M2 and Qrug

Before presenting the detailed analysis of a simplified
model, let us present some geneval results.

I1.2.4. General results
)
- i) When the curve w{0) is concave as in fig. 2.la, it has been
shown by Kolmogorov & Co (1937) that a solution satisfying 0<8<1
exists for all values of M larger than a lower bound called Mgpp.
The KPP solution is governed by the behavior at the unburnt
boundary cendition 8=0
= dm

1] N 1
Mgpp = 2Mw,  with g, - Te=0 (2.19)

It has also been proved that the KPP solution is the physically
relevant one in the sense that this solution is reached asympto-
tically in time (t+e) from ordinary initial conditions (£=0)

[
wl(g)
- *f:,’
/
w7 \
+ Vs b\
7 Q. \
Qu?i
4
"”/”1’7:; o) . .
(¢,0) (1,0)
Fig.2.3
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including a heavyside step function (see Fife 1979 and alse
Aronson & Weinberger 1978 for recent reviews). All these solutions
M>Mgpp, including the KPP one, are tangent to the "ordinary" prin-
cipal direction QY at the node of the cold boundary conditionm,

ii) When the production curve is no more Concave everywhere in the
interval 85[0,1], the lower bound can be higher than Mgpp defined
by (2.19)(see Fife 1979). Let us call My the lower bound in this
case, M{>Mgpp. The corresponding L-solurion is still the relevant
one from a physical point of view but presents a different struc-
ture from all the other in the spectrum M>M;. The L solution is the
only one reaching the node (0,3) at the cold boundary tangent to
the "extraordinary" principal direction Q¥. To the best of our
knowledge, this property that has not been stressed encugh before
Aldushin & €Co (1981) is of primary importance in premixed flames.
In fact the relevant travelling wave solution that is always asso-
ciated with the lower bound of the spectrum, changes of nature

when the non linear term w(6) becomes sharper and sharper. Such a
sharpening can be obtained with the production term (2.11} by
increasing the reduced activation energy 8 of the Arrhenius law.
Notice that large values of B correspond to a large difference
between the characteristic time scales 1 and 1, of the chemical
production rate at its maximum value 1y = A0t .(T,) and close to
the boundary controlled by w, = 0(8e™B), 1,= £ (Ty}
n+l,"8, (2.20)
As we will see in the next section, for large values of B(B+=)},
the L-solution goes to a limiting value that was obtained in 1983
by Zeldovich and Frank Kamenestkii

Bro o Tpfty> 0, 1Ty = 0(B

lim M, = Mzpk
R+

The important point is that this ZFK seplution is proved to not
depend on T, but only on ty. But on the contrary, for B+0 the KPP
selution holds and, as shown by eq{2.19), the solution is comple-
tely controlled by 7. Thus, the L-solution must insure a transition
between these two extreme cases. In fact the L-solution, if it
exists, is the only one that is not tangent to Q¥ at the cold boun-
dary and thus it is the only one in the spectrum that is not con-
trolled by 1, when wé+0- A1l the other solutions corresponding to
M>Mp contain in the upstream part of their temperature profile a
long tail associated with 71, which is determined by w, . But
according ta the arder of magnitude (L.17') the corresponding
length scale is prohibitively long to be meaningful in ordinary
experimental conditions. The L-solution is the only one that has

a thin flame thickness controlled (as uy See eq.2.7)} by Dy and 1.
Contrarly to the other solutions (M>ML), the chemical reaction is
not necessary for matching the cold boundary condition T=T, in the
upstream part of the L-solution where the heat conduction is the
dominant phenomenan. This peculiarity of the L-solution is related
to the principal direction Qf .
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Furthermore the unique solution of the d; -model goes to
the Z.F.K. solution in the limit Gi+1

lim Me = Mzrg (2.22)
1 4

I1.2.5. The exact solution for a particular model

As shown by Aldushin et al. (1981}, the KPP solution (2.19)
holds for (2.11) in a finite domain of 8 around zero. There exists
a critical value B* at which the L-solution (Mpj3Mgpp) appears.

In order to better understand this transition let us study the
following model that can be exactly soclved (another model is
presented by Aldushin et al. {(1981)) ;

m;-e : 0<p<l~¢
w(g) = (2.22")

%2 h{l-8)} ; Ll-£<8<l (see fig.2.4)

with 0<e<l and where one of the two parameters h and mé can be

removed through adequate scaling. For convenience, let's keep wé
fixed (Mypp fixed) and let vary h and c.

In this model, the orbit leaving the saddle point (1,0} tan-
gent to Qb as well as the one reaching the node (0,0} rangent to
QY are straight lines for (1-£)<8<l and 0<9<l-t respectively. For
h and ¢ given, let us consider the modification of the orbits
{solution of the problem 2.13) when M decreases. For M=w=, the
orbit is P=w@(f) (see ~b) and when M decreases two scenatrio are
possible depending on the values of h and ¢

f ate) N

w' =-h/e2
1

h/e

Fig.2.4
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K.P.P. Scenario : |h<(1-£2)y,

M=Mygpp
fig.2.5b

Fig.2.5

Qe{1-e)21Qble  for all MdMgpp = 2/w, (see fig.2.5) (2.23)

The intersection of the extraordinary principal direction QY with
g=l~cabove the intersection of the orbir with 8=1-¢ for all M>Mgpp.
The extraordinary principal directien cannot be used and all the
possible trajectories reach the node {(0,0) with the slope QY. Notice
that in the fig.2.35b corresponding to the limiting case M=Mgpp, the
orbit does not correspond to the straight line P‘Qzﬂ for 0<6<1l-c.

L _scenario :

LA
M‘>ML>MKPP M=My >Mypp H(ML
fig.2.6a fig.2.6b fig.2.6c
Fig.2.6
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L-scenario : h>(l~€2)mo I

There exists a value Mpof Mwith My Mgpp ) such that
Qpell-e) = |Q_le (2.24)
coxresponding to M ={ I?E-+ (1-2)up) /Y T?;—— W (2.24%)

For M>Mj the situation is similar to the fig.(2 .5a), Qi(l-5)>(QE)€
For M=M; the orbit consists of the two straight lines QY and QE

For M{Mj, the orbit has to cross 8=0 before reaching the node {0,0)
and the corresponding solution cannot be retained.

Transition :Ih =(1-e2)ug,
(2.25)

My = Mgpp = 2vug,

The cases MPMgpp and M<{Mgpp are represented by figures similar to
fig. (2 .52) and fig.(2 .5¢) respectively. When M=Mgpp the orbit
consists of the two straight lines QY and ab but contrarly to the
fig. (2 .6b), Q¥=Q% in the fig.2 .7. When h=(1“62}m0, the KPP solu-
tion is the L solution because Q} = QY

From the eq(2.23) and (2.24), the propagating wave speed
can be plotted in terms of h for different given values of £. The
characteristic shape is plotted in fig. 2.8.

Sy = S T :

h={1-5 2y,

Transition

l

soluticn

Solution |
' h
! >
(1-e2)ug
Fig.2.8
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h/e
}\Sb
L Do
—E—
Fig.2.9

By noticing that % +¢2 is the ratic of two surfaces Sy
and S, plotted in Eig. 2.9, the critical condition for the transi-
tion between the K,P.P.-solution and the L-solution takes a very
simple form

5, > S8, : KPP solution

5, < 8 L solution (2.26)

Such a criterium cannot be straight forward extended teo
general production terms as (2.1l1) to give precisely the corre-
sponding critical value B* of the Zeldovich number (.

