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The early history of a carbon particle is studied as it is suddenly injected into a hot oxidizing atmosphere. In this early 
phase, a high Reynolds number approach is appropriate. Five stages characterize the processes: (I) inert stage, (2) 
transition stage (ignition of the heterogeneous reaction), (3) heterogeneous diffusion controlled stage, (4) 
homogeneous ignition, and (5) overall diffusion-controlled stage. In this last stage, the surface temperature and the 
regression rate reach the final equilibrium values. Using correlations for the quasi-steady gas-phase response and 
Green's function for the solid phase, the evolution of the surface temperature as well the regression rate are obtained. 

NOMENCLATURE 

Cs specific heat of the solid 
Cp specific heat at constant pressure of the 

gas 
D; diffusion coefficient of species i 
Eh activation energy of the homogeneous 

reaction 
El, Err activation energies of the heterogeneous 

reactions 
f nondimensional stream function defined 

in Eq. 22 
J utao 3 Pr .[R/Cp-y.J(XPaof.l,aoUao 
f nondimensional stream function defined 

in Eq. 22 
k preexponential factor of the homogene­

ous reaction 
rh mass flow rate at the carbon surface 
M nondimensional mass flow rate at the 

surface defined in Eq. 27 
Pr Prandtl number, Pr = f.l,Cp/A 
Q heat of reaction of the homogeneous 

R 
Sc; 

t 
to 
t 
Uao 
u, v 

W; 
x,Y 

reaction per unit mass of CO consumed 
heat of reaction of the heterogeneous 
reactions per unit mass of carbon con­
sumed 
external heat flux 
reaction rates of the heterogeneous reac­
tions given by Eqs. 16 and 17 
particle radius 
Schmidt number of species i, Sc; f.l,/ 
pD; 
time 
initial temperature of the particle 
temperature 
free-stream velocity 
Cartesian components of the gas velocity 
on x and y, respectively 
consumption rate of species i per unit 
volume and time 
molecular weight of species i 
Cartesian coordinates with x following 
the particle surface 
regression rate of the carbon surface 



Y; mass concentration of species in the 
mixture 

Greek Symbols 

P 

l' 

gas density 
nondimensional parameter, l' 
1'0)/1'00 

Tf nondimensional normal coordinate de­
fined in Eq. 22 

~ nondimensional coordinate introduced in 
Eq. 27 

A coefficient of thermal conductivity 
p. coefficient of viscosity 
P; stoichiometric coefficient of species i in 

the homogeneous reaction 
'" stream function 
Cl nondimensional longitudinal coordinate 

introduced in Eq. 21 
Cl Stefan-Boltzmann constant 
8 nondimensional temperature defined as 

8 = (Too - 1')/(1'00 - To) 
T nondimensional time defined in Eq. 29 

Subscripts 

s solid 
w carbon surface 
o initial conditions for the carbon particle 
00 free stream 

INTRODUCTION 

The study of carbon combustion has received 
special attention in the literature in the past. 
Several flow geometries have been selected in 
order to study the interaction between fluid me­
chanics and homogeneous and heterogeneous ki­
netics. There are two basic trends regarding the 
fluid mechanical aspect of the flow considered. 
One is to assume that the carbon particle is in a 
quiescent oxidizer gas [1-8]. Ubhayakar [1] stud­
ied the quasi-steady burning and extinction of 
spherical carbon particles. Libby et al. [2,3,5,6] 
analyzed the steady-state and transient combustion 
of carbon particles suddenly immersed in a hot 
oxidizing ambient. The effect of water vapor 

content was also evaluated [5]. Kassoy and Libby 
[6] used asymptotic methods for high Zeldovich 
numbers of the heterogeneous reaction for the 
study of the entire history of a carbon particle. 
They analyzed different regimes and compared 
them with the numerical solution of the governing 
equations. The critical conditions needed to obtain 
vigorous heterogeneous combustion have been 
obtained [8] and the particle lifetime was deduced 
for both subcritical and supercritical behavior. 
The other flow geometries selected are those of the 
boundary layer in stagnation and flat plate flows 
[9-14]. Matsui et al. [9] made an experiment to 
study the influence of the characteristics of the 
flow on the rate of consumption in a well-defined 
field. They measured the combustion rate of a 
carbon test specimen in a stagnation-point flow 
field, which can be described by the velocity 
gradient. In other experimental study, Matsui et 
al. [11] investigated the influence of humidity in 
the flow on the combustion rate. Adomeit et al. 
[12] made a theoretical study on the stagnation 
point flow configuration for comparison with the 
experimental data obtained by Matsui et al. [9, 
11]. They concluded that the combustion behavior 
of solid carbon cannot be described by the limiting 
cases. Adomeit and Visser [13] made a very 
careful experiment, burning carbon in a stagna­
tion-point flow. The dependence of the various 
physicochemical parameters on the combustion 
process was obtained. 

