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Abstract

The present thesis aims at investigating parallelisms between the functional architec-
ture of primary visual areas and image processing methods. A first objective is to refine
existing models of biological vision on the base of information theory statements and a
second is to develop original solutions for image processing inspired from natural vision.
The available data on visual systems contains physiological and psychophysical studies,
Gestalt psychology and statistics on natural images The thesis is mostly centered in
overcomplete representations (i.e. representations increasing the dimensionality of the
data) for multiple reasons. First because they allow to overcome existing drawbacks of
critically sampled transforms, second because biological vision models appear overcom-
plete and third because building efficient overcomplete representations raises challenging
and actual mathematical problems, in particular the problem of sparse approximation.

The thesis proposes first a self-invertible log-Gabor wavelet transformation inspired
from the receptive field and multiresolution arrangement of the simple cells in the pri-
mary visual cortex (V1). This transform shows promising abilities for noise elimination.
Second, interactions observed between V1 cells consisting in lateral inhibition and in
facilitation between aligned cells are shown efficient for extracting edges of natural im-
ages. As a third point, the redundancy introduced by the overcompleteness is reduced
by a dedicated sparse approximation algorithm which builds a sparse representation of
the images based on their edge content. For an additional decorrelation of the image
information and for improving the image compression performances, edges arranged
along continuous contours are coded in a predictive manner through chains of coef-
ficients. This offers then an efficient representation of contours. Fourth, a study on
contour completion using the tensor voting framework based on Gestalt psychology
is presented. There, the use of iterations and of the curvature information allow to
improve the robustness and the perceptual quality of the existing method.



Resumen

La presente tesis doctoral tiene como objetivo indagar en algunos paralelismos entre la
arquitectura funcional de las áreas visuales primarias y el tratamiento de imágenes. Un
primer objetivo consiste en mejorar los modelos existentes de visión biológica basán-
dose en la teoría de la información. Un segundo es el desarrollo de nuevos algoritmos
de tratamiento de imágenes inspirados de la visión natural. Los datos disponibles so-
bre el sistema visual abarcan estudios fisiológicos y psicofísicos, psicología Gestalt y
estadísticas de las imágenes naturales. La tesis se centra principalmente en las repre-
sentaciones sobrecompletas (i.e. representaciones que incrementan la dimensionalidad
de los datos) por las siguientes razones. Primero porque permiten sobrepasar impor-
tantes desventajas de las transformaciones ortogonales; segundo porque los modelos de
visión biológica necesitan a menudo ser sobrecompletos y tercero porque construir re-
presentaciones sobrecompletas eficientes involucra problemas matemáticos relevantes y
novedosos, en particular el problema de las aproximaciones dispersas.

La tesis propone primero una transformación en ondículas log-Gabor auto-inversible
inspirada del campo receptivo y la organización en multiresolución de las células simples
del cortex visual primario (V1). Esta transformación ofrece resultados prometedores
para la eliminación del ruido. En segundo lugar, las interacciones observadas entre las
células de V1 que consisten en la inhibición lateral y en la facilitación entre células
alineadas se han mostrado eficientes para extraer los bordes de las imágenes naturales.
En tercer lugar, la redundancia introducida por la transformación sobrecompleta se
reduce gracias a un algoritmo dedicado de aproximación dispersa el cual construye
una representación dispersa de las imágenes sobre la base de sus bordes. Para una
decorrelación adicional y para conseguir más altas tasas de compresión, los bordes
alineados a lo largo de contornos continuos están codificado de manera predictiva por
cadenas de coeficientes, lo que ofrece una representacion eficiente de los contornos.
Finalmente se presenta un estudio sobre el cierre de contornos utilizando la metodología
de tensor voting. Proponemos el uso de iteraciones y de la información de curvatura
para mejorar la robustez y la calidad perceptual de los métodos existentes.



Resumé

La présente thèse doctorale propose d’étudier en parallèle l’architecture fonction-
nelle de aires visuelles primaires et les méthodes de traitement d’image. Un premier
objectif consiste a améliorer les modèles de vision biologique sur la base de la théorie
de l’information, et un second est le développement de solutions originales inspirées
de la vision naturelle pour le traitement des images. Les données disponibles sur le
système visuel recouvrent des études physiologiques et psychophysiques, la psychologie
Gestalt et les statistiques des images naturelles. La thèse est centrée principalement
sur les représentations surcomplètes (c’est-à-dire des représentations qui accroissent la
dimensionalité des données) pour de multiples raisons. Premièrement parce que ces
représentations permettent de résoudre les difficultés inhérentes aux transformations
à échantillonnage critique. Deuxièmement parce que les modèles de vision biologique
ont généralement besoin d’être surcomplets et troisièmement parce que construire des
représentations surcomplètes efficaces pose des problèmes mathématiques actuels et
importants, en particulier le problème de l’approximation parcimonieuse.

La thèse propose premièrement une transformation en ondelettes log-Gabor auto-
inversible inspirée des champs récepteurs et de l’organisation en multirésolution des
cellules simples du cortex visuel primaire (V1). Cette transformation possède des capa-
cités prometteuses pour l’élimination du bruit. La deuxième partie de la thèse consiste
à modéliser les non-linéaritées et les interactions entre les cellules de V1, en particulier
les inhibitions latérales et les facilitations entre les cellules alignées. Cette modélisation
se révèle efficace pour l’extraction des bords des images naturelles. Troisièmement, la
redondance introduite par la transformation surcomplète est réduite grâce a un algo-
rithme dédié qui construit une approximation parcimonieuse des images sur la base
de leur contenu en bords. Pour un réduction additionnelle de la redondance et pour
améliorer les performances de compression d’image, les bords organisés en contours
continus sont codés de manière prédictible par des chaînes de coefficients. Cette co-
dification offre ainsi un représentation efficace des contours. En quatrième point nous
présentons une étude sur la fermeture des contours utilisant la méthodologie de vote par
tenseurs elle-même basée sur la psychologie Gestalt. Nous proposons l’implémentation
itérative et l’usage de l’information de courbature pour améliorer la robustesse et la
qualité perceptuelle.
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Resumen extendido

”El capitalismo de nuestros días exhibe, en su centro universal de poder,
una identidad evidente de los monopolios privados y el aparato estatal. Las
corporaciones multinacionales utilizan directamente al Estado para acumu-
lar, multiplicar y concentrar capitales, profundizar la revolución tecnológica,
militarizar la economía y, mediante diversos mecanismos, asegurar el éxito
de la norteamericanización del mundo capitalista.”

Eduardo Galeano in Las Venas Abiertas de America Latina.

0.1 Antecedentes y estado del arte

Desde hace veinte años las ondículas (wavelets en inglés) han revolucionado las téc-
nicas de tratamiento de la señal y las imágenes. Fueron introducidas por primera vez
por Morlet y colaboradores [132], y los aspectos teóricos y matemáticos fueron desa-
rrollados más adelante por Meyer [130], Mallat [117] y Daubechies [33]. Las ondículas
son una alternativa entre las representaciones puramente espaciales (o temporales) y
las representaciones frecuenciales de tipo Fourier ya que ofrecen una caracterización
de las señales tanto espacial como frecuencial. Se aplican sobre la señal mediante tras-
laciones y dilataciones de una ondícula madre la cual está localizada espacialmente y
es específica de una banda de frecuencia. Proporcionan entonces una representación
espacio-frecuencial de la señal que se ha mostrado eficiente para el análisis y la ca-
racterización de señales. La estructura diádica, es decir la limitación del conjunto de
dilataciones posibles de la ondícula madre a potencias de dos, y un submuestreo crítico,
permite la construcción de familias de ondículas (bi-) ortogonales [117]. Las ondículas
ortogonales implementan los mismos filtros en la descomposición y en la reconstrucción
de la señal. La ortogonalidad impone condiciones excesivamente restrictivas sobre la
forma de los filtros. En consecuencia se prefieren a menudo las ondículas biortogona-
les que implementan filtros diferentes para la transformación directa e inversa. En el
tratamiento de señales digitales, dichas ondículas biortogonales constituyen una refe-
rencia obligada. Sin embargo, ambas ondículas ortogonales y biortogonales sufren de
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importantes desventajas. Ninguna de las ondículas ortogonales o biortogonales son in-
variantes a la traslación, lo que significa que un leve desplazamiento de la señal en el
dominio espacial puede inducir una variación grande (sin proporción) de los coeficientes
de la transformación. El problema está relacionado con la presencia de dispersión de
frecuencias o aliasing. Las ondículas están organizadas en bandas de frecuencias que
no están totalmente disociadas y que se entremezclan debido al submuestreo crítico. El
aliasing se compensa en la transformación inversa y no impide la reconstrucción exacta
de la señal. Sin embargo en aplicaciones donde se eliminen coeficientes (compresión,
restauración, etc), el aliasing puede dar lugar a la aparición de artefactos. Además, el
hecho de que los filtros de las ondículas biortogonales sean diferentes para la descom-
posición y la reconstrucción puede también vulnerar la robustez de la reconstrucción
cuando se eliminan coeficientes, ya que pueden aparecer eventos que no corresponden es-
trictamente a la señal analizada. Por otra parte, en tratamiento de imágenes se utilizan
ondículas (bi-) ortogonales en dos dimensiones separables en X e Y, es decir, compues-
tas por el producto de dos ondículas de una dimensión, una vertical y una horizontal.
Las ondículas así generadas se comportan peor en las direcciones oblicuas.

En los últimos diez años diversas transformaciones alternativas han sido propuestas
para solucionar los defectos anteriormente descritos a costa de sacrificar las propiedades
de (bi-) ortogonalidad. Las ondículas no diezmadas están constituidas por las mismas
funciones separables en X e Y que las ondículas (bi-) ortogonales, pero no están sub-
muestreadas, por lo que no introducen aliasing y son invariantes a la traslación. Se han
mostrado más eficientes que las ondículas biortogonales, en particular en aplicaciones
de eliminación de ruido [28, 111, 20]. Las steerable pyramids [182, 159] presentan la
propiedad de invariancia a la traslación gracias a un submuestreo menos crítico que
permite evitar la introducción de aliasing. Además las steerable pyramids ofrecen un
mejor comportamiento en direcciones oblicuas gracias a la implementación de filtros de
diversas orientaciones. Ondículas en cuadratura de fase sensibles tanto a señales simé-
tricas como antisimétricas han sido también propuestas con éxito para, por ejemplo, el
análisis de texturas o la compresión [96, 74, 159]. Otras transformaciones tales como
curvelets [189, 46] o contourlets [41] han sido propuestas principalmente para mejorar la
sensibilidad en orientación de las ondículas y adaptarse mejor a la forma de los bordes
de contraste de las imágenes naturales.

Por su parte las ondículas de Gabor [74, 134, 173] utilizan como ondícula madre una
función inicialmente propuesta por Gabor [68] en 1946 y utilizada posteriormente por
Morlet en 1982 en las primeras transformaciones en ondículas [132]. Un filtro de Gabor
consiste en una Gaussiana modulada por exponencial compleja. La forma es Gaussiana
tanto en el dominio espacial como frecuencial, por lo que el filtro está estrechamente
localizado tanto en el espacio como en frecuencia. De hecho, se puede demostrar que
dicho filtro alcanza el óptimo teórico de localización conjunta en espacio y en frecuencia.
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Por lo tanto, ha sido considerado como un filtro óptimo en el tratamiento de la señal [68].
Sin embargo este filtro presenta también desventajas:

1. No es posible construir una base ortogonal completa con dichos filtros.

2. Los filtros no tienen una media nula, lo que introduce una componente continua en
los coeficientes correspondientes a bandas intermedias de frecuencia. Este último
problema puede, sin embargo, solucionarse mediante la utilización de filtros de
log-Gabor, los cuales son funciones Gabor en escala frecuencial logarítmica [53].

3. Es particularmente difícil cubrir las altas y las bajas frecuencias con filtros de
Gabor, obtener un recubrimiento uniforme del dominio frecuencial y reconstruir
exactamente la señal (las ondículas de Gabor no son invertibles).