B<R* . KPP solution '

AOR* L solution (2.261)
An estimate of 8% can be obtained by an approximate version eof
(2.26) involving the total aera S; = [l deuw(a)

o

S = 28, (2.27)
where §,, is the area under the slope at the origin+. For the
production term (2.11), the criterium (2.27) gives B% 6 and R%. 8
for n=1 and n=2 respectively. The numerical determinatiocn carried
out by Higuera (1983) yields R¥= 3.04 and 8*%= 5.11 for n=l and n=2,
These numerical results are in good agreements with the time depen-
dent numerical analysis of Aldushin et al. (1981). Furthermcre the
critical condition has been obtained by Higuera (1983) for other
models as the following one

* The criterium (2.27) was suggested by Zeldovich - private commu-~
nication, July 1983,
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w(®) = 8(1-0)eP? | gx = 1.64 (2.28)
used by Zeldovich {1948) for an exothermic chain branching reaction
(1.4b) with unity Lewis number for both the limiting component R
and the intermediate X. The corresponding threshold for the onset
of the L-solution, B*=1.64, is found to be much more lower than
for the medel (2.11}, These numerical values of 8* can be compa-
red with the values of the Zeldovich number associated with the
overall activation energy and the flame temperature occurring in
ordinary flames (see fig. 2.10).

E kcal/mole

ToR 20 30 40 50
380 0 0 0 0
350 4.10 6.16 8.22 10,27

1500 5.37 8.05 10.74 13.42
2000 4,28 6.42 8.56 10.7
2500 3.54 5.32 7.08 8.86

Values of the Zeldovich number (1.16) for T,=300°K
Fig.2,10

It turns out that, even for cool flames observed in the low
temperature range of the hydrecarbon oxidation (Tya 600°K), the
Zeldovich number B seems to be too large for the K.P.P. sclution.
But in such cool flames the multiple step-chemistry is expected
to be a fundamental process and definitive conclusions cannot be
obtained by the simplified model (2.6). For ordinary flames,
E330Kcal and 1500°K<Typ<2500°K, the KPP solution is found to not
be relevant and the solution appears to be more likely controlled
by the L-solution. In addition, the corresponding values of B are
large enough {8 ~10) to make the exact solution accurately approx-
imated by the dominant orders of an asymptotic expansion in large
values of B (R+*=). This approach based on the early works of
Zeldovich and Frank Kamenetskii (1938) is presented in the next
section,

Let us fipally recall rhat the study of the model (2.22')
shows that the transition "K.P.P. solution+L solution' can be
produced only by changing the "hot part" (8=1) of w(6). Thus,
the selection criterium that has been proved to be relevant for
selecting the K.P.P. solution (see Zeldovich 1948) cannot be
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uniformly valid because it is based only on the linearized form
of w(8) around the cold boundary (8=0). This comment emphasizes
the limits of validity of selection criteria such as the one
proposed recently by Die and Langer {1983} in the context of pro-
pagating patterns.

I1.3. The asymptotic expansion

In the limit of an infinitely large Zeldovich number B, the
ratio of the characteristic times of reaction at T and Ty, becomes
singular (see fig.I.2)

T ';,(,T) {0 , To<T<Ty

lim B3 , =

Bl yame -
TRTY (1, T =Ty

For large values of 8, the reaction can be considered as thermaily
quenched everywhere inside the flame except for temperature suffi-
ciently close to the maximum valve Ty , (TL-T)}/(TL-T,)=1-6= 0(1/8}.
And according to eq(2.6'), the reduced reaction rate w(8) is negli-
gible except in a thin reaction zone of thickness d/B separating
the preheated zone where the flow is frozen(w is trascendentally
small) from the burned gases at equilibrium, ¢=0 w=0 (see

fig. 2.0). Because of the guasi-similarity of the profiles of tem-
perature and limiting component, the consumption of the reactant
stops the reaction soon after its inirialisation.

In 1938 Zeldovich and Frank Kamenestkii developed an approx-
imate sclution of the flame propogation described by the
L-solution of eq(2.6). This approximation valid for B>>1 has now
been proved to be the dominant order of the asymptotic expansion
first developed independently by Bush and Fendell (1970) for the
model (2.6} and by Liflan (1971) for exothermic chain branching
teaction. From eq{2.6) it appears clearly that the hear released
by the chemical reaction is partly consumed by heating the react-
ing gas through the convective term m XG and partly carried away
by heat conduction. When the reaction zene is thin, its tempera-
ture change is negligible and, at the dominant order, the chemi-
cal production is balanced by the heat conduction ;

2

reaction zone : - pDpp %kge = w(@) (2.29)

B

T (Ty)

After multiplication by 4 4 the eq(2.29) can be easily integrated
dx

to compute the energy flux that leaves the reaction zone by heat
conduction for preheating the frozen flow

de £ pDen
DDth-&; = 2 —— pp Ig (2.30)

T{Tp)
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where according to (2.6) and (2.86')

Ip = [; de'w(e')= E%*ifg( do on exp [—2 }

—=— ] {2.30")
B-1) 1+ag~lo

The main difficulty is to prescribe the lower bound appearing in
Ig and corresponding to the boundary between the reaction zone and
the preheated zone. Because of its marked exponential temperature,
the reaction rate falls so sharply with a decrease in temperature
that, when B is large, the lower bound can be taken to be -
(B(8=1)>-») without modifying notably the value of Ig

1

=1 L
Iy = pres! r(n+i)+ O(Bn+2 ) (2.3

with I'{n+1)= n! when neN

The heat conduction flux (2.30) entering the preheated zone balances
the conveecticon flux of energy leaving this zone only for a well
defined value of the mass flux m corresponding to the unknown flame
velocity. The solution of eq(2.6) in the preheated zone (where w

can be neglected) shows that the value of the convection flux is
simply m

reheated zone : g = ex/d {2.312)
with d= P°th and where the origin of the x-axis has been cho-
sen such ™  that ¢ (x=0)=1. Eq(2.32) yields

de
oD -—| =m =p, u {2.3)
th dx =0 u “L

Aml eq(2.30) and (2.33) provide the expression of the laminar flame
speed up,. This approach can be systemized by an asymptotic expan-
sion whose the first and second order are presented below. The
main purpose of such a systematic expansion is not only to obtain
a more accurate analytical selution of the planar flame but alse
to provide a framework that can be used to solve more complex
cases as wrinkled fronts in non homogeneous flow. The correspon-
ding works are briefly outlined in the following section and a
more detailed presentation can be found in a recealt review article
(Clavin 1984). Let us consider the model (2.6) but where pDyy, is
not necessarily assumed to be constant. When the independent varia-

ble E = fx M dx is introduced, eq{2.6) takes the form
o PDen
do d%y _
ylTe A al8)wls) (2.34)
where
f o= ePrnlbobKy (2.35")
m?7  (Ty)

and where A{8) corresponds to the weak temperature dependence of
the prefactor in the r.h.s. of (2.34)
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a(s) = (©Dcn) (oK) (2.35")
(thh)b(pK)b
According to the result of Zeldevich and Frank Kamenestkii present-
ed above, the unknown quantity A/B“+l is expected to remain fi-
nite in the limit B2« and one must look for a solution expanded

as follows

A/t = p o +% A+ 00%2). (2.36)

In the preheated zone w(9) is transcendentally small and the solu-
tion of eq(2.34) yields

Quter solution : E<O , o(g) = eb + r.s.t. (2.37)
where t.s.t. means transcendentally small terms.

To solve the preoblem in the reaction zone of thickness d/f loca-
ted around £=0, the stretched variable n is introduced and consi-
dered as the independent variable in this thin zone

n=g , 4 -5 d
dE dn
Then, the solution is expanded in the following manner
Ealn) 290 1
(l1-p) = 20 + + 0(=1)
2 o2 g3 (2.38)

and using the corresponding expansion of AA{(Q)w(8), eq(2.34)
provides the equations for =i, Zp....

