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Abstract. Combining activation energy asymptotics, suitable scalings and numerical methods, 
we study how flame-balls move under the action of the free convection that they themselves generate 
in the presence of a weak, uniform gravity field. Attention is focused on steady configurations (in 
a suitable reference frame), on an isolated flame-ball of size comparable to what is obtained in the 
absence of gravity, and on deficient reactants that are characterized by a low Lewis number. For 
the sake of simplicity, we consider an adiabatic combustion process, in the sense that the radiative 
exchanges are neglected. This work provides one with: 

(a) a description of the free-convection field around the flame-ball, along with an asymptotic 
estimate of the drift velocity; 

(b) a relationship between the flame-ball radius, strength of gravity and physico-chemical 
properties of the reactive premixture; 

(c) extinction conditions, caused by the net effect of heat extraction from the flame-ball to its 
surroundings by the free-convection field. 

Hints on generalizations currently under consideration are also given. 

1. Introduction 

The early experiments of Coward and Brinsley (1914) revealed that combustion of lean 
premixtures of such light fuels as hydrogen (H2) in air is very peculiar indeed, especially close 
to the flammability limits. Downward flame propagations cease to be viable when the mole 
fraction XH2 ofH2 drops below about 9 x 10-2 , whereas some significant 'upward' combustion 
activity persists until XH2 ;;;; 3.5 X 10-2 . The very form in which combustion manifests itself 
in the latter situation, namely a few globules or 'balls' moving upward instead of a continuous 
flame front, as well as later experiments with deuterium instead ofH2 (Clusius 1950), suggested 
that the high mobility of the limiting reactant is responsible for the aforementioned peculiarities 
(Zel'dovich 1944). Yet no mathematically self-consistent analysis ofthe motion of flame-balls 
in a prescribed gravity field has been offered to date:!:. Beside the difficulty of the required 
mathematical analysis, the lack of insight into the gravity/flammability-limit interactions 
possibly comes from the fact that gravity is not a parameter one can easily tune experimentally. 
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Figure 1. Sketch of the various zones involved in the studied configuration when Ze 
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This has changed recently, since experiments at reduced gravity have become feasible (Ronney 
et al 1998), e.g. during orbital flights. 

The present work offers the simplest mathematically consistent description of a single 
localized combustion spot (cf figure 1) of the flame-ball type (Zel'dovich et al 1985) that 
rises at constant velocity as a result of the free-convection flow field it itself generates when 
a uniform, weak gravity field acts on it. In addition to providing one with non-trivial results, 
the advantage of considering weak gravity fields is that they lead to scale separation between 
two main regions (figure 1), namely 

• A flame-ball region, dominated by chemistry and diffusive processes, and of size 
comparable to the flame-ball radius (rz) identified by Zel'dovich (1944); when evaluated 
in a frame attached to the ball, convection is insignificant there when gravity is small, and 
the combustion process is spherically symmetric up to the relevant leading orders. 

• A wider, nearly isothermal far field; its size (£/,) is determined by the rate at which 
the far field receives heat from the flame-ball and by gravity, through the requirement 
that conduction and buoyancy-induced convection balance one another. The shifts in 
temperature and reactant concentration the far-field flow induces about the flame-ball are 
small, 0(1/Ze), but non-negligible when the Zel'dovich number Ze is large (as is assumed 
here) and when a suitable distinguished limit between Ze and gravity (equation (3.5)) is 
considered. 

Handling both regions separately (analytically for the first one and numerically for the 
second) then invoking matching will ultimately yield the flame-ball size and its drift velocity 
as functions of gravity and mixture properties. For the sake of simplicity we only consider 



adiabatic configurations, in the sense that no volumetric heat-loss (e.g. radiant) term is 
accounted for in the energy balance, equation (2.2); admittedly this is an important limitation, 
which shall need be relaxed before comparisons with experiments are attempted. Studying the 
various roles of radiative exchanges will be contemplated in a forthcoming work. 

The present paper is organized as follows. In section 2, the mathematical model is defined. 
The Zel'dovich basic solution, its simple generalizations and the chosen ordering are then 
presented (section 3). The outer hydrodynamical problem is treated in section 4 and the flame-
ball radius, then its drift velocity, are determined in section 5. We offer concluding remarks 
in section 6. 