Por estas razones, las ondículas de Gabor han sido utilizadas principalmente en apli-
caciones que no necesitan reconstrucción de la imagen, tales como el análisis de tex-
turas [27, 158] o la extracción de bordes [175, 102], aunque sus buenas cualidades han
permitido también su utilización en la restauración o la eliminación de ruido [101].

El uso de transformaciones no críticamente submuestreadas permite entonces re-
mediar algunas de las desventajas de las ondículas (bi-) ortogonales. Dichas transfor-
maciones son llamadas sobrecompletas (overcomplete) para indicar que inducen una
representación de dimensión superior a la de la señal: contienen más coeficientes de
transformación que la señal original contiene de muestras (o píxeles). Consecuentemen-
te, las transformaciones introducen redundancia, siendo ineficientes para las aplicaciones
como la compresión que necesitan representaciones dispersas, es decir representaciones
que contienen una mínima cantidad de coeficientes no-nulos. Se puede, sin embargo,
reducir la redundancia de las representaciones sobrecompletas eliminando una gran
proporción de sus coeficientes por medio de algoritmos de codificación dispersa o sparse
coding [147]. Considerando que los coeficientes de las transformaciones ya no son lineal-
mente independientes, dichos algoritmos seleccionan una base reducida de coeficientes
para representar con ella una aproximación de la señal. Los principales algoritmos son
Matching Pursuit (MP) [118, 152] y Basis Pursuit (BP) [22]. MP es un algoritmo glo-
tón (greedy) que elige una por una las ondículas que ofrecen la mejor correlación con la
señal, substrayendo en cada iteración la ondícula elegida de la señal e iterando sobre la
señal restante. BP resuelve el sistema lineal minimizando una función de penalización
que consiste en la suma de las amplitudes de todos los coeficientes. Las desventajas de
dichos algoritmos son sus altos costes computacionales, sus fallos en la búsqueda de la
mejor aproximación de la señal, y la aparición de artefactos. Diferentes variantes de
estos algoritmos han sido propuestas, y pueden encontrarse en el resumen propuesto
por Pece [147].
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Las ondículas sobrecompletas y dispersas son finalmente transformaciones que ya
no poseen las propiedades de ortogonalidad ni de linealidad. La optimización de tales
transformaciones resulta entonces una tarea particularmente difícil por los altos gra-
dos de libertad que ofrecen este nuevo tipo de representaciones y por la dificultad de
manejar transformaciones no lineales. Asimismo es extremadamente difícil estudiar las
propiedades matemáticas de transformaciones no-ortogonales y no-lineales.

En cambio un paralelismo directo puede establecerse con los modelos de visión bioló-
gica. Desde los años 1960 se propuso modelos de los sistemas sensoriales considerándolos
como mecanismos optimizados en términos de reducción de redundancia de manera con-
sistente con la teoría de la información [3, 7, 8, 54]. Específicamente, transformaciones
espacio-frecuenciales similares a las transformaciones en ondículas se han utilizado para
modelar la arquitectura funcional de las primeras etapas de los sistemas de visión bio-
lógica. En los primates, la información visual captada por la retina se procesa primero
por las propias neuronas de la retina, enviándose a continuación al núcleo lateral gení-
culado (LGN) antes de llegar al córtex visual primario (V1) [220]. Los trabajos de los
premios Nobel Hubel y Wiesel a partir de los años 1960 [88, 87] han llevado a clasificar
las neuronas del cortex visual primario en tres clases: células simples, células complejas
y células hipercomplejas. El campo receptivo de las células simples ha sido descrito en
primera aproximación como lineal y se modela habitualmente mediante funciones de
Gabor [124, 36, 53]. Las células simples son consecuentemente sensibles a detalles vi-
suales en una posición especifica de la retina, así como una banda de frecuencia y una
orientación especificas. La red de células simples se ha descrito como cubriendo todas
las posiciones del campo visual, con una densidad superior en la fovea, al menos tres
bandas de frecuencias en cada posición de la retina [40], y bandas de orientaciones de
entre 20 y 40 grados [36, 87]. Dicha red tiene entonces importantes similitudes con las
ondículas de Gabor. Por su parte las células complejas tienen la misma localization en
posición, escala y orientación que las células simples pero son invariantes a la fase, y
son sensibles a estímulos en movimiento. Las células hipercomplejas también llamadas
end-stopped son o simples o complejas y son sensibles únicamente a estímulos limita-
dos en extensión es decir que no salen de un lado u otro del campo receptivo de la
célula [87]. Las células complejas y hipercomplejas son ambas altamente no lineales.
También han sido descritas no-linealidades en las células simples. Destacan en particu-
lar interacciones entre células [94]. Dichas interacciones son de dos tipos. El primer tipo
consiste en inhibición entre células vecinas1. El segundo tipo de no-linealidad consiste
en la facilitación de células también próximas aunque hasta una distancia más grande.
La facilitación ocurre entre células que por su posición y orientación preferente se en-
cuentran relativamente alineadas. Diversos modelos computacionales se han propuesto

1Las células del área V1 tienen una organización retinotópica es decir que las células próximas en
V1 tienen campos receptivos centrados en posiciones próximas de la retina. La inhibición de células
vecinas corresponde entonces a una inhibición de señales procedente de posiciones cercanas.
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para mostrar las características y habilidades de tales redes neuronales. Grossberg y co-
laboradores han desarrollado un modelo simulando células del LGN, células simples y
complejas [131], mostrando la capacidad de tal red para realizar tareas de restauración
de imagen y de eliminación de ruido. Heitger y colaboradores [83], Yen y Finkel [221] y
Li [112] implementaron modelos similares mostrando la eficiencia de la arquitectura del
córtex visual V1 para la extracción de bordes y contornos. También se ha especulado
que V1 lleve a cabo tareas similares a los algoritmos de codificación dispersa con el
fin de obtener una representación eficiente de la información visual [139]. Por ello se
han propuestos modelos basados en redes neuronales implementando MP [151]. Otra
herramienta para optimizar las transformaciones sobrecompletas consiste entonces en
utilizar los conocimientos que se tienen del sistema visual primario. Es interesante ins-
pirarse del conocimiento de V1, ya que las prestaciones y capacidades del sistema visual
humano están todavía muy por encima de los sistemas de visión artificial, tanto por la
capacitad de análisis de escenas complejas, el reconocimiento de formas y patrones, el
tratamiento en tiempo real, etc. De hecho se puede considerar el sistema visual humano
como optimizado para el tratamiento eficiente de la información visual por los millones
de años de evolución.

El estudio de las estadísticas de las imágenes naturales es una tercera herramienta
para ayudar en el diseño de las ondículas no-ortogonales. Importantes resultados han
sido obtenidos por técnicas de Análisis de Componentes Independientes (ICA). Las
componentes independientes de las imágenes naturales extraídas por tales métodos se
asemejan a los modelos de los campos receptivos de las células simples y a las ondículas:
en la mayoría de los casos dan lugar a funciones orientadas de frecuencia particular [141,
43]. Las funciones de Gabor serían entonces los elementos básicos de construcción de
las imágenes naturales. Las estadísticas de las imágenes naturales permiten también
encontrar reglas de agrupamiento de los bordes en contornos continuos [69] congruentes
con los estudios psicofísicos de percepción de los contornos [55, 84, 99]. Existe además
una relación directa entre la visión biológica y las estadísticas de las imágenes naturales:
en el ámbito de las Redes Neuronales Artificiales se suele considerar que las redes
biológicas aprenden características del mundo real. Así los campos receptivos de las
células del córtex V1 pueden ser interpretados como procedentes de la extracción de
componentes independientes aprendidas de las imágenes naturales.

Dentro de las posibles aplicaciones en tratamiento de imágenes, las ondículas se han
mostrado particularmente eficientes para la eliminación de ruido. En efecto las ondí-
culas caracterizan particularmente bien los cambios de contraste que corresponden a
bordes o líneas de las imágenes naturales. Producen coeficientes de amplitud elevada en
los bordes mientras que el ruido induce un nivel relativamente uniforme y bajo en todos
los coeficientes. La utilización de métodos de umbralización permite entonces eliminar
la mayoría del ruido conservando bien los bordes y líneas [47]. Posteriormente se propu-



6

so mejoras por la utilización de ondículas sobrecompletas invariantes a la traslación [28]
así como mediante el uso de un número mayor de orientaciones [189, 160, 41]. Otra apli-
cación, la extracción de bordes ha sido relacionada con los modelos de visión biológica
desde los primeros trabajos de Marr [125]. Posteriormente Canny [16] desarrolló una
formalización y una justificación puramente matemáticas de los métodos de extracción
de bordes. Propone un método de construcción de filtros 2D antisimétricos y orientados
para la detección de los bordes a exclusión de las líneas (solo se consideran cambios
antisimétricos de contraste). El tamaño de los filtros se adapta en función de la señal y
de la cantidad de ruido. En este tipo de esquemas se utilizan habitualmente entre 6 y
8 orientaciones y los filtros tienen formas generalmente elongadas. Un método de histé-
resis permite la selección de grupos enteros de bordes evitando así que un contorno sea
extraído sólo por partes. Más adelante se ha demostrado que el uso de filtros (comple-
jos) de Gabor permite la extracción simultánea de los bordes (elementos antisimétricos)
y las líneas (elementos simétricos). El proceso de extracción se asimila entonces estre-
chamente a los modelos funcionales del cortex visual V1 [133, 175, 221, 112, 131, 102]
descritos anteriormente. Las respuestas de las células hipercomplejas o end-stopped se
han mostrado también importantes para completar la extracción de bordes [83]. En
compresión de imagen las ondículas biortogonales han dado lugar al estándar JPEG-
2000 [184], el cual constituye la referencia en materia de compresión. Consiste en una
transformación en ondículas biortogonales seguida por una quantization de los coefi-
cientes y una codificación por planos de bits. Los bordes de contraste de las imágenes
producen en el dominio ondícular un reducido número de coeficientes de gran ampli-
tud. La cuantificación preserva dichos bordes mientras elimina los coeficientes pequeños
correspondientes a detalles poco perceptibles de las imágenes. En consecuencia las imá-
genes se pueden codificar mediante un número reducido de coeficientes no-nulos del
dominio ondícular. Aparte las ondículas han sido utilizadas con éxito en toda una serie
de aplicaciones adicionales, donde las ondículas sobrecompletas a menudo muestran un
mejor comportamiento que las (bi-) ortogonales, como p.e. el análisis de texturas [159]
o la fusión de imágenes [215] o el reconocimiento de patrones [164].

0.2 Ondículas log-Gabor auto-invertibles

El primer objetivo de la tesis es el desarrollar una multiresolución inversible que a la
vez posee excelentes propiedades matemáticas y sea al mismo tiempo próxima a los
conocimientos disponibles sobre la fisiología de los campos receptivos de las células
simples. La transformación propuesta implementa filtros de tipo Gabor con anchos de
banda y distribución en orientaciones y escalas próximas de las células simples.
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Tres problemas surgen desde el punto de vista técnico: primero las funciones de
Gabor no son de media cero, por lo que no serían adecuadas en principio para la
multiresolución (un componente continuo contamina todas las bandas de frecuencias).
Este problema se resuelve utilizando filtros log-Gabor que son Gabores en coordenadas
log-polar [53]. El uso de tales filtros mejora también el recubrimiento del espectro de
Fourier.

Segundo, se considera usualmente que no se puede obtener un recubrimiento uni-
forme del espacio de Fourier mediante filtros de tipo Gabor. Mostramos que por el
desplazamiento en orientación de las escalas pares (propuesto en [74]) y con el ajuste
del ancho de banda se consigue un recubrimiento casi uniforme (con variaciones me-
nores a 0.6 %), lo que permitirá una reconstrucción exacta después de una muy leve
modificación de los filtros.