The objective of the present work is to study the 
transient behavior of a carbon particle exposed to a 
stagnation-point boundary layer flow for large 
Reynolds number based on the particle radius, 
using asymptotic methods based on large Zel­
dovich numbers for both homogeneous and hetero­
geneous reactions. 

FORMULATION 

We consider a carbon particle of radius R sub­
jected to a convective flow of an oxidant (air). If 
we consider cases where the Reynolds number 
based on R and the free stream is large-that is, 
the boundary layer thickness is very small com­
pared with the particle radius-the boundary layer 
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governing equations are given by 

d d 
— ppu) + —(p„) = 0 

du du d ( du\ dux 

pu \-pv— = — I / i — 1+Pco/ioo 
ox dy dy \ dy / ax 

dT dT d f d T\ 

puCp-+pvCp- = -[X-J + wQ 

d Y i dYj d / dY¡ \ 

ox oy ay\ oy J 

/ = 1, • • •, N, 

(1) 

(2) 

(3) 

(4) 

where the notation is explained in the Nomencla­
tura section. The boundary layer coordinates are x 
and y, corresponding to the longitudinal coordi­
nate following the surface of the particle and the 
transverse coordinate, respectively. The origin is 
located in the stagnation point of the flow. w¡ 
corresponds to the mass consumption rate of 
species / per unit volume due to the homogeneous 
reaction (CO + -̂02 _> C02). w is the corres­
ponding valué for carbón monoxide (CO), and Q 
is the heat of reaction per unit mass of CO 
consumed. For the homogeneous reaction, w is 
given by 

... V~1i V ty \ 1/2 V avni Z7 / D T ^ 
W=Kpí( ÍH2O J 0 2 - ' ^CO CXp( — £L),/K1 ) 

and 

w¡= —v¡wlV¡/Wco. 

(5) 

(6) 

The boundary conditions associated to the free-
stream side for the equations given above are the 
following: 

At>" -+ 00 : 

u = Ua¡(x), T=Ta,, 

>o2 = Í02», 5co = YC02 = 0. (7) 

The mass and energy balance condition in the gas-
solid interface, considering no gas diffusion 
through the solid, are given by 

(oY02\ _ ri 
pZ)o2 I — — J — {PV)WYQ2 = — WQ2 

\ oy / w 2 
(8) 

pDco-2 
co2\ 

dy 
) — (pv)w Fco2 = n̂ Wco2 (9) 

/w 

( 0 YQO \ 
pDco I —— ) • (pv)w YQO = — //"i + fu) Wco 

\ dy /w 

(/•i + rn)W,c=rh = {pv)w = — psy 

( d T\ / dTs \ _ 

— I — I X5 —— 1 + rnCs Tw 
dy Jw \ oy / w 

— thCp Tw= — QR , 

(10) 

(11) 

(12) 

where qE denotes the overall external heat flux due 
to radiation and any other coming from an external 
heat devicc. QR is the total heat of reaction per unit 
mass of carbón consumed, produced by the two 
heterogeneous reactions considered here, 

1 
(I) C + - 02->CO 

2 

(II) C + C02->2CO, 

and is given by 

QR = (fiQi ~ ruQu) Wc-

(13) 

(14) 

(15) 

/"i and rn correspond to the reaction rates for both 
reactions, respectively, and are given by 

r¡ — ki(YQl)w exp( — Ei/RTw), 

fu = ^n( 5co2)w exp( - Eu/RTW). 

(16) 

(17) 

The regression rate of the carbón surface due to 
the two heterogeneous reactions is denoted by y. If 
we also assume that the penetration length of the 
heating front in the solid is also very small 
compared with the radius of the particle, that is, 
for times such as 

/ « R2psCs/Xs, 

the solid-phase energy equation is given by 

Ols 0¿ls 

psCsJ7=XsJ^' 

(18) 

(19) 
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with the initial and boundary conditions given by 

TS=T0 aty-* — <x> or í = 0. (20) 

NONDIMENSIONAL GOVERNING 
EQUATIONS 

The free-stream longitudinal velocity can be ex­
pressed in the form 

Woo = (a<T + j8<73 + • • ')Ua,, (21) 

with 

a = x/R 

which is valid up to terms of order a3. 
Here a and /3 are constants that depend on the 

body geometry for a sphere, a = 3 /2 , /3 = 1/4. 
Equation 21 gives very good results for valúes of a 
< 1. Introducing the nondimensional variables 

Ta>—T 
•? 

a Ux \ 1/2 ry 

T0 y/ipooMoo 
.1 ill _ D _ \1/2 — ¿V _ \ 

y/ = {Ua¡iia¡p!XKa) aj(r], a) 

•* CO 

S y 

P dy, 

Y — 2 02 ^ 

'COj — 

V" ' 
^02<x 

^ C 0 2 

^CO — ~F, 
ío2ooaCO 

O200 CO2 

(22) 

with aC0 = 2 ^ c o / ^ 0 2 an<Í aC02 = 2 ^ 0 0 2 ^ ^ 0 2 . 
the gas phase quasi-steady governing equations 
transform to 

*L\2 

dv) 
Poo ( 4/3 /32 

(1-l a2 -\—- a4 

L ( 1 , ^ , 0 
at] 

¡J \ K*. 