2. Mathematical model 

We envisage situations where the flame-ball rises through an infinite medium of density pu 

and temperature Tu, at a constant speed VD in a ground-based frame of reference. It is then 
appropriate to formulate the problem in a reference frame rising with the flame-ball, in which 
case the whole configuration may be considered as steady state. The continuity (2.1) and 
energy (2.2) equations, and the balance (2.3) for the deficient reactant, are then written as 
follows: 

V-(p«) = 0 (2.1) 

cpv • VT = V • (A.V7) + Qw (2.2) 

pV . Vy = V • (pDVy) - w (2.3) 

where p (mixture density), T (local temperature), v (mixture velocity vector), A. (heat 
conductivity), c (specific heat at constant pressure), D (diffusion coefficient of limiting 
reactant) and y (reactant mass fraction) have their standard meanings; for the sake of simplicity 
both A. (= ku) and pD will be considered to be constant; also, we shall neglect the changes 
in molar weight caused by non-uniform composition, and the approximation pT = puTu is 
adopted for the small-Mach-number flows we study here. Q denotes the heat of reaction per 
unit mass of deficient reactant, and w represents the rate at which the latter is consumed. In 
equations (2.1)—(2.3) we explicitly make the assumption that the combustion process under 
consideration is modelled by an irreversible reaction 'fuel —*• products + heat'. The reaction 
rate w is selected to be of Arrhenius type: 

w = pye~Ta/T/tc (2.4) 

where Ta is the activation temperature and tc stands for a reference 'collision' time. 
The velocity v relative to the flame-ball involved in (2.1)-(2.3) follows from the steady, 

variable-density version of the Navier-Stokes equations, namely 

p(vV) • v = -Vp +1¿„V2v - (p - pu)g ex. (2.5) 

In equation (2.5) p represents the pressure changes due to flow motion (the ambient hydrostatic 
contribution corresponding to p = pu has been subtracted); pu is the ordinary viscosity of the 
fresh medium; g > 0 denotes the acceleration of gravity and ex is the unit vector in the 'up' 
direction defined by it. Because equation (2.5) is to be effectively used in regions where the 
temperature (and hence density) is nearly uniform, /¿M was assumed to be constant in (2.5). 

The boundary conditions associated with (2.1)-(2.3) require that 

T -+ Tu y^yu (2.6) 

at large enough distances (r — \r\ -*• oo) from the combustion spot. As for the velocity field 
v, we require that 

v -*• w(oo) = — voex for r -*• oo (2.7) 



at least if r lies outside of the wake (figure 1) which the ascending flame-ball leaves behind; 
how to handle the wake itself will be explained in section 4. As expressed in (2.7) the flame-ball 
drifts upward, with a velocity vu > 0 which is as yet unknown and constitutes an eigenvalue 
of the problem at hand. Its value is to be fixed by the condition that the flame-ball would 
be dragged by the flow. In other words, the flame-ball and the flow locally have a vanishing 
relative velocity; as shown later on, this effectively imposes that 

v(r = 0) = 0 (2.8) 

or, better, that v(r = 0(rF)) is negligible compared to the typical, 0(vD), velocities prevailing 
in the region where (2.1) and (2.5) must be accounted for to leading order (see section 6). 

Our task from now on is to compute the profiles of T, y, v (including VD) and to determine 
the conditions under which equations (2.1)-(2.8) have solutions. 

3. Zel'dovich solution; orders of magnitude 

In the absence of any convection (g = 0, v = 0) equations (2.1)—(2.3) possess spherically 
symmetric, 'Zel'dovich' solutions for which T, y, p ~ \/T only depend on the distance (r) 
from the origin r = 0. These so-called flame-balls (Zel'dovich 1944) admit the first integral 
T + Qy/c Le = constant, where Le = X/pcD is the Lewis number of the deficient reactant. 
Once the above integration constant (= Tu + Qyu/c Le) is evaluated far from the flame-ball 
where T = Tu, y = yu, setting y = 0 in the first-integral defines the reference reaction 
temperature 

T* = Tu + (Tb - Tu)/Le (3.1) 

where Tb = Tu + Qyu/c represents the temperature attained at the burned side of a flat flame 
propagating in a fresh medium characterized by T = Tu, y = yu. Such highly mobile deficient 
reactants as H2 have Le < 1 and hence T*> Tb. 