El tercer problema consiste en construir filtros orientados de alta frecuencia que
estén estrechamente localizados espacialmente y frecuencialmente. Los filtros siendo
selectivos a frecuencias próximas de la frecuencia de Nyquist, no es posible construirlos
directamente a través de la ecuación clásica de los log-Gabores.

Finalmente se consigue la construcción de una multiresolución con filtros de log-
Gabor que posee la propiedad de auto-inversibilidad, es decir que la transformación
inversa es de reconstrucción exacta y utiliza los mismos filtros que la transformación
directa. Tal propiedad aporta una estabilidad adicional frente a la aparición de artefac-
tos.

Las ondículas log Gabor así definidas son particularmente adecuadas para codificar
los cambios de contraste local de las imágenes naturales. De hecho muestran una gran
capacidad para la segregación y la eliminación del ruido en imágenes naturales por sim-
ple umbralización de los coeficientes de la transformación en ondículas. Comparado con
otras multiresoluciones, como las ondículas bi-ortogonales [44], ondículas invariantes a
traslación [28], y steerable pyramids [182, 160], las ondículas log-Gabor aquí presen-
tadas muestran una mejora importante en la capacidad de eliminación de ruido por
umbralización.

0.3 Extracción de bordes por modelos energéticos

El capítulo 3 de la tesis propone un método de extracción de bordes basado en modelos
previos inspirados en el córtex visual V1. Se ha demostrado que la extracción simul-
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tánea de los bordes (cambios antisimétricos de contraste o escalones) y de las líneas
(cambios simétricos de contraste, o crestas) no se pueden conseguir por medio de filtros
lineales [150]. Consecuentemente se han propuesto modelos energéticos (es decir cua-
dráticos) basados en la suma cuadrada de dos filtros de tipo Gabor en cuadratura de
fase [1, 133, 175, 149, 75, 221, 83, 131]. Cada filtro detecta o los cambios simétricos o
los antisimétricos, mientras la suma cuadrada garantiza una respuesta monomodal.

El modelo energético está directamente inspirado en la células complejas de V1
que muestran una respuesta similar a las células simples (es decir una respuesta a
estímulos localizados y específicos de una orientación y una banda de frecuencia), pero
que mantienen una invariancia de la fase gracias a la suma cuadrada de dos filtros en
cuadratura de fase [17].

Llamaremos canal al resultado de la convolución de la imagen original mediante un
filtro de Gabor de una orientación y escala determinada. Después de la suma cuadrada,
la extracción de borde y líneas implementa una operación local de supresión de los
coeficientes no-máximos. Es una operación clásica que se encuentra en muchos métodos
de extracción de bordes (p.e. en Canny [16]). La supresión consiste en la eliminación
de los coeficientes que no son máximos locales en la dirección normal a la orientación
del canal (o del filtro correspondiente). Este proceso se llama también ocasionalmente
competición espacial [75]. Además se eliminan también los coeficientes que no son máxi-
mos locales entre orientaciones (competición en orientación). Mediante dichos procesos
de supresión, se eliminan la gran mayoría de los coeficientes y los coeficientes restan-
tes suelen formar cadenas continuas localizadas en los contornos de los objetos de la
imagen, aunque aparecen también coeficientes aislados debido al ruido o detalles menos
perceptibles de la imagen. Finalmente para refinar la extracción, se suele aplicar un paso
de facilitación (o cooperación) entre los coeficientes alineados o co-circulares: criterios
de proximidad, de co-linealidad, de co-circularidad están aplicados para preservar los
coeficientes pertenecientes a contornos y eliminar los coeficientes aislados debidos al
ruido.

Comparado con las técnicas lineales, p.e. el detector de bordes de Canny [16], el
esquema es además más robusto a las detecciones dobles de bordes, detecta cambios de
contraste de cualquier fase (no solo múltiplos de 90̊ ). Una originalidad de la implemen-
tación propuesta en la presente tesis es la utilización de un modelo basado en ondículas
para la extracción de borde. La utilización de múltiples escalas implica que los bordes
se extraen separadamente para cada escala. Además el uso de la codificación dispersa
(ver capitulo 4) permitirá la reconstrucción de las imágenes a partir de aquellos bordes.
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0.4 Representaciones dispersas basadas en extracción
de bordes

Las transformaciones sobrecompletas lineales inducen una importante redundancia. En
aplicaciones como la compresión donde se pretende reducir la cantidad de información,
es necesario implementar algoritmos de codificación dispersa o sparse coding [147, 118,
141, 22]. En casos particulares, p.e. cuando se busca un sub-base ortogonal dentro de
una base de decomposición sobrecompleta, existen algoritmos rápidos y óptimos (i.e.
que encuentran la decomposición de reconstrucción exacta que contenga la mínima
cantidad de información) [29]. Pero en el caso general y particularmente cuando no se
puede construir una sub-base ortogonal (como es el caso aquí con los filtros de tipo
Gabor), solo existen algoritmos iterativos que encuentran aproximaciones a la solución
óptima. Proponemos en el capítulo 4 de la presente tesis un algoritmo dedicado a las
ondículas log-Gabor, el cual es de coste computacional bajo y está basado en los modelos
biológicos de V1, en particular en la extracción de bordes por modelos energéticos (ver
capítulo 3).

Proponemos la hipótesis que los coeficientes situados en los bordes de las diferen-
tes escalas son suficientes para reconstruir la mayor parte de la imagen. Dicho de otro
modo, se considera que la amplitud de los coeficientes alejados del lugar preciso donde
está situado el borde puede ser eliminada a condición de realzar para compensar los
coeficientes de bordes. Este aumento de amplitud de los coeficientes seleccionados y la
reducción de la amplitud de los no-seleccionados se puede realizar mediante la proyec-
ción de los coeficientes no-seleccionados sobre los seleccionados. Por este método no
se impera la reconstrucción, es decir que se obtiene todavía una reconstrucción exacta
mediante la transformación en ondículas log-Gabor inversa.

El algoritmo propuesto procede entonces en tres pasos: primero se calcula la trans-
formación en ondículas log-Gabor. Segundo se elige una selección de los coeficientes de
bordes por el método energético descrito en el capítulo 3. Y finalmente se proyectan los
coeficientes no seleccionados (llamados el residuo) sobre los seleccionados.

Como resultado se obtiene por este método una buena reconstrucción de los contor-
nos aunque algunas distorsiones pueden aparecer en los diferentes tipos de esquinas y
uniones así como en las texturas. Otros algoritmos dedicados a la codificación dispersa
de uniones y texturas serían útiles para mejorar las prestaciones del método. Se podrían
basar en métodos existentes de extracción de esquinas y uniones [83], de representación
estadística de las texturas [159] y de codificación dispersa separando los bordes de las
texturas [45]. Otra manera de mejorar el resultado consiste en iterar el método propues-
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to. Mostramos que unas tres iteraciones son suficientes para obtener una importante
mejora en uniones y texturas.

La transformación log-Gabor dispersa así definida se revela adecuada para una diver-
sidad de aplicaciones. Extrae los bordes y reconstruye a partir de los mismos. Utilizada
en compresión de imágenes limita la aparición de los artefactos usualmente molestos
cuando se emplean transformaciones (bi-) ortogonales. El método realiza además simul-
táneamente una tarea de eliminación de ruido: el ruido por sus estadísticas produce un
nivel bajo de amplitud repartido en todo el dominio de transformación y además no
induce estructuras coherentes en los coeficientes, como por ejemplo cadenas. Consecuen-
temente, interfiere poco en la selección de los coeficientes de bordes. Los contornos serán
entonces reconstruidos correctamente mientras que el ruido desaparece. Comparado con
los métodos más comunes de eliminación de ruido con ondículas, el presente método
basado en ondículas log-Gabor dispersas preserva particularmente bien los bordes y las
líneas de poco contraste mientras que en otros métodos pueden totalmente desaparecer.

El presente método de codificación dispersa aporta una ventaja adicional para las
aplicaciones de compresión: los coeficientes de bordes están localizados en cadenas por lo
que sus posiciones y amplitudes pueden ser codificadas con alto grado de predictibilidad
a lo largo de dichas cadenas. Aquello permite reducir la cantidad de información por
codificar sin pérdida de calidad: provee entonces una decorrelación adicional de la señal.
Gracias a la representación dispersa y a la codificación por cadenas, el esquema log-
Gabor wavelets podría revelarse competitivo con los estándares de compresión como
JPEG y JPEG-2000.

0.5 Cierre de contornos por tensor voting

El capítulo 5 de la tesis está dedicado al agrupamiento de bordes en contornos continuos.
En este capítulo los bordes están representados por tensores que codifican tanto la
orientación del borde, la amplitud del borde y la confianza de tener una unión. Un
mecanismo de votación permite propagar la orientación de un borde hacia sus vecinos
y encontrar así la orientación local del contorno. En presencia de hueco entre segmentos
de contorno, los contornos se completarán a lo largo de la dirección preferida.

Proponemos aquí dos mejoras al método de tensor voting. Primero estudiamos las
ventajas de implementar una versión iterativa de tensor voting. Mostramos que las
iteraciones permiten refinar las estimaciones de orientación local y la confianza de tener
uniones, sin por ello implicar desventajas importantes. Es entonces conveniente utilizar
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un cierto número de iteraciones para el tensor voting.

El segundo estudio propuesto incorpora un método de evaluación de la curvatura
local y realiza las operaciones de voto teniendo en cuenta dicha curvatura. El uso de este
parámetro de curvatura no implica un coste computacional elevado y mejora de modo
significativo el cierre de contornos. Los contornos completados muestran curvaturas más
suaves y perceptualmente más agradables. La cantidad de artefactos se ve reducida de
un modo importante y el método es menos vulnerable al desajuste del parámetro de
escala empleado en el método clásico de tensor voting.

0.6 Principales aportaciones de la presente tesis

Las principales aportaciones originales de la presente tesis pueden resumirse por cada
uno de los capítulos de la siguiente manera.

El Capítulo 2 presenta una multiresolución en ondículas de Gabor original en varios
aspectos: primero incluye nuevos filtros de alta frecuencia los cuales son orientados,
estrechamente localizados y con valores complejos. Segundo, es auto-inversible, lo que
induce una mejora importante puesto que ninguna multiresolución por filtros de Gabor
de reconstrucción exacta había sido propuesta anteriormente en la literatura. La me-
todología de optimización de la transformación en ondículas resulta también novedosa.
Reúne criterios múltiples que incluyen (1) datos de inspiración biológica referentes a
los campos receptivos de la células del cortex visual V1, (2) estadísticas de las imáge-
nes naturales, (3) preservación de la calidad perceptual y (4) criterios de optimalidad
matemática. Como resultado dicha transformación muestra habilidades inéditas para
la separación estadística entre el ruido espacialmente incoherente y los elementos de las
imágenes naturales, lo cual es prometedor no solo para aplicaciones de eliminación de
ruido sino también para tareas más generales de análisis de imagen.

La innovación del capítulo 3 reside sobretodo en la construcción de un método
energético de extracción de bordes multiescala como síntesis de diferentes métodos, es
decir agrupando diversos mecanismos anteriormente propuestos en la literatura. Otras
importantes innovaciones residen (1) en la utilización de un esquema ondículas auto-
inversible para la extracción de los bordes y (2) en la posibilidad de reconstruir a
partir de los bordes. Desde el punto de vista de la calidad de los resultados, los bordes
extraídos muestran una similitud importante con los bordes percibidos en las imágenes
naturales. Comparado con el método clásico de Canny [16], el presente método es capaz
de extraer tanto los bordes simétricos como antisimétricos mientras Canny solo extrae
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bordes antisimétricos.