L(Pr, 6, l) = L(Sco 2 , Yo2, ~r) 

= ¿,(Scco, i^co, —i") 

= £ (Scco 2 , ^co2> f) = 0, (23) 

where L is a differential operator defined by 

1 £ 2 A , 3 - , 

Lip,x,g)=iw+f~ñ 

— a 
, 3a 67; 617 da 

+<7K£> V y 0 2 y c o 

X exp 
E/RTac 

' 1 - 7 0 

and 

(Too-To)Cp T o o - 7n 
7 = -

(24) 

(25) 
6^0200 ^*°> 

The nondimensional balance equations for the 
gas-solid interface are then given by 

36 

01} 

c o 2 

- I 
w 0% 

dr¡ 

" Yo2 

= — M I Qi H vdw 

y 

•^n ^ c o 2 ^«002 
— M LeCo2 YQO2 + 

dt) 

dico 

^ c f l C 0 2 ^ 0 2 < » 

drj 

=MLeo2 ( l o 2 + - „ . a— 
* \ ¿WcYo2o 

Rn 1^02 ^ o 2 

2Wc Y0la> 

/ Wco 
= M L e C 0 [Yco-— ^ 

C#CO ^ 0 2 o o 

Rn L«co Wco 

" C^CO ^ 0 2 00 

M- - p /V —^ — - n 

\ 3ff /» ' 9rj 

where 

>*= (C p
 — Cs)/Cp 

Pr v /? 
Q>( To, — To)(apoo/Xoo t/oo) 

Cp /apoo^ooi/ooo\1 2 / 1 f . 

V£ HE 

í = PrX, JV 

2 / 1 f \ 

(26) 
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a Qn = : 
Qn 

Cp( To, — To) 

\4 •** D«« Í D /run ii J J \ , / 2 
M — mYX (K/CCPoolltxUa,) 

K¡ = r,Wc Pr (^/apooUxUcc) 

H20 *02 

C;,( 7"7" — TQ) 

*= 
2QYft20 J o - i - Wi CO 

WozQeryt/,, 
(27) 

Due to the regression rate of the surface of the 
carbón particle, the introduction of the new 
coordínate £ enables us to fix this surface at £ = 0. 
The energy balance equation in the solid therefore 
takes the form 

dds . d0s d% 
t - M ( f f ) — = — - , 

dr d£ df2 (28) 

where the appropriate nondimensional time T is 
given by 

P J C J P r 2 \ s t 
T = - Ci 2 _ p apatía, 

(29) 

The initial and boundary conditions are 

ds=l at l--• — oo or r = 0. (30) 

In the following section, the analysis is done in the 
stagnation-point región. The solution in this zone 
allows us to study further the transient behavior 
along the x coordínate, due to the parabolicity of 
the boundary layer equations away from the 
stagnation-point región. 

STAGNATION-POINT ZONE (a -* 0) 

The governing equations for the stagnation-point 
zone are obtained easily from Eqs. 23, 26, and 28 
in the limit a -* 0. These are reduced to the 
following forms. 

Gas Phase 

/ " +ff" + 1 -70 - / ' 2 = 0 

— 6" +f6' = -icp^Y0l ico 

X expl — 
RTa,{\ —70) 

(31) 

(32) 

1 k(Tx—Tn)CDp i 

*,*:+"!-* ovo,. ' ^ r -

xexpl 
Eh 

RTX(1 —yd) 

where the minus sign corresponds to Ycc -̂

Solid Phase 

30, . 30s 320, 
f~ A z — = —— , 

dr d£ d£2 

(33) 

(34) 

with the following boundary and initial conditions: 
At 7j —¥ oo: 

/ ' = 1, 0 = 0, YQ2=\, 

* c o — •'CO2 —u-

At r¡ = £ = 0 : 

«•-•'•(£). 
= —M \Qi-\ vOw 1 + Rn(Qi + Qu) 

y¿2 = MLe02(^o2 + 
W, o2 

2Wcl-o2o 

Ru LeQ2 W02 

2Wc Í0200 

^co2 =MLeco2
 Yco2 + 

•̂ n Wco2 Leco2 

" CaC02 F02oo 

Y^M^(ym. ^ c o 

Wc^CO ^02o 

Ru LeCo Wco 

" C f l CO ^ 0 2 o o 

M= • P r / , /'=0, (35) 