Inner equations

o = AoEg e "9,
dn2
-5 _n+l ~-E _n+2 -%
ds 4z AMEy e o -igyby E4 e 70O “hovEgs e '0 )
Tdn + an? T4 (pEn-1 e'Eo .an e‘EO) (2.39
S1ipiizg =0 '
where
Log(pDeppK) g L
= ; by = ZZ2ECPTERPRS i A=l-vhy{ 22 + 0(=5) (2.40)
¥ 1 Tog T IT=Tb ; Th1 5= Y

The boundary condition in the burnt gases yields

n+te 2 Eg+ 0, Z1> 0 (2.41)

According to the equations (2,39), the solutions T, and Z: pre-

sent the following limiting behavior in the direction toward the
preheated zone : 2.

om0 cto YElosccto (2.42)
The matching conditions (Van Dyke 1964, Cole 1968) of the inner
solution {2.38) with the outer solution 6(£)= 8,(£)+ iﬂl(£)+0(l%
of the preheated zone yields : B B

nr-—= :
2—20| Jn + 01(£=00+ £.s.t.

=.0n) = ¢ _
¢ £=0. (2.43)
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2 2

- <0 n 391

= = (2 ¥a M) o + = LS.t

Eyin) (aE |E=0-)2 +(ag |£:0‘)n 55 (E=0)+t. 5.t
According to the result (2.37), this yields
nrb-oo

Zoln} = n + t.s.t.

2 (2.44)
7100 =g— + t.s-t.

The eigenvalues A, and A} are determined by prescribing the boun-
dary conditions (2.41) and (2.42) (see Joulin & Clavin 1976)

1
A [ L R
© ANSS ]
Ay = Ag {bl Yr“+2 + an+3 S S % n} {2.45)

Tt Tasl A Tatp

@ ﬁ 1 = -
where q n T Jo d:(l-}/r;:I- jo dx x7 e™¥)

As already mentioned, the dominant order A, is identical to the
solution of Zeldovich and Frank Kamenestkii uypg. The numerical
evaluation of '} n=1 vields : dn=l = 1,344, {see Fendell 1972).

For n=1 and y=0.85 the flame velocity vy is, according to {2.25)
and (2.45), given Dy :

u= ugpg (1- Oé57 + 0(%2)) for by = -3 ,
and 1.2 1 (2.46)
up,= UZFK(]." —é“-“" + 0(E2 1) for bl = 0.

According to the values of B given in fig. 2.10, the results {2.46)
shows that the first correction is not always negligible. By com-
parison with numerical solutions the results (2.46} are found to
be accurate with less than 10% error for £>3 (Bush & Fendell 1971).
For R>5, the error is less than 2%. In fact the very limitation of
the asymptotic method toward the small value of the Zeldovich
number § is the critical valiue B* corresponding to the onset of
the KPP solution. The coefficient vy appearing in the first term in
the bracket of eq{2.45) is not present in the result of Fendell
(1972) concerning n=1 but Lg#l. In order to get rid of the cold
boundary difficulty, A{(8) was approximated by ebl in the model
used by Fendell. Such a modification of the Arrhenius law is not
necessary in the framework of the asymptotic expansion f+» and

can lead to irrelevant corrective terms when the hot boundary is
modified.

This asymptotic method has been successfully applied to
other one dimensional and steady cases such as : non unity Lewis
number (Bush and Fendell 1970}, volumetric heat losses for de-
scribing the thermal extinction (Buckmaster 1976, Joulin Clavin
1976), menopropellant droplet burning (Fendell 1972, Li%an 1976),
stretch effect of a planar front stabilised in a stagnation peint
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flow (Buckmaster 1982, Libby and Williams 1982}, influence of flame
holders and of the spherical geometry {Deshaies and Co 1981, Clarke
and McIntosh 1980), in this last case the temperature in the burnt
gas can decrease toward a room temperature small compared to the
flame temperature and the corresponding inner zone structure is
more complex {than the one presented above) and has been first
studied by Linan (1974) in the context of diffusion flames. The
study of the effects of two limiting components for reactive mix-
tures close to the stoichiometric composition has been studied by
Joulin & Mitani 1981). More recently, the asymptotic method was
successfully applied by Lifan and Clavin (1984) to a multiple step,
kinetic scheme introduced by Adams and Stock {1953} to model the
reactions with Hydragen and Halogens. These approaches are very
promising but, presently, they are limited to the cases where the
complete chemical scheme can be reduced to few steps. For example,
such a drastic reduction has not yet been performed successfully
for the simplest hydrocarbons. Performance numerical methods are
now available to solve the structure of flames sustained by the
most complex kinetic scheme. But because of the huge amount of
physico-chemical parameters necessary to describe the structure

of flames sustained by complex kinetic scheme, the analysis of

the corresponding numerical results are difficult. A promising
avenue is to combine numerics and analytical treatments.

I1I.4. Dynamics of flame front

Let us consider the motion of flame fronts in flows that
can be unsteady and non-uniform. When the length and time scales
of the initial flow are larger than those associated with the
planar flame (the flame thickness d and the transit time d/up,
where uj; is the laminar flame speed), the flame front can be con-
sidered, in first approximation, as a surface of discontinuity
whose motion is controlled by two distinct factors : the nor-
mal burning velocity u, associated with the mass flux of fresh mix-
ture crossing the front and the value at the front of the flow
velocity field. Each point of the front moves with a velecity
equal to the difference between the values (at this point) of
the upstream flow velocity and the normal burning velocity orien-
ted toward the fresh mixture in the directicn normal to the front.

Ag soon as one is concerned with wrinkled fronts and/or
inhomogeneous flows, the flame cannot be described by a pure reac-
tion-diffusive model. Because of the gas expansion produced by
the temperature increase in the preheated zone, the streamlines
are deflected across the tilted front and a strong coupling with
hydrodynamics is developed. When the size D of the wrinkles of
the front is large compared to the flame thickness d, the corre-
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ponding fluid mechanical effects can be split in two distinect
parts

-i) The flame structure is locally influenced by rhe convective
transfer produced in the preheated zone by the deflection of the
streamlines.

-ii} Outside the flame where the gas density p and the temperatutre
T are uniform, the flow field is also modified (from its initial
value without combustrion} upstream and downstream the flame on

a distance b from the front.

The first effects i) produce & change of the normal burn-
ing velocity un#uL. It must be noticed that, Iin additicn to the
convection transfer produced by the gas expansion, the diffusion
fluxes of heat and mass play also a great part in this modification
to flame structure of wrinkled fronts.

The second effects ii) results in a modification to the gas
flow at the front.

Both of these effects i) & ii) influences the motion of the
front, but the second is the stronger one at long wave lengths.

When the modification to flame structure is neglected, up=uj,
the flame could be considered as a passive surface in the sense
that the motion is completely prescribed by the value of the flow
at the front. Even in this case, the second effect ii) produces a
strong hydrodynamical feedback in the motion of the fronmt. This
effect was first described in the pioneering works of Darrieus
(1938) and Landau (1944) who computed the flow field induced by
the front wrinkling when up=up and d=0. The analysis was carried
cut at the linear approximation in the amplitude of the front
corrugations and the induced flow velocity was found to be in phase
with the front wrinkles, The resulting motion of the front reveals
a strong instability mechanism of planar flames in uniform flows.
The least fluctuation around the planar steady state solutien (de-
scribed in the preceding sectlons) 1s amplified under the hydrody-
namical effect ii). As the wavelength becomes shorter, the frout
is more unstable and Darrieus and Landau concluded that planar
fronts freely propagating in uniform mixture cannot exist. The
instability mechanism appeared to be so strong that they conclude
also that the combustion must be a self-turbulizing phenomena. In
fact, only two parameters being involved in this theory, the gas
expansion parameter y and the laminar flame speed u,, rthe growth
rate ¢ of the instability is found to be proportional to the modu-
lus k of the wave vector of the front wrinkles

o = oplyiuk (2.47)
where o1(y) is a positive adimentional quantity vanishing only in
the unrealistic limit +y»0 {zero gas expansion, p,= pp).
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The first attempt to take into account the effect of the
modification to flame structure was performed in the fiftyth by
Markstein {see his review paper 1965) who assumed the following
phenomenolegical relation between uy and the mean radius of cur-
vature of the front R (R>0 when the front is concave toward the
unburnt gases)

.l A (2.48)

ur, R

where £ is a phenomenological length (called Markstein length)
that was assumed to be proportional to the flame thickness d and
whose the expression is a characteristic of the reactive mixture.
It can easily be anticiped from eq(2.48) that the effects asso-
ciated with the modification to flame structure can only change
the dispersion relation (2.47) through a k? -term. And thus the
large wavelength can never be stabilized by such a mechanism.
Another stabilizing mechanism must be present in order to explain
the targe planar front observed experimentally.