El capítulo 4 introduce una innovación consecuente en los algoritmos de codificación
dispersa por la proposición de basar la extracción de la sub-base de codificación sobre
métodos de extracción de bordes. El algoritmo se asemeja en algunos aspectos con el
Matching Pursuit (MP), pero innova autorizando la selección simultanea de múltiples
coeficientes en la misma iteración. Además, mientras que los algoritmos generales de
codificación dispersa son iterativos y computacionalmente costosos, el presente algo-
ritmo puede implementarse de manera no-iterativa con coste computacional bajo. El
método propuesto permite la compresión de imágenes con una calidad aproximándose
a los estándares de compresión (JPEG y JPEG-2000) y con la importante ventaja de
limitar drásticamente la presencia de artefactos de alta frecuencia y de preservar la
calidad perceptual. La codificación dispersa beneficia además de la robustez al ruido de
ambas etapas de transformación en ondículas de Gabor y de extracción de bordes. Es
entonces capaz de operar la compresión bajo niveles de ruido muy importante, mientras
otros algoritmos de codificación dispersa como MP muestran respuestas inestables en
presencia de ruido. Finalmente la codificación dispersa puede utilizarse en tareas de
denoising donde muestra una habilidad particular para preservar los bordes.

El capítulo 5 presenta dos mejoras originales para el método de cierre de contornos
por tensor voting. Introduce una versión iterativa que se muestra superior al método
original particularmente en casos presentando ambigüedades o dificultades tales como
desajustes entre niveles de detalles dentro de la misma imagen. La segunda novedad
propone el cálculo y el uso de una representación de la curvatura para mejorar la
integración de los contornos y la buena continuación de los mismos y para reducir la
aparición de artefactos.

La presente tesis incorpora entonces novedades importantes en cada uno de los
temas abordados, los cuales forman además un conjunto coherente llegando hasta la
constitución de nuevas transformaciones en ondículas sobrecompletas. Estas se muestran
eficientes para el análisis y tratamiento de las imágenes naturales.

0.7 Conclusiones

La presente tesis introduce una nueva multiresolución llamada ondículas log-Gabor, ins-
pirada en la fisiología de la corteza visual primaria. La transformación es auto-inversible,
y particularmente adaptada para tareas de tratamiento de imágenes como la elimina-
ción de ruido. La transformación a pesar de ser sobrecompleta, incorpora un método
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de reducción de la redundancia que autoriza el uso de las ondículas log-Gabor incluso
para la compresión de imágenes. Dichas ondículas log-Gabor poco redundantes repre-
sentan las imágenes a partir de sus bordes multiescala. La última parte de la tesis está
dedicada al método de tensor voting que permite completar bordes discontinuos para
formar contornos continuos.

La presente tesis deja abierta una gran número de líneas de investigación. Primero
para la aplicación y la optimización de los métodos propuestos en tareas de tratamiento
de imágenes como la eliminación de ruido, la fusión de imágenes, el análisis de texturas,
la extracción de bordes, la compresión, o el reconocimiento de objetos. Segundo en
la mejora y el desarrollo de los algoritmos propuestos, por ejemplo la optimización
de la transformación lineal, la mejora de la extracción de contornos por la inclusión de
detección de uniones. Para la compresión de imágenes, se pueden conseguir importantes
mejoras mediante el desarrollo de la codificación predictiva de contornos.



Chapter 1

Introduction

"It’s as if the genetic instructions determine a fixed network of principles
and a certain few switches that aren’t set yet, and the child has to set the
switches on the basis of simple data. Once the switches are set, the whole
system operates."

Noam Chomsky, in Evolution of revolution: Chomsky’s minimalism,
D. Pacitti interviews N. Chomsky, JUST Response on May 20 2002.

1.1 Wavelet representations

Since twenty years, wavelets got increasing importance in signal and image processing.
They were introduced for the first time in 1982 by Morlet and coworkers [132], and
were further developed in their theoretical and mathematical aspects by Meyer [130],
Mallat [117] y Daubechies [33]. Wavelets propose an alternative to the spatial (or
temporal) representations, and to the frequencial (Fourier) ones, as they offer a char-
acterization of signals in a space-frequency domain. The present thesis is dedicated
to 2D still images, so that the domain of interest is the 2D spatial domain and the
wavelet domain is a 4D space-frequency domain. Nevertheless wavelets are also very
often used in a temporal-frequency domain. A wavelet transform consists in convolving
a signal by translations and dilatations of a mother wavelet, which is generally closely
localized in space and specific of a frequency band. The space-frequency representa-
tions provided by such transforms have been shown to perform efficiently a variety of
signal processing tasks. Dyadic structures consist in limiting the set of possible di-
latations of the mother wavelet to powers of two. Dyadic structures with the use of a
critical downsampling allow the construction of (bi-)orthogonal wavelet families [117].
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Orthogonal wavelets implement an orthogonal basis of decomposition functions which
is used for both analysis (i.e. decomposition) and synthesis (i.e. reconstruction) of the
signal. Orthogonality imposes drastic conditions on the shape of the mother wavelet
so that Biorthogonal wavelets incorporating different basis for the direct and inverse
transforms are often preferred. In digital signal processing, those wavelets constitutes
today a reference. Nevertheless (bi-)orthogonal wavelets suffer important drawbacks.
As a first point they are generally not translation invariant which means that a small
displacement of the signal in the spatial domain could induce a large variation -out of
proportionality- of the wavelet coefficients. This problem is related with the presence of
aliasing : the wavelet transforms are organized in frequency bands which are not totally
separated and intermix together because of the critical downsampling. The aliasing is
compensated in the inverse transform and does not prevent the exact reconstruction
of the signal. Nevertheless in applications where some coefficients are eliminated, e.g.
compression or denoising, aliasing could give rise to artifacts. Moreover the use of dif-
ferent filter sets for direct and inverse transform in the biorthogonal scheme weaken
the reconstruction robustness, since some features can appear which do not strictly
correspond to the analyzed signal. Additionally in 2D image processing (bi-) orthogo-
nal wavelets are implemented as X and Y separable 1D wavelets, and therefore show a
worst behaviour in oblique directions.

1.2 Overcomplete representations

In the last fifteen years a diversity of alternative multiresolution transforms have been
proposed to overcome the previously described (bi-) orthogonal wavelet drawbacks at
the cost of loosing the properties of (bi-) orthogonality. Translation invariant wavelets
(also called undecimated wavelets) are constituted by the same wavelet functions as
the (bi-) orthogonal wavelets but they are not downsampled, thus they do not intro-
duce aliasing and are invariant to translation. They turn out to be more efficient than
biorthogonal wavelets particularly in denoising applications [28, 111, 20]. Steerable
pyramids [182, 159, 160] present the property of translation invariance thanks to a less
critical downsampling which avoids the introduction of aliasing. Among other interest-
ing properties steerable pyramids offer an improved behavior in the oblique directions
thanks to the implementation of a increased number of orientations. Complex-valued
wavelets describe signals through both symmetric and antisymmetric functions that
are in quadrature of phase. They were successfully employed e.g. for texture analy-
sis [74, 96, 123, 159]. Among other transforms, curvelets [46, 189] or contourlets [41]
were proposed principally for improving the resolution in orientation and for a better
matching with edges of the natural images. Other overcomplete multiscale transforms
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were developed in parallel or even previously to the wavelets as e.g. the Laplacian
pyramids [15] or the cortex transform [216].

On the other hand, Gabor wavelets [74, 134, 173] use as mother wavelet a function
originally proposed by Gabor in 1946 [68] and used by Morlet and coworkers in 1982 to
define the first wavelet transform [132]. A Gabor filter in the spatial domain is a Gaus-
sian multiplied by a complex exponential. Its shape is Gaussian both in the spatial and
frequency domain, so that the filter is closely localized both in space and in frequency.
Indeed, it can be demonstrated that the filter reaches the theoretically optimal of joint
localization in space and frequency [68]. Consequently it has been considered as an
optimal filter for signal processing, although its use was always restricted by important
drawbacks inherent to Gabor functions, which can be summarized as follows:

1. It is not possible to construct a complete orthogonal basis of Gabor functions.

2. The Gabor filters do not have zero-mean, which induces a DC component in the
coefficient of any frequency band. This last trouble can nevertheless be solved by
employing log-Gabor functions which are constructed as Gabor functions but on
the logarithmic frequency coordinate system [53].

3. It is particularly difficult to cover the highest and lowest frequencies by means of
the log-Gabor filters, to achieve a uniform coverage of the frequency domain and
to reconstruct exactly the signal (Gabor wavelets are not invertible).

For those reasons, Gabor wavelets have been used mainly in applications which do
no require image reconstruction such as texture analysis [27, 158, 74, 173], edge ex-
traction [175, 102], etc, although their good qualities also allowed their use for image
restoration and denoising [101].

1.3 Sparse representations

The use of non-critically sampled transforms allows then to overcome some drawbacks
of the (bi-) orthogonal wavelets. Those transforms are called overcomplete to indicate
that they provide a representation which dimension is superior to the one of the signal:
there is more transform coefficients than pixels in the original image. Consequently
those transforms introduce redundancy. Therefore they are inefficient for applications
such as image compression which needs sparseness, i.e. a large proportion of zeros
within the coefficients. Moreover the transform functions are no more linearly inde-
pendent and then do not constitute a basis, they are referred as a dictionary [118].
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Fortunately it is possible to reduce the redundancy of an overcomplete representation
through the elimination of most of its coefficients by means of non-linear sparse cod-
ing algorithms (also called sparse approximation, see reviews in [147, 202, 22, 225]).
Sparse approximation algorithms take advantage of the linear dependency within the
dictionary and exploit the consequent non-uniqueness of the decomposition to represent
the signal through a reduced sub-dictionary that best match with it, building then a
sparse approximation of the signal. The most popular algorithms are Matching Pursuit
(MP) [118, 167, 152, 148] and Basis Pursuit (BP) [22, 45]. MP is an iterative greedy
algorithm which chooses at each step the decomposition function that offer the highest
correlation with the signal. It iterates on the residual signal (i.e. the signal minus the
chosen decomposition function). BP solves the linear system minimizing a penalizing
function corresponding to the sum of the amplitude of all coefficients. Among other
alternatives, Olshausen and Field propose a gradient descent technique on a penalizing
function based on the RMSE (Root mean square error) and a sparseness condition [139].
Using such algorithms it has been shown that even very redundant dictionaries can be
used to achieve an efficient representation in terms of the quantity of information. For
example Peotta et al. defined a dictionary of curved Gabor-like functions with a re-
dundancy factor up to 17000 (i.e. there is 17000 times more dictionary functions than
image pixels) [148]. Using MP and a wavelet compression on the residual the scheme
was shown competitive with JPEG-2000 particularly at high compression rates.

For some particular overcomplete set of decomposition functions (called dictionary),
optimally sparse representations can be obtained through dedicated algorithms [29,
107]. For quasi-incoherent dictionaries, i.e. dictionaries where the scalar product be-
tween decomposition functions is small (in other words the dictionary is "almost or-
thogonal"), it is possible to define mathematical properties on the optimality and the
convergence [72, 202]. Theoretical results can also be derived in the case of sufficiently
sparse signals [116]. Nevertheless in the present thesis we will be situated in such
particular cases. In the general case and specially when the dictionary has an impor-
tant overcomplete factor, when working on natural and noisy images (i.e. non-sparse
images), and when it is not searched for orthogonal sub-dictionary of decomposition
functions, only approximations to the optimal solutions can be found. Moreover the
existing algorithms are generally computationally costly, while artifacts are used to ap-
pear. Hence, in the current state of the art, the sparse overcomplete representations do
not establish yet that they clearly outperform the (bi-) orthogonal wavelet schemes in
terms of compression abilities.

Sparse overcomplete wavelets finally do not possess neither the property of orthog-
onality nor the one of linearity. The optimization of such transforms appears then a
particularly difficult and appealing task for the high degrees of freedom that this kind of
representation can offer and for the difficulty to manage non-lineal transforms. More-
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over, it seems particularly difficult to establish the mathematical properties of those
non-orthogonal and non-linear transforms.