As £ -» - 00, 0S = 1 and for 7 < 0 0S = 1 in the 
whole particle of carbón. Due to the moderately 
large valué of the activation energy of reaction I, 
there are three different stages involved in the 
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process assuming that the ambient temperature T» 
is larger than that of the carbón particle at / = 0, 
To- There is first an inert or warm-up stage, where 
the temperature at the particle increases toward the 
valué Tm. Upon reaching a critical temperature at 
the surface, the heterogeneous chemical reaction 
(C + ^02 ~* CO) becomes important and must be 
taken into account. In this transition stage, the 
reaction changes to be controlled by diffusion and 
the 02 is totally consumed at the surface of the 
carbón particle. In the diffusion-controlled stage, 
the temperature increases to reach asymptotically 
the equilibrium valué. In this stage, carbón mon­
oxide is generated at the surface of the particle and 
diffuses through the boundary layer. A combusti­
ble mixture (CO + 02) is produced, and the 
homogeneous chemical reaction can be switched 
on 

Because of its large activation energy, this 
homogeneous reaction will take place first in 
regions close to the wall. If the homogeneous 
reaction is ignited, the reaction front moves 
toward the equilibrium position. The C02 gener­
ated by the reaction diffuses to the surface of the 
particle and to the free stream. The second 
heterogeneous reaction (C02 + C -» 2CO) can 
compete with the first one (C + 7O2 -> CO). 

In the following sections, employing activation 
energy asymptotic methods, the different stages 

are analyzed, making use of the fact that the 
activation energy of the first heterogeneous reac­
tion is large. The homogeneous reaction, which 
can be expected to play a significant role only in 
the final stage, will be considered. Figure 1 shows 
schematically the surface nondimensional temper­
ature history, where all these stages are indicated. 

INERT STAGE 

In the inert stage heat is transferred from the gas 
phase to the carbón particle. Due to this process, 
the temperature at the surface of the particle 
increases from T0 to valúes very close to a critical 
temperature Tc where the heterogeneous reaction 
has to be considered. If this critical temperature is 
larger than T„,, then no ignition or combustión 
takes place in the carbón particle. If the valué of Tc 

is lower than Tx, but not very close to it, a rapid 
transition stage follows the inert stage, where the 
chemical reaction is important. Therefore, the 
inert stage ends as T„ approaches Tc in a first 
approximation. The governing equations valid for 
this inert stage are as follows. 

Gas Phase 

f'"+ff" + l-yO-f = 0 

— 0 " +/0' = 0 
Pr 

(36) 

(37) 

"S<u 

1.0 

«I 

8W6 

SWi" 

Inert > 

;s\ 

ransition 

v. 

( h e t . ) 

, (Jiff contro l 

(het. and horn.) 

Fig. 1. Schematic surface nondimensional temperature history showing the different stages 
involved in the process. 
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^02 ~ ' 1 ' ^ c — ' C O 2 — " > 

Solid Phase 

d6s d26s 

(38) 

(39) 

The boundary and initial conditions are as follows 

At IJ —• oo; 

/ = 1, 0 = 0 

At t) = £ = 0 : 

QE-8'+^ = 0, f=f'=0 
ok 

At £ -> - 00 or T < 0: 

(40) 

For the solid phase, the solution can be given in 
the form of an integral relationship between the 
temperature gradient and the temperature at the 
surface of the particle: 

dus = r — T . 
w -ŷ j- 0 UT \ T — T 

(41) 

Therefore, the energy-balance equation in the 
interface takes the form 

1 FT do dr' 

V7T o dT \j7—j' 
(42) 

Denning in the gas phase <j> = 6/6sw, tht gas-phase 
equations transform to 

/" ' +ff" + 1 - 7 0 - / >
2. 0, 

i 

Pr 
0"+ /0 '=O , 

(43) 

(44) 

where 7 = ydsw. The boundary conditions are 
given by 

At i) -* 00o 

/ ' = 1, 0 = 0 

At y = O: 

/ = / ' = 0 , 0 = 1 . (45) 

The term 70 in Eq. 43 accounts for the reduction 
of the effect of the pressure gradient due to the 
increase in density when approaching the wall. 
Equations 43-45 have two parameters Pr and 7 . 
We can solve the equations using a perturbation 
technique with the incompressible solution, 7 = 
0, as the unperturbed one. We assume a solution of 
the form 

J —/o + 7/i + 0 — 0o + 70i + " ' ' > (46( 

with 7 taken to be a small number. Introducing 
relationship 46 into the boundary layer equations 
43 and 44, we obtain the following set of 
equations: 

/o*'+/a/o" + l - ( / 0 ' ) 2 = 0, 

Pr 
0Q" +/O0Q' =0 (47) 

and 

J" +./O1/" - 2 / Q / ; + / " / i =00, 

1 
— 0/ ' +/o0i = - / i 0 o ' • 

The boundary conditions take the form 
At T; -> 00: 

(48) 

/0 ' = i, / , ' = 0o = 0, = o 

At IJ = 0: 

J 0 =J 1 =/ Ó =/ ; = 0i = o, 

«o = l . (49) 

Equations 47 represent the very well known 
incompressible boundary layer flow [14]. From 
Eqs. 47 and 48 we need to know only the gradient 
at the wall 

C?0 

drj 
~v>o +7(P1 . (50) 

After numerical integration of Eqs. 47 and 48, we 
obtain 

d<t> 

dr\ 
* -0.4958 + 0.05577 for7<0.75. 