In the limit of large Zel'dovich numbers, Ze = Ta(J* — Tu)/T* -*• 00, the chemical 
term it; featured in (2.2) and (2.3) is non-negligible only in a thin shell which is spherical when 
v = 0, of radius rz, and has a thickness O (rz/Ze). Standard asymptotic methods (Buckmaster 
and Ludford 1982) yield the leading-order result (Joulin 1985) 

r\ = \D{TR) tce
T°IT«{Ta(Tb - Tu)/T%)2 (3.2) 

with, here, TR = T*. If the values of T and y far from the flame-ball are shifted by ST^ and 
ájoo from their nominal values Tu and y„, equation (3.1) predicts a shift in reaction temperature 
TR - r * =STR given by 

STR = 8TX + (r , - Tu)Syx/yu. (3.3) 

The corresponding change in flame-ball radius is from rz to rF, with 

rF ( Ta8TR\ 

to leading order in the limit Ze —> 00. 
Interestingly enough, deriving the above results (3.1)-(3.4) only required that the flame 

structure at the scale r = 0( r z ) be considered as steady and convection-free up to 0(Ze - 2 ) 
and also that the fields of y and T at r ^> rF be isotropic to the same accuracy. Accordingly, 
equations (3.3) and (3.4) will still hold when the above evoked 57^ and by^ result from 
unsteady and/or convective phenomena that happen to be non-negligible only when r ^> rF = 
0( r z ) , and provided the aforementioned condition of isotropy is fulfilled. This has been 
exploited previously to set up simple models of flame initiation by a heat source (Joulin 1985) 



or to study the response of flame-balls to velocity gradients and volumetric heat losses (see 
Buckmaster and Joulin 1991 and references therein). The same approach is adopted here, 
SToo and Syoo are now due to the free-convection field which the flame-ball itself generates at 
r » rF when g is small but non-zero. 

The constraint that áT^/ T* and &yoo/yu be 0(1/Ze), as required by (3.4) for rF/rz to be 
0(1) when Ze —>• oo, puts bounds on the intensity of gravity. As shown in the next section 
this will require that 

grz/(k/puc)2 ~ Ze~2. (3.5) 

The quantity on the left-hand side of (3.5) is a Grashof number based upon g, rz and thermal 
diffusivity (X/puc). The condition (3.5) will imply that the length scale (ih) over which 
convection becomes important satisfies 

lh~Zerz (3.6) 

thereby ensuring scale separation between the flame-ball and the surrounding hydrodynamical 
field. 

Before moving to the hydrodynamical scale proper, a remark is in order: provided 
¿Too <£ r»,(5;yoo <íí yu and the flame-ball structure corresponding to r = 0 ( r z ) may effectively 
be considered as spherically symmetric (up to 0(Ze~2) corrections), the profiles of T and y 
prevailing for r > rF will satisfy 

T -Tu = (T,-Tu)rF/r + STco + ---

y = yu0-rF/r)+8yao + ---

when rz <£ r <£ 0(Ze rz). In other words, the flame-ball structure evaluated in terms of the 
physics pertaining to the length scale r = 0(rF) acts (in a first approximation) as a point-source 
of heat and a point sink of reactant when seen from a distance r ^> rF. The corresponding 
strengths are q = AnXrpiT* — Tu) and —AnyupDrF, respectively. The as yet unknown ST^ 
and ¿¡joo will be determined by analysing the hydrodynamical region (r = 0(£/,)), through a 
two-term matching with (3.7). 

4. Hydrodynamical problem 

As mentioned above, the flame-ball, of as yet unknown radius rF, acts at a point source/sink 
of heat/reactant when seen from a distance r ^> rz. To compute rF/rz from (3.4), four main 
problems need to be elucidated: (a) find the length, velocity, temperature and mass-fraction 
scales corresponding to the region where convection is significant; (b) check that v is indeed 
negligible when r = 0( r z ) as well as the legitimacy of (2.8); (c) solve (2.2) and (2.5) for T, 
y, v in the hydrodynamic zone surrounding the flame-ball, with the apparent shifts ST^ and 
áyoo in 'ambient' conditions as by-products; (d) plug the results into (3.4) and find rF itself, 
along with VD-

4.1. Scales 

As first shown by Zel'dovich (1937), and more recently exploited by Kurdyumov and Liñán 
(1999) (see also Hieber and Gebhart 1969), the typical length scale (€/,), velocity scale (vh) 
and temperature variations (7), — Tu) pertaining to the free-convection field around a point heat 
source of given power q are determined by the requirements that heat conduction, inertia and 
buoyancy would balance one another. Accordingly, one requires that 