1.4 Visual system physiology

A direct parallelism can be established between image processing multiresolution trans-
forms and biological vision. Space-frequency transformations similar to the wavelets
ones have been proposed to model the functional architecture of the first stages of bio-
logical vision systems [216], so that the transformation operated by the primary visual
cortex is now often considered as a wavelet transform, in the opinion of the wavelet’s
original developers themselves [117]. The study of biological vision and the image pro-
cessing developments are then getting closer, so that the knowledge on physiology and
modelling of the visual cortex, or psychophysics could, in our opinion, reveal to be
useful for computer vision.

In primates, the visual information acquired by the retina is processed through the
retina neurons before to be send to the Lateral Geniculate Nucleus (LGN) and later
reach the primary visual cortex (V1) [220, 10, 85] (see in particular [17, 19] for reviews
on computational models). Ganglion cells in the retina output and LGN neurons are
often modelled as linear spatial bandpass filters, although some non-linearities are also
described as e.g. luminance and contrast adaptation. Their response also depends on
the temporal frequency of the stimulus [17].

The work initiated by Hubel and Wiesel [88, 87, 172] since 1960 conduced to classify
V1 neurons in three classes: simple cells, complex cells and hypercomplex cells. The
receptive field of simple cells has been described in a first approximation as a linear
transform of the retina input. Each simple cell is selective to visual features closely
localized around a particular position of the retina, and having amplitude in a specific
frequency band, orientation and phase. Such receptive field of simple cells is usually
modeled by Gabor-like functions [124, 35, 36, 53]. For the same retina position, a variety
of simple cells appear arranged across various frequency bands [40] and orientations [36,
87] and in quadrature of phase [157]. Thus, such arrangement show important similarity
with the complex-valued Gabor wavelets [216]. Non-linearities have also been described
in simple cells [17, 177]. They consist first in a contrast normalization. Other important
non-linearities consist in lateral interactions between neighboring cells [12, 13, 94, 2,
191, 163]. Those interactions are of two types. The first one consists in an inhibition [97]
between neighboring cells1. The second type of non-linearity consists in a facilitation of

1V1 cells are arranged in a retinotopic organization which implies that close V1 cells have receptive
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(a) Human brain anatomy (b) the retina - LGN - V1 visual pathway

Figure 1.1: Brain anatomy and the visual pathway. a. Crude anatomy of the human
brain. a. The visual information from the left and right visual fields is first processed
in the retina before to be send to the Lateral Geniculate Nucleus. Afterward it reaches
the primary visual cortex (from [71]).

cell responses also in a certain proximity although toward a larger distance [194]. The
facilitation occurs between cells which for their position and preferred orientation are
relatively aligned and co-circular. Non-linearities are also described in terms of non-
classical receptive fields [73], center-surround interactions [217, 18, 178], masking [206]
or contextual influences [2]. They are not specific to V1 simple cells but seem to appear
very frequently in all the neural circuitry.

By its part, complex cells [127, 17] are similarly localized in position, frequency
and orientation to simple cells (although slightly coarser in their position selectivity)
but they are invariant to phase and are sensible to motion. Hypercomplex cells, also
called end-stopped, are either simple or complex and they are sensible solely to stimuli
limited in width, i.e. stimuli that are not prolongated in one side or the other of the cell
receptive field [87]. End-stopped cells appear to be determinant for occluded contour
detection [83] and for motion disambiguation [128]. Both complex and hypercomplex
cell receptive field are highly non-linear.

In parallel to physiological studies, other types of works are set up in non-invasive
ways through psychophysical experiments, e.g. on the receptive fields [156, 52], on
lateral interactions and contour perception [55, 84, 122, 138, 194], on masking ef-

fields which are sensitive to close position in the retina. Therefore the inhibition between neighboring
cells implies an inhibition of signals originating from neighboring positions of the visual field.
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fects [110, 192] or particular features with perceptual significance like curvature ex-
tremum [4, 138].

1.5 Biological modeling

Figure 1.2: A visuo-motor pathway hypothesis including functionality and timing (from
Thorpe and Fabre-Thorpe [199]).

Different computational models have been proposed in the literature for explaining
the characteristics and abilities of the biological vision architecture. General models
incorporate Information Theory concepts for explaining mechanisms of sensory cod-
ing [3, 7, 8, 54]. In parallel, dedicated models specifically designed for V1 were pro-
posed. The first proposed schemes model the simple cells receptive field as a linear
Gabor filtering [124, 34, 91] or model the multiresolution aspects [108, 216, 37]. Later
V1 models states that V1 could perform tasks of the edge extraction and contour in-
tegration [73, 79, 81, 83, 99, 112, 131, 133, 175, 201, 208, 221] based on the lateral
interactions of local inhibitions and long-range facilitation. Last versions of such mod-
els also show how contour integration rules could be learned [76, 23]. Some other
models demonstrate the noise robustness and contrast enhancement abilities of V1
architecture [75, 131], or the ability to segregate textures [73, 154]. Finally during
last ten years, different models have been proposed for showing how V1 could build a
sparse representation of the visual information from an overcomplete set of visual neu-
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rons [139, 210, 140, 151]. Energy efficiency criteria were also recently discussed [209].
Reviews of computational models on the early visual system (including contour group-
ing across occlusions, binocular vision and 3D perception, figure-ground segregation,
color or motion perception) can be found in [211, 109, 114, 17]. Further in V1, two
interconnected pathways deal with motion perception [128, 9, 142] (through areas MT
and MST); and object recognition (through successive visual areas V2, V4 and IT which
would construct increasingly integrated shape representations). V4 could code for an-
gles, curves and basic shapes [145, 144]. IT (i.e. Infero-Temporal cortex ) was shown to
deal with object and face recognition [95, 105, 193, 174].

1.6 Statistics of natural images

Statistics of natural images are another available tool for helping us in the design of the
overcomplete transforms since multiresolution approaches have to be set up according
to the type of data to analyze. Additionally, the features of natural images are directly
linked to vision systems because they supposedly have the ability to adapt and to
learn the features of the natural environment. This adaptation would occur through
separated mechanisms both through the phylogenesis (evolution of the specie) and the
ontogenesis (development of the individual).

Studies of the statistics of individual pixels justify e.g. the gamma correction of
the vision or the whitening of the histogram. Both consist in reducing the contrast
sensibility in the light colors and increasing it in the dark luminance values [43]. The
contrast is nevertheless relatively independent to the luminance, what could explain the
separated gain controls for contrast and luminance observed in the visual system [66].

Statistics on Fourier coefficients of natural images show the Fourier amplitude usu-
ally decreases inversely with the spatial frequency [53]. Those statistics explain why the
visual system is less sensitive to low frequencies than to medium ones. The sensibility
is also reduced in highest frequencies where the noise level is usually higher and the
features are consequently less significant [3].

Last ten years several methods have been developed for extracting the elementary
components of natural images. Such methods are based on sparse coding methods [141]
or on Independent Component Analysis (ICA) [11, 43, 181]. The independent compo-
nents are oriented elongated 2D functions and show important resemblance with the
receptive fields of V1 simple cells [207, 171]. Similarly, it is also possible to learn the
retinotopic topography of cell organization in V1 [89]. Non-classical or non-linear re-
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ceptive field properties can also be derived from natural image statistics [223, 121].
Furthermore different classes of probabilistic and computational models of the primary
visual system can be derived from statistics of natural images and probabilistic con-
siderations [166, 213], as e.g. the divisive normalization which could model the lateral
interactions between cells and simultaneously explain how V1 could decorrelate the
visual information.

Statistics of natural images also permit to establish the grouping rules for edges in
continuous contours [69, 104, 30, 24]. Those natural image based grouping rules are
consistent with the psychophysical studies on contour perception [55, 84] and with the
Gestalt psychology [99].

Statistics of wavelets coefficients are also important in many applications. They are
related with the type of wavelet transforms but also with the kind of signal to analyze.
As an important feature, a high kurtosis, i.e. a heavy tail of the histogram of the
wavelet coefficients, is important for an efficient and sparse representation of signals [46].
Relations between neighboring wavelet coefficients which are statistically linked can be
exploited for applications such as image denoising [160], image compression [14] and
even more importantly for texture analysis [159].

1.7 Viewpoints in cognitive sciences

In background of the neural system modeling, there exist vigorous philosophical debates
on the nature of the neural system. The presence of a philosophical debate related
to scientific questions is not in itself unacceptable or abnormal, since in the history of
science many scientific advances have arisen together with new philosophical statements.
It is then worth not ignoring the debate underlying the neuroscience research and saying
some words about the different opinions. We present four major typical opinions but
the list do not pretend to be exhaustive.

1. The first belief, still largely represented, is that the Central Nervous System (CNS)
is not understandable by scientific methods. It would be hanging on the "free
will" or even be run by an unmaterial entity. Of course the research can hardly
be sustained under such assumptions. On the contrary a more scientific approach
consists in considering the CNS as entirely material and plausibly understandable
(see e.g. [137] for a convincing criticism of the free will).

2. The second opinion, which is perhaps the most widely accepted between re-



23

searchers consists in considering the CNS as a generic learning mechanism. The
CNS would learn the external world so that the complexity of the CNS would come
more from the complexity of the external world than from the intrinsic complex-
ity of the system. This viewpoint got importance in the 20th century with the
behaviourist psychology which demonstrated the CNS capacities for learning and
for being conditioned with in particular the previous works of the Pavlov (Nobel
Price in 1904) [146] and Skinner [183]. They proposed a scientific methodology
considering the CNS as a black box, an unknown system, and studying only the
relationships between the inputs and the outputs. This vision got further sup-
port by the connectionists that propose a plausible neural framework for learning
called neural networks [48]. Such networks simulating individual neurons are able
to classify features even in a unsupervised fashion.

3. A third viewpoint could be the Freudian one which considers the CNS as subject
to a unique pulsion or instinct which could be responsible of all the complexity
of the human behaviour. This opinion does not seem to be represented in vision
modeling.

4. The fourth opinion states that the cognitive processes are supported by complex
innate structures which are not learned. The innate basement of the CNS orig-
inates in the evolution and determines in a large part which cognitive tasks a
given specie is able to fulfill. Such viewpoint is advocated by Konrad Lorenz,
Nobel Price in 1973 for the foundation of the Ethology (i.e. the study of ani-
mal behavior under natural conditions): "Below the diverse types of behaviour
that the animals learn, underlie invariable motor rules they inherit. Those be-
havioural features constitute a specific characteristic [of the given specie], similar
to the structure or the shape of the body" [115]. The same opinion is advocated by
Noam Chomsky in linguistic "The evidence seems compelling, indeed overwhelm-
ing, that fundamental aspects of our mental and social life, including language,
are determined as part of our biological endowment, not acquired by learning"
([25], p. 161), and also by Hubel and Wiesel Nobel Prices in 1981 for their physio-
logical study of the primary visual cortex "most of the connections [in the primary
visual cortex] seem to be wired up and ready to go at birth" [87]. Although this
viewpoint is supported by various of the most important scientific personalities
in different cognitive science fields, it not accepted by the majority of researchers
and is still in debate. Moreover it is largely unknown from non-specialists (and
often superficially known by researchers).

Such a debate between the "ambientalists" (behaviorists and connectionists) and the
"innatists" has a large scientific relevance. It is also particularly animated because be-
yond the technical questions underly philosophical ideas that interfere with the debate
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in a more importantly way that one could firstly suppose (the philosophical aspects
underlying both viewpoints are summarized in the Appendix A). Both parts achieved
decisive results, in particular concerning cortical functionalities for innatists and learn-
ing mechanisms for connectionists. This debate is productive and yields key findings
within and outside the cognitive science community. It even influences our perception
of the human nature, such as it seems that a very important scientific step will be
passed when both viewpoints will be concealed.