(51) 

1 
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Introducing Eq. 51 into Eq. 42, this transforms to 

O.49580sw — O.O55770SW
2 

+ J[l — (1 — Y0 J W)4] + <7EX 

V i o "T V T — T ' 
(52) 

where g^x is the contribution to the heat flux at the 
interface from any other source except convection 
and radiation represented by the fírst terms in Eq. 
52. The initial condition for Eq. 52 is that 0SW(O) 
= 1. For T -• 0, 6SW ffom Eq. . 5 behaves sa 

"sw = 1 ' 
Vi 

{0.4958-0.05577 

+ / [ ! —(1 - 7) ] + ? E X W 7 + (53) 

For large valúes of T, assuming a negligible 
chemical reaction, the temperature at the solid 
reaches asymptotically the valué given by the 
solution to the algebraic equation 

O.4958(^jW)eq — 0.0511(0sw) eq2 

+ • / { ! — -7 — 7(0jH>)eq4]} + 9 E X = O (54) 

from the physical point of view, the root that 
behaves as 

\vsw)eq 
rfEX 

0.4958 + 4 /7 
for gEx < 1 (55) 

is the relevant one. In fact, the asymptotic behav­
ior of 6SW ii given by 

0sw:s(0sw)eq q +j=+ '•• for r - » 00 (56) 
v T 

where 

:=Vir I 0. 4958-O.154(0w)o 

4 7 7 { l - l- - 7 ( 0 i w ) e q 4 ] } \ - 1 

1+Y(0sw)eq / 

The integral equation, Eq. 52, can be solved 
numerically. The evolution of dsw aa s aunctton of r 
for the specifíc case of <7EX = / = 0 is plotted in 
Fig. 2. 

As the nondimensional temperature at the sur­
face approaches the valué 6SW = dcC where 6C Cs a 
critical nondimensional temperature to be defined 

.6*0 

3 0 i 2 3 4 
Fig. 2. Evolution of the nondimensional temperature at the surface, 9SW as a function of y. 
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later, the chemical reaction has to be taken into 
account. This occurs at times r close to TC deffned 
by QSW(TC) = Bc. Here dsw can be given by 

9sw=0C + A{6c, <7EX> Jt T)(T-TC) + 0(T-TC)2. 

(57) 

The nondimensional heat generated by the hetero­
geneous chemical reaction is given by 

Ml Q\H vdsw 1 

= k\ YQ2W I Qi H 6SWv I 

xexpL~^-o-7flw)J 
(58) 

where 

Ari WQ Pr V/? 

V OtPoo flex, Uoo 
O20 

From Eqs. 58 and 52 we can obtain the critical 
valué of the nondimensional temperature as 

l j 

7 V 

Ei 

7 V RT& \n(RiQ,) 
(59) 

As a function of dc, the nondimensional heat of 
reaction is given as 

M ( Q¡ H vOSw 

- * i y o 2 w \Qi~l V8C—VA(T — TC) 1 

X exp { — Eil[R To, (( — v6c)]} 

Eiy(0c-6SW) 
Xexp 

•K7a)(i — yOc) 11 + — —— I 
L U — Y"c) J 

(60) 

Owing to the fact that the activation energy for the 
heterogeneous reaction (C + j O2 ~* CO) is large, 
the heat of reaction term is very large for 0SW > 6C 

and very small for 8SW < 6C. Therefore, the inert 
solution ceases to be valid when the difference 6C 

— dsw = RTQ/E\ in the transition stage. 

TRANSITION STAGE 

In this stage we assume a nondimensional temper­
ature to be given as a perturbation of the inert-
stage solution. This is given by 

&s = 8s\ — €\¡/s+ 0(e2), 

where e is a small number given by 

e = RTc
2/Ei( Tx — To), 

(61) 

(62) 

which is the inverse of the Zeldovich number. 
From Eq. 60 we know that the characteristic 
nondimensional time is of order e. Then we can 
introduce the appropriate time and length scales 
for this problem as 

<J = A(T— rc)/e 

and 

Z= sA/e £. 

(63) 

(64) 

Introducing the variables \¡/s, a, and Z , the energy-
balance equation for the gas-solid interface, given 
in Eq. 35, reduces to the lowest order 

d& 
= Dexp((j +\psw) 

dZ 

where 

D = 
¿1 

\ÍAe 
(a 

xexpí -

V 
H 

y 
-ve) 

Ei 

RTx(l —ydc) 

(65) 

(66) 

The energy-balance equation in the solid trans­
forms to 

a 2 i¿ <9i¿ 

dZ2 da ' 
(67) 

where the convective term is smaller than these 
terms. Using the same integral relationship be-

file:///Qi~l


290 F. MÉNDEZ ET AL. 

tween the gradient and the valué of \j/s at the 
surface, Eq. 65 takes the form 

expix+&„,) = 
1 r. "YSW dx' 

"V7T "X' \X — X' 
(68) 

where x is the new time scale defined as x = a + 
ln D. The initial condition comes from matching 
with the inert stage 

4>s-*o CLJ *\ «̂* , 

The solution to this integral equation can be found 
elsewhere [15]. There is a runaway at a valué of Xi 
= -0 .431 . 