(Th/Tu-l)gih~vl vhlh~\u/puc (Th - Tu)kuih ~ q (4.1) 



which yields (with Dth = K/puc) 

¿h = (D2
hkuTu/qg)V2 Vh = {qg/KTU)111 Th - Tu = (q3g/TuD

2
hkl)l/2. (4.2) 

Reactant diffusion balances convection over the scales defined by (4.2). One can next determine 
a typical far-field reactant mass fraction yh — yu ~ yurz/ih, once an order-of-magnitude 
matching with (3.7) is accounted for. We shall define yh by 

yh~yu= 47iLeyurF/lh. (4.3) 

As for the value of q itself, equation (3.7) implies 

q = 47ikurF(T* - Tu). (4.4) 

4.2. Velocity on the 0(rz) length scale 

As is to be found in the next subsection, the following estimate: 

v < 0{vhr/lh) (4.5) 

holds when the hydrodynamical field corresponding to r = 0{lh) is specialized to rjlh <C 1. 
An estimate of v for r = O(rz) is then given (on the grounds of matching) by v ~ u/,rz/£¿;this 
is 0(Ze~2(k/pc)/rz) if (3.5) holds, in which case convection is negligible at the flame-ball 
scale, as assumed to derive (3.4). The problem of isotropy is to be handled below. 

4.3. Free-convection field 

To analyse the flow field on the scales defined by (4.2) and (4.3), we introduce the reduced 
dependent and independent variables 

V = v/vh R = r/ih (4.6) 

(T-Tu) = (Th-Tu)@+-- y-yu = -(yh-yu)Y + --- (4.7) 

P = Pu + • • • (4-8) 

which transform the chemistry-free forms of (2.1)—(2.3) and (2.5) into 

V • (V) = 0 (4.9) 

V- V 0 = V 2 0 + á(ü) (4.10) 

V-VY = V2Y/Le + S(R) (4.11) 
{V • V)V = - V P + P rV

2V + eJt© (4.12) 

where the differential operators now refer to the reduced coordinates and Pr = i¿uc/Xu is the 
far-field Prandtl number. P represents p in units of pu v\. Equations (4.9)-(4.12) are nonlinear 
Boussinesq equations; no buoyancy caused by changes in composition appears, as we chose 
pT = puTu as the equation of state. The boundary conditions associated with (4.9)-(4.12) 
include 

0 - + O F - + 0 and V+ VDex ^ 0 for R - • oo (4.13) 

with VD = vD/vh, as follows from (2.6); actually the last condition in (4.13) only holds outside 
of a slender wake, as explained later on. Due to the presence of concentrated sources in (4.10) 
and (4.11), the functions © and Y diverge as R —> 0 and to facilitate the numerical resolution, 
their local behaviour is needed. A coordinate expansion reveals that, provided V(0) satisfies 
(2.8) (see also (4.23)), 0 and Y behave as followsf for R = | ü | - • 0: 

®=T^B:+B(1) + 0(R) Y = - ^ - + B(Le)+0(R). (4.14) 
4JT\R\ 4n\R\ 

t Otherwise the additional terms V(0) • ex cos i?/87T and V(0) • ex cos üLe/Sir would appear in the right-hand sides. 



B(l) and B{Lé) are as yet unknown numbers, to be determined from the numerical resolution 
of (4.8)-(4.11). Since the first terms in the right-hand sides of (4.14) are sufficient to specify 
®(R) and Y(R), it is enough to require that 

AnR2— = - 1 4KR2— = -Le at R -* 0 (4.14') 
dR dR 

which does not depend on B(l), B(Le). In the numerics, this was imposed at the surface of 
a small sphere centred at R = 0 and with a radius /?_ of O(10 -3); allowing /?_ to be smaller 
did not modify our results significantly. The unknown B{\) and B(Le) defined by (4.14) 
will follow as byproducts once (4.9)-(4.13) are solved. Because B(l) and B(Le) effectively 
represent the apparent shifts in temperature and reactant mass fraction which the flame located 
at \r\ <?C lh can feel, a two-term matching between (4.14) and (3.7) will yield Sy^ and ¿T^ in 
terms of rF, thereby enabling one to close (3.3) and (3.4). 