The first analysis of the wrinkled flame structure was
carried out by Barenblatt, Zeldovich and Istratov (1962) but in
the diffusive-thermal model where the gas expansion effects i)
and ii) are neglected. This model was extensively used these ten
last years to culminate in the derivation by G. Sivashinsky (1977)
of a non linear differential equation for the flame motion describ-
ing a self turbulizing behavior of the cellular structures
{Michelson & Sivashinsky 1977). The asymptotic technique applied
to solve this model in the limit of large values of the Zeldovich
number B+, is presented in the paper of Joulin & Clavin (1979)
that is devoted to the dynamical properties in the presence of
heat losses that can produce the thermal extinction. Travelling
and spinning waves as well as oscillatory fronts have been predict-
ed by this medel (for a review see the book of Buckmaster and
Ludford 1982 and the review article of Sivashinsky 1983). But even
as modified by Sivashinsky to take into account a weak gas expan-
sion, this model underestimates the hydrodynamical effects that has
to play a dominant role (see eq(2.47)).

Recently, the coupling between diffusion and hydrodynamics
has been properly tazken into account for describing the wrinkled
flame structure in an analytical work by Clavin & Williams (1982).
The asymptotic expansion B+« is used together with a multiscale
methed based on the assumption £=d/D smaller than unity. The
corresponding result was used by Pelcé & Clavin (1982} to study
the stability limits of planar fronts propagating downward. The
results can be summarized as follow :

a) - In the approximation of a one step overall chemical reaction,
the modification to flame structure by wrinkling is predicted to
be a stabilizing mechanism for most of the ordinary hydrocarbon-
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mixtures; whatever the equivalence ratio may be; the only
exception could be a mixture of very light reactive components (as
hydrogen) diluted in nitrogen. This conclusion contradicts the re-
sult obtained by the diffusive-thermal model and appears as a typi-
cal effect of the mechanism i).

b} ~ The gas viscosity has a neutral effect on the stability proper-
ties of planar fronts.

¢) ~ The acceleration of gravity g asscciated with the effects of
the modification to flame structure by wrinkling can counterbalance
the hydrodynamical instability for all the wave numbers when the
flame velocity is low enough. The cellular threshold is predicted
to be observable for flame velocity up, varying between 5em/s and
17em/s with rich mixture of ordinary fuel for low flame veloci-
ties (up<12cm/s) and with lean composition for higher velocity.

d) - The cell size at the threshold can be expressed in terms of
only the variable g, u, and y ; the detailed properties {chemical
kinetics, transport processes...) do not enter inte the final
expression.

These predictions are in good agreements with the recent
experiments of Quinard et al. (1983). Furthermore the induced velo~
city field has been recently recorded in the unburnt mixture by
Searby et al. (1983) in the case of stable fronts stabilized in
weakly "turbulent'" flows. As predicted by the theory for planar
stable flames, the induced velocity field is found to be out of
phase with the front corrugations leading to a blocking of the
low frequencies in the turbulence approaching the front (see the
lecture of . Boyer at the present summer school).

The analysis of Clavin & Williams (1982} concerning the
flame structure of wrinkled fronts in a non homogeneous flows has
been extended independently by Matalon & Matkowsky (1982} and
by Clavin & Joulin (1983) to the nonlinear case of finite ampli-
tudes of the front corrugations. As anticipated by the early phe-
nomenological analysis of Karlowitz et al. {(1953), the modification
to the nermal burning velocity ug produced by the front curvature
and by the flow inhomogencities can be expressed in terms of only
one geometrical scalar i.e. the total flame stretch experienced
by the front. B £ 1 da

Uy - oup = - = =% (2.49})

¢ dt d

where o is the surface element of the front and —— its time deri-
vative when each point of the flame moves as described at the
beginning of this section. £ is the Markstein length that depends,
as the laminar flame velogity ug, on the physico-chemical proper-
ties of the reactive mixture (transfer properties, chemical kine-
tics, ete...). The corresponding expression of‘ﬂ has been obtain-
ed for different cases (see the review article by Clavin 1984).
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Except its limitation to the weak stretch, this surprisingly
simple result is general and can be used in any flow configura-
tion : stagnation point flow, spherical flames, turbulent flames...
etc... The effects of the strong stretch has been recently investi-
gated by Libby, Linan and Williams {(1983) in the particular case
of a planar front in a stagnation point flow. Once again, the
effect of the gas expansion is proved to be important ; for exam-
ple the flame extinection under strong stretch predicted by the
"diffusive-thermal model" (y=0) fer one overall chemical reaction
is no more accessible when the effects i) are properly taken into
account).

It is worthwhile to express the result (2.49) in terms of
the mean radius of curvature of the front R. At the same order,
the modification to normal burning velocity can be expressed as
{see Clavin & Joulin 1983)

Up-tg = £ up, {l + 5 h ey n} (2.50)

R uy, - == -
where n is the unit vector normal to the front and Yu is the "rate
of strain tensor'" of the upstream flow evaluated at the flame posi-
tion. Each of the two terms in r.h.s. represents a contribution to
the total flame stretch. The term ~-up /R represents the stretch of
the front moving in a uniform flow with a constant normal velocity
up,. This term is the effect of the non planar geometry of the front.
The term Veu - neVu en is known to represent the stretch of a
surface Convectedng} the flow field u. (Here Veu = 0 outside the
flame). This second term is the effect of the non homogeneity of
the flow.

Finally let us mention that the eqf2.49) and (2.50) pro-
vide a non linear equation feor the front in a non uniform and/or
unsteady flow. But, as already menticned, the value of the flow
field appearing in this equation is not a given quantity and,
because of the hydrodynamics effects ii), this flow is, in fact,

a functional of the flame surface. This aspect of the problem of
the flame dynamics has been solved only in the linear approxima-
tion (see L. Boyer 1983). Nevertheless, for turbulent wrinkled
flames, and when the corresponding random process is assumed to

be stationary and homogeneous, the local equation for the front
evolution provide an expression for the turbulent flame speed.

The time average of the modification to normal burning velocity

is found to be zero and the turbulent flame speed is proved to be
given by simply the laminar flame speed times the mean area incre-
ase of the front.

III. DIFFUSION TLAMES

ITT.1. Position of the problems

In the broadest sense a diffusion flame is defined, see

318



Williams 1965, as any flame in which the fuel and the oxidizer
are initially separated ; the term diffusion flame is synonymous
with nonpremixed combustion. In diffusion flames mixing and chemi-
cal reaction take place simultaneously.

In a restricted sense, a diffusion flame is defined as a
non-premixed flame in which most of the reaction gccurs in a
thin zone that separates the fuel from the oxidiser, and that,
following Burke and Schumann 1928, it can be approximated by a
gurface.

Two types of problems may be encountered in the analysis of
chemical reactions in unpremixed systems : (a) Problems of the evo-
lution type, like unsteady mixing and combustion in mixing layers
and boundary layers without a stagnation point, and (b) quasy
steady problems like mixing and reaction in the stagnation regiocn
and quasi-steady droplet combustion.