The diversity of viewpoints gives rise to important differences in the modelling of
the cognitive systems. The ambientalists (i.e. the second viewpoint) tend to insist
in the ideas of the plasticity of the cortex (for example for recovering abilities after
lesions) and in the adaptability to the environment [161]. They center their study on
the different aspects of learning, and are supporters of building models including as
less quantity of prior knowledge as possible, the systems being theoretically able to
learn everything they need from the external world. They do not like to optimize the
algorithms for a specialized task (this kind of implementation is called soft program-
ming). Many researchers are seduced by this viewpoint because it let’s hope to find
a general and simple rule responsible for all the behaviour of the CNS. See e.g. [23]
for a recent example of such an approach for contour integration in images. Innatists
(i.e. the fourth viewpoint) proposed that the cortex is organized in fixed functional
modules or areas [114], and that there exist multiple innate mechanisms underlying
each individual neural process including the learning processes. They stress the limits
of neural plasticity [185]. They are prone to include priory knowledge within biological
models, so that the models can appear closer to classical image processing methods.
See e.g. [83] for contour extraction based on a hard wired (i.e. without learning nor
plasticity) biological model.

1.8 Novelty of the approach

In this thesis we adopt an apparently naive approach that consists in considering the vi-
sual system of primates as a nearly optimal system and to try to reproduce the cortical
transformations as closely as possible for building efficient image processing algorithms.
This approach is not the most common in image processing but it could provide good
results first because of its novelty and second because it reverses another naive ap-
proach more commonly adopted: the technology is often perceived as a "progress" able
to correct the defaults of the nature and to "improve" it. In other words the technol-
ogy is ideologically considered as more perfect than the nature. It can be considered
instead that the technology is highly imperfect in the sense that it brings many new
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troubles and unbalances for each solution it proposes; and in opposition the nature,
and particularly the visual cortex, can be considered as nearly optimal for the millions
of years of evolution pressure, for its capacity of adaptation and because the biological
visual system still offers much superior performances than any artificial vision system
designed up to today.

The present work does not investigate deeply on the unification of multiresolution,
edge extraction nor sparse approximation. It can be considered (and as been described
so by various referees) as an experimental and descriptive study rather than a theoretical
work. I desire to argue in favor of the present approach and rather to call into question
the tendency to consider theorization and unification as the most worthy scientific
objectives. Firstly because before unification and theorization, a work of description
is necessary. A work of description of the functionalities of the primary visual areas is
even more justified that we are just in the beginning of the understanding of the cortical
circuitry so that the eventual phase of "unification" could still remain far. And secondly
because there is no proof that any complex system can be sufficiently simplified to be
solved analytically or even by simulation. Some complex and non-simplificable system
could exist and stay beyond the limits of formalization. It is then worth giving value
to a descriptive work rather than uniquely waiting for a hypothetical unified theory of
the visual system.

1.9 Organization of the thesis and description of the
new contributions

The thesis is organized as follows. Chapter 2 presents methods for building self-
invertible linear 2D log-Gabor wavelets that model the distribution of receptive fields of
simple cortical cells. The efficiency of those wavelets is illustrated in an image denoising
scenario. The present log-Gabor wavelets are original in two important aspects: first it
includes localized oriented high-pass filters, and secondly, they are self-invertible. This
is an important improvement since no exact reconstruction Gabor-like multiresolutions
were previously proposed in the literature. Chapter 3 details energy methods for edge
and line extraction based on 2D log-Gabor wavelets. Such feature extraction method
is inspired from complex cortical cell models. It proposes a new method as a synthesis
of different methods previously proposed in the literature. Chapter 4 introduces a new
sparse approximation algorithm based on the edge/line extraction of the chapter 3.
The proposed sparse approximation is original since it is the first sparse approximation
method based on edge/line extraction. The scheme can be considered as similar to
the Matching Pursuit method but incorporating a non-iterative process for coefficient
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selection. Chapter 5 presents a separate work on the grouping of edge segments which
is not based on log-Gabor wavelets but on an alternative representation called tensor
voting. It introduces new contributions to tensor voting by proposing an iterative ver-
sion and the use of a curvature representation for improving the integration of contours.
Chapter 6 gathers the conclusions of the thesis.



Chapter 2

Self-invertible log-Gabor wavelets

"The most important and urgent problems of the technology of today are
no longer the satisfactions of the primary needs or of archetypal wishes, but
the reparation of the evils and damages by technology of yesterday."

Dennis Gabor, Innovations: scientific, technological and social.

Orthogonal and biorthogonal wavelets became very popular image process-
ing tools but exhibit major drawbacks, namely a poor resolution in orienta-
tion and the lack of translation invariance due to aliasing between subbands.
Alternative multiresolution transforms which specifically solve these draw-
backs have been proposed. These transforms are generally overcomplete
and consequently offer large degrees of freedom in their design. At the same
time their optimization gets a challenging task. We propose here the con-
struction of log-Gabor wavelet transforms which allow exact reconstruction
and strengthen the excellent mathematical properties of the Gabor filters.
Two major improvements on previous Gabor wavelet schemes are proposed:
first the highest frequency bands are covered by narrowly localized oriented
filters. Secondly, the set of filters cover uniformly the Fourier domain in-
cluding the highest and lowest frequencies and thus exact reconstruction is
achieved using the same filters in both the direct and the inverse transforms
(which means that the transform is self-invertible). The present transform
not only achieves important mathematical properties, it also follows as much
as possible the knowledge on the receptive field properties of the simple cells
of the Primary Visual Cortex (V1) of primates and on the statistics of nat-
ural images. Compared to the state of the art, the log-Gabor wavelets
show excellent ability to segregate the image information (e.g. the con-
trast edges) from spatially incoherent Gaussian noise by hard thresholding
and then to represent image features through a reduced set of large magni-
tude coefficients. Such characteristics make the transform a promising tool
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for processing natural images. This study was previously communicated in
parts in [65, 62, 60, 63, 59, 169].

2.1 Introduction

After the development and rapid successes of the wavelet transforms in image pro-
cessing, alternative multiresolutions have been proposed mainly for a better resolution
in orientation and for avoiding aliasing effects. Last fifteen years oriented band-pass
multiresolution transforms have arisen with increased importance thanks to the de-
velopment of steerable pyramids [182], Gabor-like multiresolutions [74, 134, 173, 180],
complex-valued wavelets [106, 74, 96, 159], curvelets [189] and contourlets [41], to name
a few.

A Gabor function is a Gaussian multiplied by a complex exponential. Thus, in the
Fourier domain, it is a Gaussian shifted from the origin. Gabor functions gather a
number of interesting mathematical properties: first they have a smooth and infinitely
differentiable shape. Second, their modulus are monomodal, i.e. they have no side lobes
neither in space nor in the Fourier domain. Third, they are optimally joint-localized in
space and frequency [68]. For such good properties they have been proposed as ideal
functions for signal processing.

Similarly, 2D Gabor functions are highly jointly localized in position, orientation
and spatial frequency. Neuroscience studies have shown that the receptive fields of
simple cells of the Primary Visual Cortex (V1) of primates can be modelled by Gabor
functions [36, 124]. Considering natural vision as optimized by the millions of years
of evolutionary pressure, the recruitment of Gabor functions by V1 can be seen as an
additional argument in favor of their adequacy for image processing.

Nevertheless Gabor functions present some important drawbacks. First, it is not
possible to build a complete orthogonal basis of Gabor functions, therefore non-orthogonal
dictionaries have to be employed. Non-orthogonality implies that exact reconstruction
using the same filters for analysis and synthesis will not be possible unless an over-
complete dictionary is considered. Secondly, Gabors are bandpass filters, they are
consequently inadequate for covering the lowest and highest frequencies. Thirdly, it is
particularly difficult to cover up the mid frequencies with sufficient uniformity.

Gabor multiresolutions have been successfully used for image analysis and appli-
cations where exact reconstruction is not required, such as texture analysis [27, 173],
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texture synthesis [158], edge/contour extraction [83, 102, 73], or object recognition [164,
103, 92]. And, even without exact reconstruction they have been shown useful for image
restoration applications [32, 101, 131, 26]. In parallel, different methods for reconstruc-
tion improvement have been proposed to recover the highest frequencies [134], to avoid
excessive low-pass overlapping [53], to improve the reconstruction [37, 108] or to cover
more uniformly the Fourier domain [74].

One of the important applications where oriented multiresolution schemes appeared
to be particularly efficient is image denoising. In this field (bi-)orthogonal wavelets are
themselves one of the most popular and optimal tools [44]. Nevertheless it has been
shown that undecimated wavelets provide better results than the critically sampled
wavelets [28, 20, 111]. Latter works have shown the interest of redesigning the Fourier
domain tiling, particularly for increasing the number of orientations [189, 41, 160].
The advantage of using complex-valued wavelets were discussed in [6, 101]. Indeed
the relaxation of the critical sampling constraint provides high degrees of freedom in
the construction of the multiresolution scheme and it is worth taking advantage of
this additional flexibility for choosing the filter shape, the bandwidths, the degree of
overlapping between filters, the number of orientations, or for choosing complex-valued
filters, etc. We propose here a transform optimized following biological, perceptual and
natural image statistics criteria besides the mathematical ones. The rationale for taking
into account those criteria is: (1) the number of free parameters on the filter shape and
multiresolution arrangement is prohibitive for a systematic study. (2) The Primary
Visual Cortex supposedly evolved towards an efficient and robust image processing
system adapted to natural images. Considering the important similarity between V1
simple cells and oriented multiresolution transforms, we hypothesize that biological
knowledge on V1 could serve as an useful guide for the choice of the free parameters.
Moreover as an interesting feedback, the implementation of biologically inspired wavelet
transforms could help for the understanding of V1. (3) It is important to provide
good image quality from the human perceptual point of view because digital images
are almost exclusively used by humans. It would then be of great help to construct
methods limiting the appearance of perceptually salient artifacts. The similarity with
the biological models could serve such objective. (4) The multiresolution must be built
according to the type of signal to analyze. Here as we focus on natural images, studies
on their statistics can also be used as guidelines. Moreover it is worth noting that
there are direct relationships between receptive fields of V1 and statistics of natural
images [53, 141, 43].

We propose then here an implementation of a multiresolution transform fulfilling
the following constraints: (1) an optimal localization in space, frequency and orienta-
tion through the use of Gabor filters; (2) an augmented number of orientations; (3)
a resemblance to the receptive field of V1 simple cells; (4) an exact reconstruction
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by a self-invertible transform (the same transform functions are used for the direct
and inverse transforms) and (5) complex-valued filters sensitive to both symmetric and
antisymmetric features. We pay special attention to the different aspects of the mul-
tiresolution design and we propose a series of solutions for improving the efficiency of
the Gabor wavelets scheme. In comparison with previous implementations of Gabor
multiresolution ([74, 134, 173, 158]), the most important novelties of the present work
consists in incorporating complex-valued oriented high-pass filters, and achieving the
exact reconstruction and self-invertibility properties.

The present chapter fulfills two objectives: first to describe in detail in the Section 2.2
the proposed self-invertible log-Gabor wavelet transform and second to illustrate (in
Section 2.3) the efficiency of the method in an image denoising scenario. Finally, we
conclude in Section 2.4.

2.2 Method

Let’s consider a n × n square image x of N = n2 pixels. The Gabor wavelets W

consist in filtering the input image x ∈ R
N by a set of filters (Gr)r∈Ω. The band-pass,

high-pass and low-pass filters are described respectively in Sections 2.2.1, 2.2.2 and
2.2.3. Direct and inverse transforms are defined in Sections 2.2.4 and 2.2.5, respectively.
Section 2.2.6 deals with the matrix notation and Section 2.2.8 presents the border
strategy. Section 2.2.7 describes the downsampling method. Methods for obtaining
exact reconstruction are described in Section 2.2.9.