Concerning the velocity field V(R) one must note that the condition V(oo) = — exVD 

implied by (2.8) is not accurate enough a boundary condition at R ^> 1 in the limit £¡,/rz —> oo, 
due to the presence of a wake (figure 1) which renders the limit non-uniform. As shown by 
Kurdyumov and Liñán (1999), a special treatment is needed to handle the wake and the potential 
flow surrounding it when R *$> 1 • Following their analysis we introduce spherical coordinatest 
(•&, R) whose axis coincides with ex (figure 1), and a stream function i/r such that 

1 df - 1 dú 
v» = -^—^~; (4.15) R2sm&d& Rsin&dR 

where VR and V$ represent the radial and the azimuthal components of V, respectively. The 
wake corresponds to R » 1 and to n — # = 0(R~1^2). Following the aforementioned work 
one seeks the solution profiles inside the wake in the self-similar form 

f = RF(<;) 0 = / r 1 r ( £ ) (4.16) 

with £ = R1/2(it — &). To leading order in the limit R -» oo, f fixed, the unknown functions 
F(-), T(-) satisfy 

K(H"4(H>-KH' (4.17) 

£ r ' = FT 

for t, > 0, with (•)' = d(-)/df. F and T ought to fulfil the boundary conditions 

-a')' at £ = 0 
(4.18) 

F + \V&2 -> Foo T = 0 at f = o o 

where FQO is an as yet unknown constant, together with the integral constraint 
/»oo 

In / F'Tdt; = - 1 . (4.19) 
Jo 

The latter states that the heat convected in the wake is what is released at R = 0 by the 
flame-ball. 

The resolution (numerical in general) of (4.17)-(4.19) determines F^ as a function 
FOO(VD) of Pr and of the presumed VD = Vo/vh- Outside the wake and for R » 1 the 
flow is potential and may be shown to satisfy (see, e.g., Schneider 1981) 

f = -\R2VD sin2 & + i/?(l - cos??) FociVo). (4.20) 

t The cyclic coordinate is omitted in the following, owing to the axial symmetry of the process at hand. 



To solve equations (4.9)-(4.14') for 0 ^ & < n we formulated them in terms of the stream 
function \fr and vorticity. In addition to the vanishing of 0 , Y and vorticity, the above expression 
of xjs was that used as the boundary condition at the surface of a large sphere centred at R = 0 
(with a radius R+ of a few 102, typically) except in a small angular sector (TT — # ^ a/R+ , 
a = 0(8)) containing the wake; there, Neumann conditions on 0 , Y, difr/dR and vorticity 
were employed instead. For each presumed VD, equations (4.6)-(4.14) could then be solved 
numerically; after use of log R as a radial coordinate in lieu of R to concentrate nodes about 
/? = 0, the method combined three-point central finite differences and an implicit pseudo-time 
approach as to achieve convergence to the steady solutions. One may note that the finite-
difference integration again computes the wake structure, which might seem unnecessary at first 
glance since it was already known from (4.17)-(4.19). In addition to avoiding any mismatch 
between wake and surroundings, this strategy has the virtue of borrowing the asymptotic stream 
function (4.20) from an independent calculation (equations (4.16)-(4.19)); this allows us to 
suppress the spurious, /independent large-scale vortices that would appear if the uniform-flow 
stream function (— VD sin2 $R2¡2) had been used at R = R+ instead of (4.20). 

4.4. Main results from the numerics 

As shown in figure 2, only one VD allows the condition V(0) = 0 to be met. For the Prandtl 
number Pr = 0.72 we selected here, this scaled drift velocity is 

VD = 0 . 4 3 2 . . . (4.21) 

and the value of F ^ in (4.18) and (4.20) is then 2.49; the associated temperature and radial 
velocity profiles across the wake are plotted in figure 3. 

The corresponding streamlines and the velocity along the symmetry axis are shown in 
figures 4 and 5, respectively: V • ex is everywhere negative along the symmetry axis, except 
at R = 0 where it vanishes. For future reference one notes that, once the condition V(0) = 0 
is fulfilled, the approximation 

* — ^ • O W ) (4.22, 

is found by a coordinate expansion to hold about R = 0, whereby the velocity components 
locally read 

R cos ü 3R sin & 

167T/V ilTtPr 

Actually, this behaviour extends rather far (figure 5). 
Processing the 0 profile near the origin of far-field coordinates gave the pure number 

B(l) defined in (4.14), namely B(l) = -0.54 x 10~2 for Pr = 0.72. Doing the same with 
Y(R —> 0) yielded B{Le), and repeating this for different Le led to the results plotted as 
symbols in figure 6. On the basis of arguments summarized in the appendix, we suggested that 