For large activation energies, multiple solutions exist for
the conservation equations in problems of the elliptic, quasi-steady
type within a range of Damkohler numbers, bounded by an extinc-
tion Damkdhler numbers, and by an ignition Damkohler number ; these
solutions correspond to different combustion regimes,(Linan 1974).
In problems of the evolution type rhe conservations equations are
parabolic, because the terms representing the diffusive effects
have second order spatial derivatives, while those terms represent-
ing the local heat accumulation or convective effects are first
order with respect to time or with respect to a spatial derivative,
that does not appear in the diffusive terms. Then the sclution is
uniquely determined in terms of the initial and boundary conditicns
With increasing values of the time-1like variable the flow changes
from nearly-frozen, with incipient effects of the chemical reaction,
to a near-equilibrium, diffusion controlled mode of combustion
(see fig.1.1); the transition occurs through premixed flames, of
the deflagration or of the detonation type (see LiTian and Crespo
1976} .

In the following, we shall present a detailed amalysis of
the diffusion flame structure, using as an example of quasi-
steady problems, the diffusion flame at the stagnation region
between to opposed jets of fuel and oxidiser. The results are,
however, applicable to any general configuration. The analysis
will be carried out for reactions that can be modelled by an
Arrhenius overall irreversible reaction, but the analysis can be
generalised for more general reactions,

The qualitative structure of diffusion flames is not strong-

ly dependent on the value of the Lewis number of the species. The
analysis simplifies considerably when we write pDy =KI'CPz OD¢hs
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corresponding to the equidiffusional approximation. In this case
the transport operators on eq(l.5) coincide for all species, and
when we take into acount (l.1'), the coupling functions, or
Schwalb-Zeldovich variables,

Yp - vYp and T+'1{F-q/(3p

are found to diffuse as passive scalars.
Thus the systems of eqs{l1.5,1',2) can be written in the form

L(Yp)= -BY F vO o TE/RT (3.1)
L(Yo-v¥p)= 0 , L(T+Ypq/Cp)= 0 (3.2)
and also L{Yy)=0 for any inert species. Here L is defined by
Lz) =224y . 7(z)-L ve(pDy, v 2) (3.3)
ar L ° 2 o - 4

If we assume that we have, as in the example of fig. 1.1, two
independent feed streams, one with fuel, with mass fraction Ypq
and temperature Tpg, and the other with oxidiser with mass fraction
Ygp and temperature Tgp, and no heat or mass flux on all the other
boundary surfaces, then it is possible to write the solution of
eq(3.2) in terms of the solution Z {(mixture fraction) of the pro-
blem of eq{3.3} for an inert species, of unit concentration, Z=1l,
in the fuel feed stream, and zero concentration at the oxidiser
stream (see for example Bilger, 1975, and Peters 1983).

Thus we can write the following Schvab-Zeldovich relations

Yo-v¥p= Ypg -(v¥pg + Ygo)2 (3.4)
and

T + Ypq/Cp = Tog +H{Tpo-Togt Yro 4/Cp)Z (3.5)
independent of the kinetics, that appears only in eq(3.1).

In the non-reacting limit Be“h/ﬂi;ﬂ, when the chemical reaction is
frozen, eq(3.1) simplifies to .

L{Yp) = O {3.6)
so that

Yrp = Ypf = Yrp 2

Yy = Ygf = Ypg (1-2)

T = Tg = Ty +HTpo- TpglZ
In the opposite limiting case (the Burke-Schumann limit)}, of very
fast chemical reactions, Be E/RT;x. we have chemical equilibrium,
with

(3.7)

Yo= 0, Yp = ~Yu/v +(Ypg+ Yoo/v)Z
(3.8a)
T = Tpg+{Too- Tro* Ypoa/vCpl(1-2)

for Z>Ze, on the fuel side, and

Yp= 0, Yg=Ygg -(vYpgt YgglZ
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{1.8b)
T = Top +(Tpp= Too + Yro 4/Cp)E
for Z<Ze, on the oxidizer side
A thin flame, located at Z=Ze given by
Ze = Ygp/ {YpgtvY¥rg) (3.9

There ¥g= Yp= 0 and T=T,, given by the adiabatic flame temperature
value
Te= Tog +HTpp~ Tpo+ Yro 9/Cp)Ze (3.10)

The flame sheet separates the fuel from the oxidiser.

To calculate the flame sheet position, Z=Ze, and the temper-
ature and reactant concentration distributions, given by (3.8),
we must solve the transport problem (3.3) for the mixture fraction.
These distributions in rthe Burke-Schumann limit of infinitely fast
reactions are diffusion centrolled., It is easy to show, taking intc
zccount {3.8), that m), the mass burning rate of fuel per unit [la-
me surface, and the corresponding value m; for the oxidizer, given

by

3Y Y
TR NI:R "o o RN )
L Fl an)e+ s om pD4{ Bn)e' (3.1D
are related by
v = m" _(3.12)
F ol ) 3Tl e
and the heat release per unit flame surface q" = A[~—]
: 1" 3n +
ig related to mg by e
q" = m! (3.13)

P F

That is fuel and oxidiser reach the flame in stoichiometric
proportions, and the heat release by the chemical reaction Ls con-
ducted away from the flame. The jump relations (3.12,13) are also
valid for non-unity Lewis mumbers, when the relations (3.4} and
(3.5), and therefore (3.9) and (3.10)} do not hold. For non-unity
Lewis numbers, and diffusion controlled combustion, we must solve
the equations Lp{T)}=0, Lp{¥3)=0 on the oxidiser side of the flame
where Yp=0 ; and the equations Lp{Yp}=0, Lp(T)=0, on the fuel side
where Yp=0. The concentration of both reactants must be zero at
the thin flame, and the temperature continuous ; there are jumps
however of the concentration and temperature gradients normal to
the flame sheet, that satisfy the jump relations (3.12} and (3.13).

In order to describe with some details the transition from
the frozen flow distributions of the form (3.7) to the equilibrium
distributions of the form (3.B) we shall analyse the structure of
counterflow diffusion flames, We shall make this description in
the realistic limit of large values of the non-dimensional acti-
vation energy E/RT., when multiple solutions of the conservation
equasicns may exist, with associated bifurcation points, where
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jumps from a nearly frozen state to a near-equilibrium state, and
vice versa, occurs.

In counterflow diffusion flames two streams, one of fuel and
the other of oxidiser flow in opposite directions, setting up a
diffusion flame between them where the chemical reaction takes
place. The qualitative structure and rhe main characteristics of
diffusion flames do not change when the effects, associated with
density changes, of the heat release on the flow field are neglect.
We shall, in addition assume for simplicity in the presentation
of the structure, assume that the two jet velocities are equal,
The flow field shown in fig.III.l is axis-symmetric.
Close to the stagnation point the flow field is given by

u = -Ax , v = Ar/Z
as a result of the constant density approximation, and for two

identical jets. The factor A is the inverse of a residence time m
the stagnation of the initial diameter D and velocity V of the jets.