2.2.1 Bandpass log-Gabor filters

Classical Gabor filters give rise to important difficulties when implemented in multires-
olution. Filters overlap more importantly in the low frequencies than in the higher ones
yielding a non-uniform coverage of the Fourier domain. Moreover Gabor filters have
not zero mean, they are then affected by DC components. For those reasons log-Gabor
filters are used in the present implementation instead of Gabor filters. The log-Gabor
filters lack DC components and can yield a fairly uniform coverage of the frequency do-
main in an octave scale multiresolution scheme [53]. The log-Gabor filters are defined
in the log-polar coordinates of the Fourier domain as Gaussians shifted from the origin
(see the filter shapes for different number of orientations Fig. 2.1, Fig. 2.2, Fig. 2.3 and
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(a) Fourier (b) space (real part) (c) imaginary part

Figure 2.1: A log-Gabor wavelet scheme including 4 scales, 4 orientations and isotropic
low-pass and high-pass filters. a. The Fourier domain is covered by log-Gabor filters
with 4 scales, 4 orientations, a low-pass filter and a high-pass filter. Only the contours
at 78% of the maximum of amplitude are depicted. The high-pass residual filter is
represented by the region outside the bigger circle (see [134, 60] for possible implemen-
tations of such a filter). b. Real parts of log-Gabor filters on 4 scales and 4 orientations
are drawn in the space domain. The low-pass and high-pass filters can also be seen on
the top left and top right of the image, respectively. 2nd scale, 1st scale and high-pass
filters are magnified respectively by factors of 2, 4 and 8 for a better visualization. c.
Imaginary parts of log-Gabor filters in the spatial domain. Note low-pass and high-pass
filters do not have imaginary part.
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where (ρ, θ) are the log-polar coordinates (in log2 scale, indicating the filters are orga-
nized in octave scales); ns = 5 is the number of scales of the multiresolution scheme
and nt is the number of orientations (nt will range between 3 to 20. 8 orientations will
be used as a typical value). s ∈ {1, .., ns} and t ∈ {1, .., nt} indexes the scale and the
orientation of the filter, respectively; (ρs, θ(s,t)) are the coordinates of the center of the
filter; and (σρ, σθ) are the bandwidths in ρ and θ, common for all filters.

It is highly justified here to consider the Fourier domain through the log-polar
coordinates. Indeed in such coordinate system, the octave distribution of the filters
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(a) Fourier (b) space (real part) (c) space (imaginary part)

Figure 2.2: Multiresolution scheme with 5 scales and 6 orientations. a. Schematic
contours of the filters in the Fourier domain. b. Real part of the filters. The two first
scales are drawn at the bottom magnified by a factor of 4. Scales are arranged in rows
and orientations in columns. The low-pass filter is drawn in the upper-left part. c. The
imaginary part of the filters. The low-pass filter does not have imaginary part.

constitutes a regular grid, the center of the filters defined by Eq. 2.1 laying on an
uniform hexagonal lattice. Moreover in such coordinates the filters are purely Gaussian
and their bandwidths are constant across orientations and scales.

The filters defined by Eq. 2.1 cover only one side of the Fourier domain (see Fig 2.3.a).
It is worth considering them in Fourier as the sum of a symmetric and an antisymmetric
components. Thus, those components sum their amplitude in one side of the Fourier do-
main and cancel themselves in the other side. This explains that in the spatial domain,
the filters have both a real part (with cosine shape due to the symmetric component)
and an imaginary part (with sine shape due to the antisymmetric component). A single
log-Gabor filter defined in Fourier by Eq. 2.1 yields then both a real and an imaginary
part in the spatial domain. Both parts can be seen for the 4 scale and 4 orientation
scheme in Fig. 2.1.b and c respectively (see also in Fig. 2.2.b and c and Fig. 2.3.b and
c for other schemes). They can be compared with the filters of other multiresolution
transforms (orthogonal wavelets ’Db4’ [33] in Fig. 2.4.b and steerable pyramids [160] in
Fig. 2.4.c).

One objective of this chapter is to choose the transform parameters as close as
possible of the known physiology of simple cortical cells. According to such purpose,
log-Gabor filters are chosen for modeling the receptive field of the simple cortical cells
as proposed in [36, 124, 53]. Simple cells are known to be organized in pairs in quadra-
ture of phase [157], justifying the choice of complex-valued filters. The choice of the
bandwidth in orientation is motivated by the simple cells orientation resolution which
has been evaluated as around 20-40 degrees of full bandwidth at half response [87, 36].
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(a) Fourier (b) space (real part) (c) space (imaginary part)

Figure 2.3: Multiresolution scheme for 5 scales and 8 orientations. a. Schematic
contours of the log-Gabor filters in the Fourier domain with 5 scales and 8 orientations
(only the contours at 78% of the filter maximum are drawn). b. The real part of the
corresponding filters is drawn in the spatial domain. The two first scales are drawn at
the bottom magnified by a factor of 4 for a better visualization. The different scales are
arranged in lines and the orientations in columns. The low-pass filter is drawn in the
upper-left part. c. The corresponding imaginary parts of the filters are shown in the
same arrangement. Note that the low-pass filter does not have imaginary part. Insets
(b) and (c) show the final filters built through all the processes described in Section 2.2.

Such orientation bandwidth would require around 6 to 13 orientations to cover the 180
degrees of the plane. For the proposed scheme using the typical value of 8 orientations
we obtain filters with 31.8 degree full bandwidth at half response. The bandwidth
in scale of the simple cells has been evaluated between 0.6 and 3.2 octaves [40], and
around 1.3 octaves in mean [36] (at half response). The present filters have a 1.43 oc-
tave bandwidth. De Valois and al. [40] reported the existence of cells covering different
scales over at least 4 octaves for each retina location. At least 3 scales for each retina
location have been encountered, which justifies the choice of a multiscale transform.
Additionally the shape of the 8 orientation-scheme filters shown Fig. 2.3.b-c appears
close to the independent components learned by sparse coding or ICA techniques on
natural images [141, 43], confirming the adequacy of the filters to match natural image
features. By its parts the modulus operation on real and imaginary parts which will
be exploited for denoising in Section 2.3 and the resulting independency toward phase
are characteristic of the complex cortical cells [17]. The thresholding operation used in
the denoising method has also a biological justification [153]. The present scheme gets
then close to the V1 physiology particularly in terms of receptive field structures and
multiscale and multiorientation arrangement.
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(a) log-Gabor (b) ’Db4’ wavelets (c) Steerable pyramid

Figure 2.4: Filters from different multiresolution schemes. a. In the proposed scheme
the elongation of log-Gabor wavelets increases with the number of orientations nt. Here
the real parts (left column) and imaginary parts (right column) are drawn for the 3, 4,
6, 8, 10, 12 and 16 orientation schemes. b. As a comparison with log-Gabor scheme,
orthogonal wavelets filters ’Db4’ are shown. Horizontal, vertical and diagonal wavelets
are arranged on columns (low-pass on top). c. As a second comparison, steerable
pyramid filters [160] are shown. The arrangement over scales and orientations is the
same as for the log-Gabor scheme.

2.2.2 High-pass oriented filters

An important problem appears in the first scales where from Eq. 2.1, Gr would have
significant amplitude above the Nyquist frequency (ρ ≥ log2(

n
2
)). Cutting off abruptly

the filter response above the Nyquist frequency strongly distorts the filter shape in the
spatial domain (i.e. causes the appearance of side lobes or ringing). For this reason in
many implementations high frequencies are not covered, e.g. in [173]. Alternatively, to
not discard this part of the spectrum Nestares et al. included a non-oriented high-pass
filter [134]. Nevertheless when it is used in denoising or compression, a non-oriented
high-pass filter introduces cross-shaped artifacts, which are very salient and artificial-
looking. We propose here several solutions to design oriented high-pass filters having
smooth shape without extra side lobes. They consist first in incorporating a half-pixel
shift in the spatial position of the imaginary part of the filters. This shift allows the
first scale filters to capture much more adequately the antisymmetric features, as it
will be illustrated Section 2.2.2.C, but consequently the real and imaginary parts of the
filters have to be separately defined. Also vertical and horizontal filters are designed
in a different way than the other filters, i.e. the oblique ones (Section 2.2.2.A and B).
Note that, because the definition of the first scale filters differs from the other scales,
the transform is no more strictly a "wavelet" one, but it can be considered as a wavelet-
like transform since the general shape of the decomposition functions is obtained by
translation, dilatation, and rotation of a mother function if we except the modifications



35

proposed here for improving the reconstruction performance. Moreover the proposed
Gabor wavelets build directly on the original Morlet and coworkers proposition of using
Gabor functions for a cycle-octave multiresolution [132].

A. Real part of the horizontal and vertical filters

The real part of horizontal and vertical filters is defined by central symmetry as shown
in Fig. 2.5. Thus they are continuous across the periodicities of the Fourier domain
which is important since strong discontinuities in the Fourier domain create side lobes
and a worst localization in the spatial domain. They are also well localized and without
extra side lobes in the space domain (see Fig. 2.3.b, bottom row, 1st and 4th columns).

(a) (b)

Figure 2.5: The real part of the first scale vertical filter is constructed in Fourier by
central symmetry. a. The contours of the filters are drawn in the Fourier domain at
78% of the filter maximum. The filter is build up by summing its central symmetry.
b. Resulting filter shown in the Fourier domain (horizontal axis represent the Fourier
space having its origin in the center and the vertical axis represents the amplitude).
This filter is shown in spatial domain in Fig. 2.3.b bottom row, left column.

B. Real part of oblique filters

The real part of oblique filters (i.e. filters which are not vertical nor horizontal) is also
defined by central symmetry. But this is not sufficient to maintain the Fourier domain
continuous (across periods) and to keep a good localization in the space domain. We
propose then to fold up those filters by considering them as periodic with periodicity n.
Nevertheless when the part beyond the Nyquist frequency (|u| ≥ n

2
or |v| ≥ n

2
, where

(u, v) are the Cartesian coordinates of the Fourier domain) is folded up by periodicity, it
covers the whole spectrum with significant amplitude. To maintain the filter selectivity
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to high-frequencies, it is then necessary to filter down the induced lowest frequencies by
multiplying the folded part by an attenuation factor α defined here as a raised cosine
function (see also Fig. 2.6 for an illustration of the construction of such filters):

α =

{
1
2
cos(π d

n/3
) + 1

2
if d < n/3

0 if d > n/3
(2.2)

where d is the Euclidian distance to the closest frequency inside the Nyquist range (i.e.
u and v within [−n/2, n/2]).

(a) oversampled filter

(b) folding (c) α

(d) attenuation (e) symmetry

(f) oblique filter (g) diagonal filter

Figure 2.6: Construction of the real part of diagonal and oblique first scale filters in the
Fourier domain. a. The frequency domain is oversampled 3 times. b. The frequencies
above the Nyquist frequency are folded up by periodicity. c. Raised cosine function
α. d. The folded part of the filter is attenuated multiplying by the raised cosine α.
e. The central symmetry is summed up for the construction of a real-valued filter. f.
Resulting oblique filter. g. Resulting diagonal filter. These filters are shown in the
spatial domain in Fig. 2.3.b bottom row.
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C. Imaginary part of the horizontal and vertical filters

The imaginary part is build in Fourier similarly to the real part (Section 2.2.2.1) but
antisymmetrically instead of symmetrically. In the spatial domain the imaginary part
have to be antisymmetric, but here the axis of central antisymmetry will not be localized
in a pixel but in between two pixels, this for two related reasons. First, in the spatial
domain, an antisymmetric filter would have a zero as central coefficient. And, as first
scale filters have a frequency close to the Nyquist frequency, i.e. an approximately two
pixel period, the filter would be almost null in its central part. The filter would then be
very coarsely localized, having most of its amplitude far from its center. Consequently
the filter must be centered in between two pixels (see Fig. 2.7.a). Second, in the Fourier
domain, an antisymmetric high-pass filter is not continuous across periods while a half-
pixel shifted version is (see Fig. 2.7.b). For those reasons the filter is multiplied by
a eiπ u

n or eiπ v
n function in the Fourier domain (respectively for horizontal and vertical

filters) which induces a half pixel displacement in the space domain. As a consequence
the Fourier coefficients are now complex-valued and both the real and imaginary Fourier
parts of the filters become continuous across periods (see Fig. 2.7.b).