At the end of the transition stage, the chemical 
reaction rate is very large, thus consuming all the 
oxygen at the surface of the particle. At this time, 
the chemical reaction is limited by the diffusion of 
O2 to the surface. 

DIFFUSION-CONTROLLED STAGE 

To follow further the evolution of the temperature 
at the surface of the carbón particle with time, it is 

convenient to return to the original nondimen-
sional variables 6, T, and £. The governing 
equations are given by Eqs. 31-34 without the gas-
phase reaction term. The initial condition is given 
by 

0 = "Jl(£> TC) at T—Tc. (70) 

Assuming a unit Lewis number for 02, we have 
that 

(69) YQ2 = 1 — <t> w h e r e <¡> = 9 / 6 s w . (71) 

From the 02 mass balance equation, Eq. 35, we 
obtain 

dY0 °2 
di\ 

d<j> 

dr\ 2 Wc Í0200 

= -Pr / (0) 
W. o2 (72) 

2Wc YQ-I a, 

Therefore, Eq. 72 gives the boundary condition 
needed to solve the gas-phase governing equa­
tions. The nondimensional temperature gradient 
d<j>ldr] at the surface of the particle is plotted in 
Fig. 3 as a function of 7 . This gradient can be 

.32 

.31 

.30 

. 2 9 .25 .5 .75 

Fig. 3. Nondimensional heat flux at the surface, (d<frldi\)„ as a function of y. 

w 
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correlated very well with At £ = 0: 

d(¡> 

dr\ w 
= —0.4447 + 0.04897, 0 < 7 < 0 . 7 5 . 

(73) 

Therefore, 

. 2WC . 
M-——Yo~ I + 0.4447 — 0.048970,^,). (74) 

The energy-balance equation at the solid-gas 
interface is given by 

= — M I QjH 
L 7 

W, o2 

2WCYQ2C 

I QE- (75) 

This is the required boundary condition for the 
solid-phase energy equation, Eq. 28, which can be 
considerably simplified if we use the following 
transformation: 

í(í¡,T)= W ( £ I T) e xP [f^-(f)2^] 
(76) 

The above change of variable is valid only for 
valúes of M constant; nevertheless, we can sup­
pose that this condition is not too restrictive, 
because the effeets introduced by the presence of 
the term 7 in Eq. 67 is weak and then it is a good 
approximation to take M as a constant as can be 
seen from Eq. 74 without the 7 term. Therefore 
the energy equation for the solid phase is reduced 

to 

dW d2W 

dr dt; 

with the following conditions: 
At 7 = rc: 

(77) 

M / M y "1 
(78) 

dW 

dr 
= — M1V I —1-[ v I I 

\l \2WcY02oo J] 

-Aifexp ( — ) T ( Q I + - ) - 9 £ . 

(79) 

The problem defined by Eqs. 77-79 is linear, 
and it is possible to use the Green's function to 
solve it. After many manipulations we can arrive 
finally at the following expression for the solid 
temperature in this diffusion-controlled regime: 

0(£, T) = exp U * ( 2 ) TJ 

^ | - « + n 2 i r„ r- , 
+ exp l I2VIT(T-Te)] ' 

-A0 exp[(r-TC)A0
2-A0(£ + É')] 

"-(i£=r-^)) 

X[X(T — T ' ) ] ~ — AQ 

xexp[A0
2(T — r ' ) — A0i;] 

xerfeí — 4- A0NT—T/ )J 
\ 2 V 7"— 7' / -̂  

x S0 e x p I I "T" Y rl I + C 0 J uT (80) 

V 

file:///2Vr-r'
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where 

An = — M I - + ( -i V I I 
1.2 KlWcY^ ) \ 

B0= —M(Qi + v/y) 

Co— —QE 
(81) 

In Eq. 80 the valué of 0S\(£', TC) can be obtained 
from the system of Eqs. 39-40 without the 
presence of the y term as was mentioned above, 
and is given by 

+ exp(—v4o£' +AQTC) 

x erfc ( — — + A 0 V T C } 
V2VÍI / 

(82) 

Given the complexity of Eq. 80, the most relevant 
characteristics of this equation appear to be 

1. The heat flux in the carbón surface at initiation 
of the stage controlled by diffusion, that is, for 
times T near TC and also 

2. The final stage of this regime, which would be 
coupled with the equilibrium condition. 

For the first, an asymptotic analysis shows that 
(dd/di;) I j = 0 behaves according to the expression 