It is well known that in the solutions of the conservation
equations in the stagnation region the temperature and concentra-
tions are functions only x, the distance normal to¢ the mixing layer
and, in unsteady problems, of time. We shall laok foar steady solu-
tions, so that only x is involved as independent variable. The
mixture fraction Z and the fuel mass fraction Yp are given by the

Mixing layer
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conservation equations

dz diz
Ax dx Dt}l ;:é- =0 (3.14)
ay a2y -E/RT _np .n
- ZE - SIF = - F o
Ax ” D¢ty il Be LECHR 2 (3.15)

where we have considered, for simplicity, that both p and the ther-
mal diffusivity D¢y are constant. We shall write these equations in
non-dimensional form in terms of the variable

n = x/v Dth?A
where Den/A is the characteristic thickness of the mixing layer.
Thus we obtain

nZy + Zpg Z/gr (3.16)
o - ng Np

nYpn + Yppp = Dme Yo ¥, (3.17)
to be solved with the boundary conditions

Z=1 3 YF= YFO for n ¥ =m

Z=0 , Yp= 0 for noe
if the mixing layer thickness is small compared with the size of
the jets. Yg and T are given by eq(3.4,5) in terms of Yy and Z.
Ds is a Damkéhler pumber D,= B/A, the product of the frequency
factor B and the characteristic diffusion time, or residence time,
1/A across the mixing layer. The solution of (3.16) can be written

2 Z = (1/2Yerfeln/v2) (3.18)

which together with eqs{3.4 and 5) and eq{(3.17) determines Yg(n).
In the nmon-reactive limit Dye E/RT40 the solution was given before
as the frozen solutions eq(3.7). In the limit D,e E/RTsw | of
infinitely large Damkdhler noumbers, we cobtain the Burke=-Schumann
(B-S), chemical equilibrium, selution, given by eq(3.8). These
limiting solutions are shown schematically in figs(3.2a, 2b) in
terms of the mixture fraction Z as independent variable,

Notice that in the B-5 limit there are jumps in the concentratien
and temperature gradients at the flame sheet, Z=Z,, that acts as a
sink for the fuel and oxidiser, and as a source for the products
and thermal energy. The jumps are rounded off, as shown by the
dashed lines in fig.III1.2b due to finite rate effects.

The linear form of the profiles, in both limiting cases, when the
mixture fraction Z is used as independent variable can be under-
stood, when we notice that the transport cperator appearing in
eq(3.17) can be written in the form

nYpn + Ypny = 23 Ypzz (3.19)

where 2% = (1/2ﬂ)exp(-n2/2), the local gradient of the mixture
fraction , is a function of 2Z=erfe(n/¥2), whose variation across
the mixing layer accounts for convective effects.
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ITI.2, Ignition regime

For zero Damkdhler numbers the temperature and concentra-
tion distributicns take their frozen values, Yp_=Ypq Z,
Yo,.=Ypg(1-2) and T=Tg=Top+(Tpg-Tpp)Z. The deviations from these
values, for non zero small values of D,, can be calculated in first
approximation, by using eq(3.17) with the right hand side evaluated
in terms of the frozem solution, i.e. by using the equation

22 Ypgp = DmehE/RTf vgE Yg2 (3.20)
with YF(0)= 0 3 YF(1)= 1

The solution gives the first two terms of an expansion
of the solution of eq(3.17) in powers of the Damkdhler number Ds.
It represents well the temperature and concentration distributions
as long as the deviations of the chemical production term from its
frozen flow value, appearing in the right hand side of eq(3.20)
are small.

For large activation energies, E/RT>>1l, the changes in the
Arrhenius factor, exp{(-E/RT), become significant, even with small
changes in the temperature from its frozen flow value Ty. That is
suffices to have variations of T from Ty small, (T-Tg)/Tg= O(RTg/E)
in order to change the Arrhenius exponential by a facter of order
unity, so that it can no longer be approximated by exp(—E/RTf),
although we can use, because (T-Ty)/Tg<<l, the Frank-Kamenetskii
(1969), linearisation

exp{-E/RT)= exp(~E/RTf)exp E(T—Tf)/RT% (3.21)
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of the Arrhenius exponent, when analysing the diffusion flame in
the ignition regime.

Due to the much weaker 5ens1t1v1ty of the reaction rates to
concentration changes, the factog YFF YO can often be approxima-
ted by its frozen flow value YFf YO? because in the ignition
regime the relative changes in concentration are small of the order
of RT§/L. Although this is not the case when, for example,
Too~ TF0>>RT D/h when in the ignition regime the chemical reaction
occurs on the oxidizer edge of the mixing layer, where the
temperature is hipher, and where we can write Yg=Ygp but not
YF=YFE in evaluating the reaction rate. See Lifidn 1974.

In the particular case Tgp=Tpp=T(, when Tf=T,, we can except
from the solution of (3.20) that (T-T,}/T, will be of the order
RT,/E, and therefore we shall be in the ignition regime for values
of the Damkdhler number such that

5 E/RTD nF Np . RT "D
ooty Dy e YFO YOO = (3.22)

with'm a number of order unity.

In this distinguished limiting case, E/RTy*> with D,+= so that 7}

is fixed of order unity, the deviations of Yp, Yp and T from Cheir
frozen values YOO(I»Z), YppZ and T, are small of order RT,/E; and are

given in first approximation in terms of the solution, for
¢= E(T-Ty)/RTE , of . .
22 6zz = -Det 2"F (1-z)70 (3.23)

plo) = ¢{12= 0
and

Yp/Ypp = Z-eqb . Yo/Ypp= 1-Z-{v¥pg/Yggleod

where  €,=(CpT,/q¥pp) (RT5/E} is small for large values of the
activation energy.

The limiting form eq{3.23) of the conservation equation for
T, for large values of E/RT,, results from linearisation eq{3.21)
of the Arrhenius exponent and from the neglect of the reactant con-
sumption in evaluating the reaction rate.

The reduced Damkéhler numberfD defined by eq(3.22), is
the only parameter, aside from the reaction arders ny and Mo
entering in eq(3.23). When this equation is sclved numerically,
two solutions are found for all values of the Damkdhler number
smaller than an ignition valued) 1, of order unity, for which the
two solutions coincide. No solution of the problem (3,23) exists
for values of the Damkdhler number ") larger than™ }) 1. Thus,
when we plot a certain norm of ¢(2), such as dpa,~ E(Tmax-To)/Rﬁf
in terms of , for fixed values of the reaction orders, the
resulting curve is of the form shown in fig. 3 .3 that corresponds
to np=ng=1, with a & = 2-539.
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Fig.3.3

The existence of the two solutions is associated with the
strong dependence of the reaction rate with temperature. The solu-
tion corresponding to the lower branch of Fig. 3.3 shows small
temperature increments, associated with small reaction rates ;
the solution, for the same Damkohler number, corresponding to the
upper branch shows a much larger value of ¢y, associated with
larges values of exp¢. For values of P >D1 the increments in
temperatrure, and the cerresponding values of exp¢, are two large
to sustain a nearly frozen sclution. A stability analysis of the
two solutions represented in Fig. 3.3 would show the upper branch
to be unstable ; and only the lower branch can be reached for large
times in an unsteady process if we begin with initial condi-
tions in an appropriate domain of attraction. When <J) is increas-
ed slowly by increasing, for example, the reactant or oxidizer
concentration in the free streams the sclution will follow the
lower branch of Fig. 3 .3, until a sudden jump from the nearly
frozen mode of combustion to a near equilibrium mode occurs if
D is increased slightly above®] 1.