B(Le) = B(l)Le2(k + (1 - fc) Le)~l/2 (4.24) 

could constitute a satisfactory interpolation if the free parameter k > 0 is suitably selected; as 
shown in figure 6 this is quite true, indeed, provided k = 0.34 for Pr = 0.72. It is important 
to notice that \B{Le)\/Le < \B(l)\ if Le < 1, implying a stronger influence of convection on 
temperature than on the mass fraction of a highly mobile fuel, as it should be. 
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5. Flame-ball radius and drift velocity 

A two-term matching between (4.14) and (3.7) readily yields 

8Tx = B(l)^(T*-Tu)UnrF(J^r^)g\ <0 
1/2 

B(Le) 4nrF ( (T*-Tu\ \
1 / 2 

°>oo=:———Tr-yu^'py——Jsj >o 

(5.1) 

B(l)-

Le Dth 

once the definitions (4.2) and (4.3) of (Th - Tu) and (yh — yu) are made use of, whereby (3.3) 
leads to 

B(Le)\A7trFT,-Tu(A {T*-T\ \ 1 / 2 

-Tr) i ^ — l 4 * H — ) * ) • (5-2) 
One may note that S TR is negative if Le < 1, and is isotropic (i.e. angle independent) to leading 
order, despite the anisotropic flow field surrounding the flame-ball; this can be traced backf to 
the fact that \V(R)\ is bounded by O(R) as R ->• 0 (see equation (4.23)). Requiring 8TR/T* 
to be 0(l/Ze), so as to have rF = 0(rz), led to the anticipated distinguished limit (3.5). 

It is now a simple matter to combine (3.4) and (5.2) into a closed equation for the scaled 
flame-ball radius ÍR = rF/rz, namely 

ÍH = exp(G1/2ÍH3/2) (5.3) 

in which the scaled Grashof number G reads as 
/ \ 2, ry> rrr 

G = \Ze27ib(Le)^-\ Aitrz-^^g (5.4) 

t Private communication from J Velazquez and M Herrero, Complutense Univ., Madrid. 
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Figure 7. Reduced flame-ball radius 9Í = rF/rz versus the Grashof number G defined by 
equation (5.4). 

and measures the intensity of gravity; in (5.4), Ze = Ta (T* — Tu)/ T2 and the positive function 
b(Le) = -5(1)(1 - B(Le)/Le B(l)) is available, e.g. from (4.24) or figure 6. 

The predicted (9t, G) curve is plotted in figure 7. It resembles what was obtained 
when studying the influence of volumetric losses (8TR ~ — 9t2 or ~ —SK; Buckmaster et al 
1990, 1991) or prescribed ambient velocity gradients (STR ~ —91, Buckmaster and Joulin 
1991). In mathematical terms this is so because the reaction-temperature drop again increases 
algebraically with 9t, whereas (3.4) involves an exponential (any rapidly varying convex 
function of STR would also do). In fact, both (5.3) and the response to prescribed velocity 
gradients may be written as 9t = exp(|y|9i), where y2 measures the actual velocity gradients 
experienced by the flame-ball. 

Here, steady solutions exist only when G ^ Gcr¡, = (2/3e)2, and the value D\cr¡, 
of fH associated with Gcrit is e2/3. The branch 9t < $Hcrii is believed to be unstable, 
since the Zel'dovich solution 9Í — 1 is, and because the turning point at (ÍHcní, GOT/) is 
compatible with marginal stability: for G —> Gcr¡, — 0 the then infinitesimal difference 
between the two steady solution profiles is a solution to the linearized conservation equations 
and provides one with a neutral eigenmode. A proof that the steady solutions corresponding 
to ÍH > 9icri, (SH < 'OKcrit) are stable (unstable) against small changes in in would require 
solving a linearized version of (4.9)-(4.14') at the hydrodynamical scale r — 0(£/,), because 
such processes are known (Buckmaster et al 1990, 1991, Joulin 1985) to spontaneously 
evolve on the time scale t = 0(Ze2r2

7/Dtfl) = Oil^/Dth)- Even though the associated 
flame-ball evolution is quasi-steady, the resulting full coupling between unsteadiness and free 
convection in the far field to date precluded any resolution of this aspect of the stability 
problem. 