— 2A°2 
r e x p f | 7 - - , 4 o W c l 2 ] 

(M \ 
x erfc I —-A0 1 VTc-exp[(y40V7c)

2] 

Xerfc(.4oVTc)-exp ( — "Jrc ) 

( M i—\ M/1— An 
VTC )+—: 

2 / M/2 — 2AQ 

xexp(A0
2Tc)\ , as T-*TC (83) 

and clearly it depends on Mand rc fundamentally. 
For the second characteristic, the contribution 

of the surface temperature comes from the second 
part of the right-hand side of Eq. 80, and it can be 
shown that for valúes of r -» 00, the asymptotic 
solution is given by 

Atn ^ lAnBn ( (M .— 
0(0, T ) « — ^ ] erfc ( — V ^ 

M i \2 

-£M-[' Í2A 
\1? 

•m-x \ j ) ir~'r) erfc ( T - T C ) 

01 
Ji 

a s 7 00 . 

(84) 

The limit of which must coincide with the equilib­
rium valué of 9 to be obtained in the next section. 

EQUILIBRIUM STAGE WITHOUT 
HOMOGENEOUS REACTIONS 

As t -* 00, the solution of the governing equation 
reaches asymptotically the equilibirum condition. 
The solid phase governing reduces to 

Me 
a Use U "se 

d% d%2 

with the boundary conditions given by 

0« = 0«» at£ = 0 

and 

The solution of these equations is 

6se=l + (fiSwe~ 0 cxp(Afe£) 

(85) 

(86) 

Quse 

d£ 
= {0se~ \)Me. (87) 

Introduction of this relationship into the interface 
balance equations gives 

(88) 
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where 

Me = (+ 0.4447 - O.O489,y0jM.e) 

and 

QE=J[1 ~ (1 —yOswe)4] + <7EX-

21VC F( o2o 

W< o2 

(90) 

The final equilibrium temperature can be ob­
tained after solving the fourth-order algebraic 
equation for 6swe resulting from Eqs. 88-90. 

INFLUENCE OF THE HOMOGENEOUS 
REACTION 

In the previous sections the different stages for the 
carbón combustión were analyzed assuming the 
gas phase to be frozen. However, as the tempera­
ture on the particle surface increases in the 
diffusion-controlled stage, the gas-phase reaction 

1 
C0 + -O2-*CO2, 

can be switched on because of the high sensitivity 
of the reaction rate on the temperature. 

In a first approximation, the gas-phase chemical 
reaction has to be considered when the surface 
temperature reaches a critical valué Ti to be 
defined later. In practical cases, Ti can be assumed 
to be larger than the ambient temperature, Ti > 
Tx. Thus, we can introduce the variable \¡/ of order 
unity, which takes into account the effects of the 
gas-phase reaction. In this case, the nondimen-
sional temperature profile close to the carbón 
surface is given by 

6 = 8¡ — (0A441di — 0.04$9y6i2)r) — ei¡/, 

as íj--0. (91) 

Here e represents the inverse of the gas-phase 
Zeldovich number given by 

RTx(-70:i)2 

e = < 1. (92) 

We introduce also the inner stretched coordinate 
X, where the gas-phase chemical reaction takes 

place, as 

O.44471 B\ | — O.O48970i2 

A T]. (93) 

To the lowest order of e, the gas-phase energy 
equation takes the form 

rfV 
-— A.(A. v ; expiy — A . ) , 
6 

(94) 

where A represents the relevant Damkóhler num­
ber of order unity and is defined as 

A = 
* Pr e Pi Yco,wexP[~^/i/^^a.(l — 7$i)] 

(O.44470II)V|0II[1 — O.11O1|0I|]2 

(95) 

Here, Yco.w represents the surface concentration 
of CO, which is given by 

'CO, w 
1 

{2WC/W0l) Yo2x — (d<t>/dri)w 
(96) 

Equation 94 has to be solved with the boundary 
conditions 

di _ 
^(0) = 0, -Tí" (00) — 0. 

aX 

(97) 

The first is due to the fact that the characteristic 
time in the solid is much larger than in the gas. 
Therefore, in the homogeneous ignition process, 
the solid temperature is assumed to be constant. 
The second boundary condition is obtained from 
matching with the outer nonreactive zone. A first 
integration of Eqs. 94 and 97 gives 

di¡/ 

dX 
= - l ± V l — r r ( / / 2 ) A , (98) 

where T(n) represents the gamma function. The 
critical Damkóhler number A is then 

A r =l /2 r (3 /2 ) . (99) 

From Eq. 95 we can obtain the valué of the critical 
temperature, Ti. 