I1IT.3. Diffusion controlled regime

We shall now describe the structure of the flame in the
limiting case of large Damkdhler numbers, Do+, with E/RTgg fixed.
This is the Burke-Schumann limit. As we indicated before, in this
limit an infinitely thin reaction zone, or flame sheet, located
at 7=Z,, where the temperature is the adiabatic fiame temperature

Te, piven by eqs{3.9 and 10), separates a region Z>Z, where
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¥s=0. The temperature and concentration distributions are given in
this limit by eq(3.8), and are shown schematically in fig. 3 .2b.
For large, but finite values of Dy, the distributions are still
given by the B-5 solutien (3.8), outside a thin reaction zone loca-~
ted, as shown in fig. 3 .4, around Z,. Let £<<1 be the thickness
of the reaction zone relative to that of the mixing lavyer, then
rthe mass fractions of the reactants Yp/Ypg and Yg/Ypg, that co-
exist in the reaction layer are there of order £ ; and this is
also the order of C (TE—T)qYFO, measuring the deviation of T from T,.
We require that all the terms appearing in the form of Schwabb-
Zeldovich relations (3.4 and 5) given below
CplT-TH q¥po= -Yp/Ypo+ {1-Cp(Top-Tro)/a¥pgl (Z-Zg)
(3.24)
Yo/v¥po = YR/Ypo~(1+¥on/vYpg) (Z-Z¢)

are of the same order L<<1.
If we want to relate £ to D,, we use eq(3.17), noticing that,
because Z% is of order unity (as long as Z, is not close te 0 or 1),
its terms are of order

gfe , w/e? Dy )
respectively, if, for simplicity, we assume Ygg and Ypp to be of
order unity. We thus see that the convective term i1s, of order unity,
negligible when compared with the diffusion term, of order 1/4>>1,
that must be balanced by the reaction term. 5¢ that the value of &

given by - -
2 = [Dge #/RTe; 1/ (Linpin,) (3.25)

e"Ef’RTe I'lF'H'lO

must be small compared with unity, if we want the reaction zone to
be thin, and thereby the convective term to be negligible compared
with the diffusion term. Notice that this approximation is equiva-
lent to replacing the fransport operator nYpp+ Yp,, by (Z%)EYFZZ,
justified because the changes of Z% accross the reaction zone are
small. An additional simplification, wher solving eq. {3.17) in
the thin reaction zone, results from replacing the Arrhenius expo-
nential by exp(-E/RT,), when we notice that for large Damk&hler
numbers
(Te~T)/To A (q¥ppiepTel

is small, and then

exp(-E/RT) = exp(—E/RTe)exp[E(T—Te)/RTg} (3.26)

and the last factor can be replaced by I, if
(E/RTe)(qYFO/CpTe)g <1

Therefore, when this last relation holds, for large values,
according to eq{3.25), of the Damkdéhler numbers, the fuel concen-
tration in the thin flame is given by the equation

-5 T
B/RTe yDF yPo (3.27)
F 0
to be solved, together with second relation (3.24) and the boun-
dary conditions

(Z%)BYFZZ = Dye
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Yp > O for (Zo-Z)» o

Yo > O for (Z-Zg)»> @
We should however point out that if, for example 0<np<l, Yp comes
down to zeroc at a finite value of {Zg-Z), to be determined as

part of the solution. The deca{ to zero is exponential for nyp=1l,
and of the form (Ze—Z)"(2+ﬂo)/ ng=1}  for np>l.

(3.28)

The problem (3.27-28) can be recast in a universal form,
Lifian 1961, of the type

yIF(y-x)"e

XX T (3.29)
Yo = 0, (X
in terms of the variables
Y= Yp/Y, . K=(Z-Z M {Ypptigo/v) /Y, {3.30)

where Y., the characteristic value of Yp in the thin reaction
zone, is given by the relation

Y¥F+n°+l =(Z%)e(YF0+Y00/v)2 v "0 nzlexp(E/RT,)

and - » (3.31)
Yo/vYye = § - X, (T-Ted= q¥/Cpf -y+nX}

where
m = {1-Cp(Top-Trg) /a¥rn}/(1+¥gg FAS AP (3.32)

In the particular case when the reaction order is zero for
one of the reactants, the boundary conditions of eq(3.29) must be
modified. For example if n,=0, the oxidant concentration will come
down to zero at a finite value X5 of X, and the reaction term will
be zero for X>X,, where V-X = 0. Then the boundary conditien
(¥-X)w=0 must be reptaced by the conditions y-X=0 and yx=1 at X=X,
to be determined, as part of the solution, as a function of ng.

If np=1 the solution of eq(3.29) is of the form y=AexpX and
A 1/e results from the conditions AexpX,=X,=1. If np#l,

S = (2/¢gr) ViR /2y

FUE2 )L (X X0 (- D/ 2t )
with X5 given by Xg= {{np+l)/2} (nptl , to insure that §%=1

at X=X,. Notice that for np<l, y will be identically equal to
zero for X<X; when X{ is given by X,-X;= V2(ng+1)/{1l-np).

The solution of (3.29), then describes the concentration
and temperature profiles within the reaction zone if the Damkohier
number is sufficiently large so that Y./Ypp<<l. However, due to
the large values that the nondimensional activation energy

(E/RT) (q¥pp/CpTe) = Be (3.33)
takes in practical cases, the nondimensional temperature drop
E(TE-T)/RT% in the reaction zone, of the order of (Y./Ypgl)Be,
can become of order unity, and then the Arrhenius exponent can no
longer be evaluated at the temperature T,, but it should be calcu-
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lated using the Frank-Kamenetsktl approximation (3.26), when descri-
bing the structure of the thin reaction zone.

I11.4. Extinction regime

The extinction regime corresponds to large activation ener-
gies Ba??1, and precisely those Damddhier numbers that lead to
values of Y,/Ypq, calculated by (3.31), of the order 1/B,. This is
also the order of the thickness of the reaction zone relative to
that of the mixing layer.

Outside the reaction zone the reaction can be frozen due to
the rapidly decreasing values of the Arrhenius exponential when the
temperature drops. However, the temperature and concentrations are
still given there by the Burke-Schumann solution in first approxi-
mation. In the thin reaction zene, in first approximation, Yp, Yg
and T are given by the solution of

-E/RT, E(T-To}/RT2, np .n

(Z%)EYFZZ= D& / € @ ( e)/ e YFF YOO (3.34)
together with eq(3.24), and the boundary conditions

Ypz= O for (Ze-Z)*w i Ygz= 0 for (Z2-25)+= (3.35)
obtained from the matching conditions with the Burke-Schumann solu-
tion, or first approximation cf the outer solution.

The problem {(3.34-35) can be recast in a simpler form, similar te
(3.29), using variables of the type (3,30} with Y,.=Ypg/Be. That
is, if

y =(¥Yp/Ypg)Be . & =(Z-2.)(1+¥pp/vYpp)Be (3.36)

Then the problem (3.34-35) becomes
ver = se-ytmE JUF (y_ryPo (3.37)
ye =0 for £» -= yg 1 for g (3.38)

involving the parameters m, defined in (3.32), ng, ng and the
reduced Damkdhler number 4§, defined by

§ =(Zﬁz)eDme—E}RTe uno(YFDIBe)nF+n0_l (YF0+Y00/v)—2 (3.39)

of order unity in the extinction regime.

Notice that due to the presence of the Arrhenius variable
factor exp(-y+m&) in eq(3.37), the chemical reaction can be frozen
on one ox both sides of the thin reaction zone, and thus we must
use for eq(3.37) the boundary conditions (3.38), weaker than those
used for eq(3.29). We thus allow for leakage y., of the fuel, or
{y-£)e of the oxidizer through the reaction zone, due to quenching
of the chemical reaction in the extinction regime. Associated with
this leakage, we shall find concentrations of order 1/8, of the
fuel on the oxidant side of the flame, and similar concentrations
of oxldizer on the fuel side of the flame. The amount of reactants
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Yoo and (y-£), leaking through the reaction zone must be calculated
from the numerical solution of the problem (3.37-38) ; it is, for
given reaction orders n, and ng, a function of § and m.