Concerning the flame-ball stability against deformations of the reactive layer, the situation 
is likely to be simpler. Indeed, the adequate time scale is then t = 0(Zer2

F/D,h). 



Accordingly, the temperature and mass-fraction disturbances have an 0(rF Zei/2) range, which 
is asymptotically intermediate between rF and £/, — 0(Ze rF) and allows us to employ (4.23) 
to describe the unperturbed flow field locally. The resulting mathematical stability problem is 
then analogous to that encountered when handling flame-balls subjected to velocity gradients 
(Buckmaster and Joulin 1991), where the unperturbed velocity field had no direct influence on 
the growth/decay rates (only an indirect one, via the steady value of 9i). One may thus surmise 
that no three-dimensional flame-ball instability will show up here, because no volumetric 
heat-loss term acts inside the flame-ball (see the above references). 

At criticality, g = gcrit satisfies 

gcritrz 7 2 ** u 

uth lu 9e2i67T*b2(Le) 
(5.5) 

to be compared with (3.5). For 7* = 5TU, Ze = 10, he = 0.3 (b(Le) = 3 x 10~3), 
Dth = 10~5 m2 s"1 andt rz = 10~3 m this is gcrit = 3.4 x 10~3 m s"2, a value to be 
discussed later. 

As for the drift velocity vD, the definitions (4.2) and (4.6) of vh and V imply 

vD = Vo^nrz^^yj^ - VD^gAnrF(^^j12 VD = 0.432. 

(5.6) 

Such a (i>o, rF) relationship is similar to that proposed by Ronney et al (1998). 
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Figure 8. Variations of the reduced drift velocity W (equation (5.8)) with scaled gravity G 
(equation (5.4)), as implied by (5.7). 

t In the absence of gravity, but with volumetric heat losses included (Buckmaster et al 1990,1991) rp should exceed 
rp-e1'2 for stability reasons, and rz may be noticeably smaller than the observed rp (0.5 cm, typically); hence our 
guess on rz • 



Once combined, equations (5.3) and (5.6) yield a drift velocity versus gravity curve in 
parametric form 

W = QogVl)/Vl G = (log9\)2/m3 (5.7) 

in which the Peclet number W reads as 
Vr>r7 litbihe) 

W = -Z-Z-Ze-—-—- VD = 0.432. (5.8) 
Dth VD 

W is plotted as a function of G in figure 8; it is seen to have a maximum Wm = e~l when 
9t = <Rm = e > e2'3 and G = Gm = e'3 < (2/3e)2. For r* = 5TU, Ze = 10, Le = 0.3 
(b{Le) = 3 x 10~3), Dth — 10~5 m2 s - 1 and rz = 10~3 m, one has vm = max(uo) 
= 8 x 10~3 m s_1, a value also to be discussed later. 

6. Discussion 

To close the above analysis we explicitly made use of (2.8), i.e. that the flame-ball would 
be dragged by the flow it itself generates in the presence of gravity. As aptly pointed out 
recently by Buckmaster and Ronney (1999), a flame-ball subjected to an ambient gradient of 
(T + Qy/cLe) acquires a propagation velocity (vF, say) relative to the gas, which is given by 

vF^~V(T+Qy/cLe) (6.1) 
^* 

at least if small enough. In the present situation, the gradient of(T + Qy/cLe) results from the 
outer, free-convection field and from the different ways temperature and reactant mass fraction 
react to it. The gradient involved in (6.1) may then be estimated (from equation (4.14)) as 
0((7* - Tu)/lh), leading to 

vF Th-Tu logiH 
— 7f ^— (6-2) 
vD 7; Ze 

which is negligible as Ze —> oo whenever logiH = O(l), as is assumed here. Even if vF 

is negligible, the flame-ball might rise relative to its immediate environment (in the same 
way as a gas bubble does in a denser liquid), because the pressure gradients induced at the 
r = 0(rF) scale by buoyancy and O(l) density changes need be compensated. The resulting 
'Archimedean' velocity, vA say, caused by local buoyancy can be estimated from the low-
Reynolds-number approximation of (2.5). This yields (p — pu)g ~ ^uVA¡rF, then 

vA^GÍR3£h logiH 
% —— % —; (6.3) 

VD Ze1 rF Ze 
once (5.3) has been made use of. Accordingly vA ~ vF <g; VD, equation (2.8) was legitimate 
and our analysis is self-consistent. 