This ignition process takes place instantane­
ously when using the time scale of the solid. The 
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gas-phase reaction front moves to the equilibrium 
position. The temperature at the surface of the 
carbón particle increases further to reach asymp­
totically the final equilibrium regime (when con­
sidering both homogeneous and heterogeneous 
reactions). In this final regime, from Eqs. 32 and 
33, using unit Lewis numbers for 02 and CO, we 
obtain the following coupling relationships in the 
gas phase: 

Q = QYo2/Cp(,T— To) 

and 0SWE is the equilibrium nondimensional tem­
perature at the surface. In the above equations we 
have assumed zero oxygen and carbón monoxide 
concentrations in the carbón surface. In this case, 
the gas-phase fíame sits at the carbón surface. In 
most practical cases, this is the appropriate re­
gime, due to the fact that the heterogeneous 
reaction II (Eq. 14) is very slow in comparison 
with reaction I (Eq. 13). From Eqs. 100 and 101 
we obtain 

(102) 
(X1 o2 

dr¡ 

dYo2 

dr) 

dd 
— 
dr] -

dYco 

+ dr] 

dYco 
dr] 

dYo2 

-Q-r-
at] 

d<b 
+ dr] 

d<t> 

dr] 

w 

w 

d<j> 
= (fiswE+Q) ~T~ 

- at] 

(103) 

(104) 

where the sign corresponds to the position relative 
to the gas-phase fíame. The positive sign corres­
ponds to the free-stream side and the negative sign 
to the carbón side of the interface. At the carbón 
surface, from Eqs. 35 we obtain 

dY, o2 

dt] 'WCY02„ 

dY, CO 

dr) 
(105) 

Due to the fact that in this case the conditions at 
the surface coincide with the conditions at the 
lower side of the gas-phase interface, dY¡/dr)\-

= dYj/dt] I w and dd/dr¡ | _ = dd/dr¡1 w, then 
from Eqs. 103 and 105 we obtain the nondimen­
sional mass flow rate at the surface, 

ME = 
"c YQ2 d<f> 

WQ2 dr] 
= -Pr f(0). (106) 

*o2- ' co = 1 - 0 

v y ' 0 2 = *¿ ~^~ V^swE^" \¿)*Pi 

where 

(100) 

(101) 

equ 

d<t> 

dr) 

Equation 106 gives the additional boundary condi­
tion needed to solve the system of Eqs. 43 and 44. 
Up to the first order in f, the solution to these 
equations is given by 

= —0.4717 + 0.0252f. (107) 

The nondimensional gradient of temperature at the 
carbón surface is given then by 

dd 

dt] 
(108) 

From Eq. 87, the nondimensional heat transfer in 
the solid at the surface is given by 

""sE 

dq 
— (VswE~ V)ME- (109) 

Finally, from the energy balance at the surface we 
obtain the relationship needed to obtain the equi­
librium temperature as 

"swE 
w, 

\ " c ' O 2 , 
- + 1 — V 

W, 
1 \¿\ 

o2 QE 

JVIE 
(110) 

where 

QE = J\\ ~ 0 Y JUSWE)4] + <7E: 

WQ YQ2CX 

ME = —— [0.4717 — 0.0252ydSWE]. 

The transient process, after the ignition of the 
homogeneous reaction leading to the final equilib­
rium stage, can be analyzed using the same results 
obtained in the previous section, but with the 
appropriate mass flow rate ME ar |d initial condi­
tions. 

W 



CARBÓN COMBUSTIÓN IN STAGNATION FLOW 295 

FINAL REMARKS 

An analysis has been performed on the transient 
combustión of a carbón particle exposed to a high-
temperature oxidizing stagnation-point flow. This 
type of configuration represents the early stages of 
carbón particles injected into a hot oxidizing 
environment. In the analysis it was assumed that 
the thermal penetration length in the solid is much 
smaller than the particle radius. Asymptotic meth­
ods based on large Zeldovich numbers of both 
heterogeneous and homogeneous reactions were 
employed to analyze the different combustión 
stages. In the first phase of the process (frozen 
homogeneous reaction), there are three different 
stages, assuming the temperature of the oxidizer 
flow ii sigher than that oo the earbon particle ea the 
time of injection. The first or inert stage corres­
ponds to a warm-up process, where the surface 
temperature increases. As the surface temperature 
reaches a first critical valué, the heterogeneous 
reaction switches on. In this second transition 
stage, the heterogeneous reaction changes from 
kinetic to diffusion control and the oxygen is 
totally consumed at the surface of the carbón 
particle. In the third or diffusion-controlled stage 
the temperature reaches asymptotically the equi­
librium valué (with frozen homogeneous reaction) 
with a constant regression rate Using appropriate 
correlations for the gas phase and a Green's 
function for the solid phase the evolution of 

surface temperature and regression 
•.nfpc are ob­

tained However if the second critical tempera­
ture is lower than the equilibrium valué the gas-
ohase reaction is important and a gaseous flame is 
ffpnerated in rpcnorw Hoif1 to the» wall Hf»rf* all the 

carbón monoxide 
is rnnQiimfvl and 

carbón 
is generated A new regression rate is imposed on 
the carbón particle and the temperature at the 

surface reaches asymptotically the final equilib­
rium regime. 
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