In order to understand the reasons for finding reactant
leakage, notice that E(T-—Te)/RT2 = -y+mf, so that the temperature
decreases with a slope m on the oxidant side of the flame, and with
a slope (l-m} on the fuel side. It is then clear that we will not
find leakage of fuel if m is zero or negative, when no quenching
of the reaction takes place on the oxidant side ; no leakage of
oxidant will occur when m»l. The numerical solution of the problem
(3.37-38) can be found in LiWan 1974, for the case n,=np=1, where
(45)1/3(y-5/2) was used as dependent variable, (46)1?35/2 as inde-
pendent variable ; the solution was found in terms of d,= 48 for
several values of y=2m-1. When m belongs to the interval (0,1), two
solutions of the problem (3.37-38) exist for values of § larger
than an extinction value §p, a function of m for fixed values of
ng and np, and no solutions exist for §{8g. This is shown in
fig.IIT1.4 where (y-£}, 1is plotted in terms of & for several va-
lues of m, with ng=no=1. Fig.III.4 can also be used to calculate
the leakage of oxidant, for ny=ny=1 for the symmetrical case
when m lies in the interval {0.5<m<1}if m is replaced by l-m and
Ve by (y-£)y ¢

t
(48)Y 3(y-5),,
104
B
4 m=0.25
m=0
0.2 0.5 i A T
Figure 3.4
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A good correlation of the extinction Damkohler number in this case
was obtained by Liflan 1974, yielding

sp=Ce/ 2 {m-2m2+ 1.04m3+ 0.44m*} (3.40)
valid in the range 0<m<0.5 ; and also in the range 0.5m<l if m is
replace by l-m.

Of the two solution branches appearing in fig. 3 .4 only
the laower branch, showing smaller deviations from the B-S solu-
tien, can be expected to be stable. The structure of this solution
for large values of & takes a universal form given by eq(3.29),
where §=51/3y ,X =81/3¢ . the Arrhenius factor exp{-ytmE) =
expl6™173(-FmX)} does not deviate significantly from unity in
the reaction zone if &>>1. The upper branch shows stronger non-
equilibrium effects. For large values of 8§ the solution merges
if m takes values around ¢.5, with the solution corresponding to
an unstable partial burning regime, when both reactants cross the
thin reaction zone and coexist on both sides of the flame sheet.
It merges with a premixed flame regime when m or l-m are negative
or small (see Lifan 1974).

For small values of m, or of (i-m}, extiunctien conditions of
the diffusion flame occur with a premixed [lame regime. This can
be shown, using the eq(3.37-38) that describe the reaction zone
structure, as follows. We pose our problem as that of finding
4(b,m) thar leads to an oxidant leakage {y-£), =b/m with b of
arder unity and m<<l. Then we anticipate the following structure
of the reaction zone, shown schematically in fig., 3.5

I



There is a reaction zone, of thickness of order unity in
the £ variable, located around £= -b/m, where b of order unity,
is negative if m is negative. In this reaction zone y is of order
unity, to the right the reaction is frozen, and y tends to zero for
large values of -£. The solution will be written in the form of an
expansion in powers of m, using z=tf +b/m as independent variable.
In terms of ¢ eq(3.37) takes the form

Yop ® 5eb(b/m)M0e ™5 yOF {1im(y-z)/bi"e (3.41)
to be solved with the boundary conditions

yp =0 at g > - ; y-r =0 at g+ (3.42)
When we introduce in these equations the expansions

y = yo(g)+ m y(g)+...

n (3.43)
seb(b/m)0 = 6, [ l4md+... ]

where y,, yj, as well as §, and d, are assumed to be of order unity
for 7 of order unity, we obtain the equation

Yogg = Sovol e 7° (3.44)
and boundary conditions
¥o *0 for £+ -=, (y,-g)+0 for e (3.45)

identical to those that describe the reaction zone structure in a
premixed flame. Notice that y,,»0 for r»-« implies that also y, 0.
A first integral of (3.44) yieids, when using {(3.45)
2 = Yo ¥ ,TX dx
or 284 Io X e

-1
and then ¢ = 2I'(np+l), that provides in first approximation, for
small values of m, the relation

2 (np+l) 8ebP(b/m)™0 = 0 (3.16)
between § and b. The relation §(b) is single-valued, but the in-
verse relation b(48), determining the axidant leakage, b=m(y-£),,
in terms of &, although asingle-valued for m<0, is doubled valued
for m>0 if § is larger than an extinction value 6, as shown in
fig. 3.4 for small values of m. At the extinction value, the
Damkdhler number is given by

y

sg =(e m/ng)"O/2r, (3.47)
where T +1 is the gamma function of order nptl.
The equaglon giving the second term of the expansion (3.43) is
Y1gr=8ovare Oy (np/yomDHd+rngly,-t)/b) (3.48)
to be solved with the conditions y1,=0 for ¢+ -= and y3=0 for
g+~ . We notice that y,, satisfies the homogeneous part of this

equation. If we multiply both members of (3.48) by y,; we obtain
d/d - = ng_ ~Yo _
( / C)(yocylc yoac)’l) yocﬁoyo e {d+(,+n0(yo C)/b}

that we can integrate from -= to ®» to obtain
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dlppyy Hng/BITop o + a{l-ngy/b)=0 (3.49)

a relation determining the perturbation d in the DamkShler number
in terms of b. Here o is given by the integral

e, d

2y = X ;ﬁg¥i Ydx = f: (l-ygyddy, = r}no

is a function of n, that can be evaluated numerically without dif-
ficulties. If we are simply interested in calculating the new
extinction value of §, we do not need to evaluate this integral,
because d can be calculated using the first approximation for the
extinction value of b, namely b=n,, in (3.49). Then d= -(np+l) and
a two term expansion for the extinction value of the Damkdhler num-

ber is $g = {ZF“F+1 }_1(em/n0)n° {1-(np+l)m+. . .} (3.50}

Generalisation to other configurations and kinetic schemes

The analysis presented here was generalized to account
for variable gas density and realistic variations of traunsport
coefficients by Krishnamurthy et al,(1976), who consider a jet of
oxidizer flowing normal to a condensed fuel surface ; the vapori-
sation rate of the fuel is controlled in this case by the balance
between the heat feedback from the flame and the heat required for
gasification. Extinction experiments carried out with this config-
guration have heen used to obtain kinetic data for a variety of
fuels., See Williams 1981. The quasisteady spherically symmetrical
burning of a droplet was analysed by Law, 1975.

For a review of the use of the conserved scalar approach in
turbulent combustion see Bilger 1976. When the assumption of infi-
nitely fast chemistry is used together with the equi-diffusional
approximation, the concentration of the wmain reactants and radi-
cals as well as the temperature can be calculated in terms of the
local instantaneous mixture fraction, that can be described in
terms of its probability density function. When non-equilibrium
effects become important, in addition te the mixture fractiom, at
least another "progress" variable must he included in the formu-
lation. A presumed joint pdf for the conserved scalar and for the
temperature as a progress variable was used by Peters et al.(1981)
to derive a closed form expression for the mean turbulent reaction
rate in the limit of large activation energies, showing low quen-
ching would reduce the turbulent reaction rate.

Williams (1975) introduced the concept of laminar diffusion
flamelet in turbulent combustion showing how mixing and chemical
reaction occurs in thin regions that are wrinkled and strained by
the turbulent fluctuations, but show a structure similar to that
of the counter flow diffusion flames. For recent reviews on these
laminar flamelets in diffusion flames, see Peters and Williams
1981 and 1%83 and Peters 1983,
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For a review of the numerical analysis of diffusion flame
structure with multiple kinetics see Peters 1983, who also reviews
the work that has been carried out to analyse these flames using
agymptotic techniques. The use of these techniques is justified by
the fact that the characteristic reaction times asscciated with the
different reactions that enter into & reaction mechanism, differ
very often by many orders of magnitude. Thus it is possible to jus-
tify by means of asymptotic techniques the use of the "partial
equilibrium" assumption for some reactions, and the use of the
quasi-steady approximations for some of the radical species.

The first attempts to describe by means of asymptotic tech-
niques the diffusion flame structure with multiple kinetics were
those of Clarke 1968 and 1969, see also Clarke 1975 and Allison and
Clarke 1980, in connection with the Hydrogen-Air reaction. Melvin
and Moss 1970 analysed the structure of Methane-Air flames for
large Damkéhler numbers. An analysis of diffusion flames involving
a one-step forward and the backward reaction has been carried out
by Peters 1979. For a review of additional asymptotic analysis of
the structure and ignition processes of diffusion flames see
Buckmaster and Ludford 1982.
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