It is now appropriate to comment on the numerical values of gcrn and vm = max(uD) 
obtained in section 5, which are very small indeed for rz % 10~3 m. Admittedly we assumed 
constant X and pD, whereas the heat conductivity of gases noticeably increases with T, so 
that our estimates might be too crude. However, one can show that employing a non-constant 
X(T) (Le being kept fixed) would not modify (3.4) and would merely endow the definitions 
(5.4) and (5.8) of G and W with the extra factors (A./A.,,)3 and (X/A.„), respectively, where 

k= f 'k(T)dT/(T,-Tu) (6.4) 

is an average conductivity (A, > Xu). Accordingly, gcrit and vm would be still lower than 
previously estimated. 



The value rz ~ 10~J m we chose as a numerical example could be an overestimate, in 
which case gcrit ~ r^3 and vm ~ r^ ' would have been underestimated; unless this is true it is 
difficult to understand from the present self-consistent analysis how flame-balls of some sort 
could resist gravity fields that are not exceedingly small compared to the terrestrial one. 

The above remarks suggest that our present analysis does not cover the entire response 
properties of localized combustion spots to gravity fields. This can even be detected from 
the above estimates. When rF{Th — Tu)/T*£h becomes of the order of Ze - 1 , i.e. for 
logiH = 0(Ze1 / 2), the variations in temperature, which the non-vanishing V(T + Qy/cLe) 
caused by natural convection induces along the reaction zone (where y = 0), are strong 
enough to spoil the latter's spherical symmetry. In such circumstances vp/vp and hence V¿/VD 

would still be small (0(Ze~1/2)), yet only moderately small, unfortunately, for Ze = O(10); 
v(r = 0(rF))rF/D,i, = 0(Ze~l) would be non-negligible, because convection would then 
induce yet another small asymmetry between T — Tu and (y — yu)/Le, thereby further affecting 
8TR and hence the flame shape. Scale separation would still hold (rF = £h = 0(Ze - 1 / 2)) , 
as well as (2.8), but the free-boundary problem at the r = 0(rF) scale is certainly rather 
difficult to tackle. Unfortunately, solving it is likely to be one of the necessary steps needed to 
understand how the regimes we have studied here can be continuously linked to those pertaining 
to near-limit flames at Earth gravity. 

As another extension of the present analysis, one might also think of alluding to radiant 
volumetric heat losses, which will tend to lower TR (thereby increasing rF and its equivalent 
source strength q) and if they happen to have a range comparable to €/¡, these will also shorten 
the effective range of thermal effects (hence lowering the overall influence of gravity at fixed q). 
This competition is the subject of current works, which are undoubtedly prerequisites before 
any serious comparison with experiments is attempted, especially in near-limit conditions. 
In such situations chemical-kinetic effects would also be important and the scale-separation 
t-h » rF for Ze ;» 1 will greatly help incorporate them: the flame-ball structure corresponding 
to rF = 0( r z ) can indeed be worked out independently of the hydrodynamical problem, even 
if a detailed chemical scheme is adopted. 
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Appendix A. On the choice of formula (4.24) 

Using R = £/VTe and Y — Le2¡3^ in equations (4.11)-(4.14) converts them into 

*JTeV{ilJ~Le, ü) • Vc* = V|«I> 
1 B(Le) (A.l) 

*(oo,#) = 0 * ( § _ i . o , 0 ) = — + - ^ + ---. 
4JT£ Le5'1 

The limit Le -> oo allows one to employ the local form (4.23) of V, whereby (A.l) and its 
solution subject to 4JT^ *(£ ->• 0, #) = 1 become parameter free; therefore B(Le)/Le3/2 

should then be a pure number, and B(Le -*• oo) ~ Le3/1. Actually (4.23) holds over a rather 



wide zone (figure 5), suggesting that the above asymptotic behaviour of B(Le) could be valid 
down to moderate arguments, hopefully for Le < 1. 

If Le -> 0, rewriting (4.11)-(4.14) and Y as 

Y = Le<p V2<p = LeV -Vip 
1 B(Le) (A.2) 

4TVR Le 

shows that B(Le)/Le, which results from convection and hence from the right-hand side of 
the balance for <p, should be O(Le) as Le <£ 1; hence B(Le -»• 0) ~ Le2. 

Equation (4.24) is compatible with the above limiting behaviours and is correct for Le = 1. 
k = 0.34 for Pr = 0.72 was selected to ensure a best fit. 