(a) spatial domain (b) Fourier domain

Figure 2.7: Imaginary part construction of horizontal and vertical first scale filters.
a. In the spatial domain it is necessary to shift the sampling grid by half a pixel. A
non-shifted sampling yields a function almost null in the central coefficients, most of
the amplitude being localized far from the center inducing a very poor localization of
the filter. The same antisymmetric filter built on a half-pixel shifted grid is much more
closely localized. b. Shifting the sampling grid is realized by multiplying the frequencies
by eiπ u

n (inducing the filter coefficients are complex-valued also in the Fourier domain).
It makes the filter continuous in its frequency coverage across periods.
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D. Imaginary part of oblique filters

Those filters are defined antisymmetrically and are folded by periodicity with the same
attenuation function α described in Section 2.2.2.B. Moreover they are also shifted half
the interpixel distance perpendicularly to the preferred direction of the filter by multi-
plication in Fourier by e

iπ
n

(u·tu+v·tv)·max(|tu|,|tv|), where (tu, tv) is the normalized preferred
direction vector of the filter.

E. Second scale filters

Second scale filters are also folded by periodicity with attenuation α (see Section 2.2.2.B).
Here nevertheless it is not necessary to shift half-pixel in position the antisymmetric
filter and the same definition is used for all orientations. An example of second scale
filter is shown in Fig. 2.8. In the coarser scales (i.e. s ≥ 3), the filter part beyond the
Nyquist frequency has sufficiently low amplitude to be cut off.

Figure 2.8: Second scale filters are constructed in Fourier by folding the filters by
periodicity and applying the attenuation function α on the folded part. (Second scale
filters are shown in the spatial domain in Fig. 2.3.b,c next to last rows.)

2.2.3 Low-pass filter

The multiresolution scheme is completed with a low-pass filter (DC) for recovering the
luminance information. The low-pass filters could be defined simply as a Gaussian
low-pass filter as in [158]. Nevertheless for a better filling-in of the low-pass residual
frequencies not covered by the log-Gabor filters, it is defined in a different way. Two
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additional scales above the number of scales ns deployed are built and summed up
together (as the root sum squared). Moreover the part inside the highest additional
scale is set up to one. In practice if 5 scales are deployed, the filters that would
correspond to the 6th and 7th scales are summed and additionally the space inside the
7th scale (ρ < log2n− 7) is set up to one (the resulting filter can be seen in the spatial
domain in Fig. 2.3.b, upper left part.)

2.2.4 Direct log-Gabor wavelet transform

The whole set of bandpass filters, high-pass filters and the low-pass filter are indexed
by Ω = {1, .., nsnt + 1}. The filter set defined in the Fourier domain is then refereed
as (Gr)r∈Ω. The convolution of the image x by any filter Gr is hr which is called a
channel. It is computed in the Fourier domain as:

hr = F−1 (Gr · F(x)) (2.3)

where F and F−1 are respectively the direct and inverse discrete Fourier transform.
The whole set of channels, (hr)r∈Ω, is called a pyramid (see Fig. 2.9 for an example
of such a pyramid for a 5 scale, 6 orientation scheme). Finally, the log-Gabor wavelet
transform of x is defined by:

W(x) = (hr)r∈Ω. (2.4)

2.2.5 Reconstruction transform

The reconstruction transform W† consists in filtering in Fourier each channel hr by the
corresponding filter Gr (where Gr is the complex conjugate of Gr. Note that in most
cases the filter Gr in Fourier is real-valued, so that Gr = Gr):

zr = F−1
(
Gr · F(hr)

)
(2.5)

Each zr is called a reconstructed channel. All reconstructed channels are finally summed
up to obtain the reconstruction:

W†(h) =
∑
r∈Ω

zr = F−1

(∑
r∈Ω

Gr · F(hr)

)
(2.6)

Because the image x is real, its Fourier transform has hermitian symmetry. For
this reason, we used band-pass Gabor filters covering only half of the Fourier plane,
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(a) lena

(c) sum of orientations (b) linear transform (modulus)

Figure 2.9: 5 scales, 6 orientations pyramid of a 96×96 detail of the image ’Lena’ (’lena’
is shown in the inset (a)). In (b) the 5 scales are arranged in rows. Their different sizes
are due to the different downsampling applied to each scale (see Section 2.2.7). Along
columns are arranged the six orientation channels. The low-pass filter is shown in the
first row between the two first orientations. Only the moduli of the coefficients are
shown here. Black colors indicates high moduli values, and white colors low coefficient
values. In (c) all the orientations are summed up for each scale. The largest insets
represent the first and second scale (respectively for the bottom and upper insets), then
from the largest to the smallest, the 3rd, 4th, low-pass and 5th scales are drawn.

while the other half plane is further completed at the reconstruction using hermitian
symmetry (this completion is obviated in the equations).

Because the transform is overcomplete, it can not be strictly bijective nor invertible:
the transform domain has not the same dimension as the original domain. But, under
the conditions that will be further exposed in Section 2.2.9, W† can be the pseudo-
inverse of W so that W†(W(x)) = x, ∀x ∈ R

N .

2.2.6 Matrix notation

Because the transform is linear, it can also be viewed as a matrix operation W ∈ R
N×M .

W can then be described as the scalar product of x ∈ R
N with a family of decomposition

functions (wk)k∈{1,..,M} (the spatial log-Gabor functions), with each wk ∈ R
N :

Wx = h = (hk)k∈{1,..,M} = (< wk,x >)k∈{1,..,M} (2.7)
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Because we use the same filters wk for reconstruction, the reconstruction transform
is W T (where T refers to the transposed matrix) and for all h ∈ R

M :

W Th =

M∑
k=1

hkwk (2.8)

Under the conditions defined in Section 2.2.9, W T provides exact reconstruction. Thus
the transform is said self-invertible (i.e. exact reconstruction is achieved using the same
filters both for the decomposition and the reconstruction) [182].

2.2.7 Sparse downsampling

To limit the expansion of the transform domain it is desirable to downsample the chan-
nels as much as possible, but we desire to avoid at the same time any kind of aliasing.
The sparse downsampling method [219] can be applied advantageously here for down-
sampling 3rd, 4th, 5th and low-pass filters both in u and v by factors of 2, 4, 8 and 8,
respectively. The procedure is implemented in the Fourier domain as follows: a window
of the defined downsampling size is centered on the filter and its position is adjusted
so as to retain inside the maximum quantity of the filter amplitude (this operation is
achieved by displacing iteratively the window in all the possible directions). Filter co-
efficients outside the window are zeroed out. In this way, only filter coefficients smaller
than 5% of the filter maximum are cut off which preserves the smooth shape of the
filters in the spatial domain. Using those filters, the channels can then be downsampled
in an invertible manner without mixing frequencies i.e. without introducing aliasing:
any frequency of the downsampled channel corresponds bijectively to one unique non-
zeroed frequency in the upsampled version of the channel (the sparse downsampling
procedure is illustrated in Fig. 2.10).

The present log-Gabor filters which are complex-valued in the spatial domain bring
then an additional advantage: the filters lie only in one side of the Fourier domain
allowing the implementation of the sparse downsampling method. In comparison, pure
real or pure imaginary spatial filters are symmetric or antisymmetric in Fourier and
compel to downsample at Nyquist frequency, that is twice the highest frequency. The
sparse downsampling compensate largely that two real values (i.e. a complex one) are
obtained for each coefficient: complex-valued log-Gabor filters can still be downsam-
pled by a factor around two times larger than real-valued filters. Consequently, the
overcompleteness factor measured as the ratio M/N , where M is the dimension of the
transform domain and N is the dimension of the image, is reduced to M/N � 40 (it
can be approximated as 14

3
nt where nt is the number of orientations).
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(c) downsampled
filter

(d) downsampled
(a) spatial channel (b) log-Gabor filter channel

Figure 2.10: Sparse downsampling method. a. 4th scale 2nd orientation channel of
the image "MIT" (the original can be seen in Fig. 2.13). Only the moduli of the
complex coefficients are shown. b. Corresponding log-Gabor filter (scale 4, orientation
2) represented in the Fourier domain (Fourier origin is located in the center of the
inset). A window of the desired downsampling size is adjusted on the filter so as to
retain inside the maximum of the amplitude. Filters coefficients outside the window are
zeroed out (only coefficients lower than 5% of the filter maximum are eliminated). c.
The filter can be downsampled in an invertible manner by a factor 4×4 by removing the
zero coefficients. d. The resulting downsampled channel obtained after inverse Fourier
transform (as in (a) only the moduli of the coefficients are shown).

In parallel, it is straightforward to prove that exact reconstruction using the same
non-orthogonal decomposition functions for the analysis and the synthesis requires the
dictionary to be overcomplete.

Proof: Consider a signal x ∈ R
N , and a non-orthogonal dictionary (wi)i∈{1,..,M} of R

N .
The linear transform is (hi)i∈{1,..,M} with hi =< x,wi >, where <,> represents the scalar
product. The exact reconstruction using the same dictionary induces:

x =
M∑
i=1

< y,wi > wi ∀y ∈ R
N . (2.9)

Since the dictionary is non-orthogonal, there exist p and q ∈ {1, ..,M} that verify < wp,wq > �=
0. From Eq. 2.9 we have:

wp =
M∑
i=1

< wp,wi > wi (2.10)

Then:

(1 − ||wp||2)wp =
M∑

i=1, i�=p

< wp,wi > wi (2.11)

Hence:
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1. if ||wp||2 = 1: As < wp,wq > �= 0, there exists a sum of non-zero vectors of the dictionary
(wi)i∈{1,..,M} which is null.

2. if ||wp||2 �= 1: wp is a linear combination of (wi)i�=p.

In both cases the vectors (wi)i∈{1,..,M} are not linearly independents. The dictionary is at
least complete so that the exact reconstruction property is verified. Hence, the dictionary is
overcomplete.

Moreover to preserve the smooth shape of the filters, M must be several times
larger than N. Here a higher downsampling would distort the filters or induce aliasing
effects. The above mentioned overcomplete factor of 40 is then necessary. It is also
consistent with the redundant number of simple cortical cells compared with the number
of photoreceptor neurons [87] which can be evaluated around 25.

The lack of aliasing guaranties the shiftability in space (or translation invariance) [182]
which is of special importance for image processing tasks such as image denoising, im-
age fusion, edge extraction, etc: the transform coefficients do not change drastically for
a small displacement in space.

2.2.8 Border strategy

For a better response in the regions close to the border of the image, it is advantageous
adding around the image a few extra rows and columns built as a smoothed version of
the closest regions of the image. This would avoid the appearance of high-amplitude
coefficients due to the sharp luminance transitions from one side of the image to the
other one. The number of pixels added can be e.g. 2ns in each side of the image.

2.2.9 Methods for reconstruction improvement and exact re-
construction

The condition of exact reconstruction comes from Eq. 2.3 and Eq. 2.6 as:∑
r∈Ω

|Gr|2 = 1 (2.12)

Lets defined S(u, v) =
∑

r∈Ω |Gr|2(u, v). In the sequel we propose different methods for
improving the reconstruction, i.e. making S closer to 1.
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Hexagonal Fourier lattice by shifting even scales in orientation

As already included in Eq. 2.1 in the definition of θ(s,t), every second scale is shifted in
orientation by 1

2
π
nt

angle. This shift, originally proposed in [74], induces a hexagonal
configuration which provides a more uniform coverage of the Fourier domain (see also
Fig 2.3.a).

Bandwidth adjustment

The bandwidths defined by Eq. 2.1 have been empirically adjusted. They allow a fairly
uniform coverage of the Fourier domain, the variations of S measured as 2(Smax −
Smin)/(Smax + Smin) being lower than 0.6% between the 2nd and 5th scale.

Exact reconstruction

Each filter coefficient Gr(u, v) is finally normalized by
√

S(u, v), thus from Eq. 2.12
we have exact reconstruction filters. Because S is already very close to the flat re-
sponse before the division, the deformation introduced is small and does not produce
appreciable distortions in the spatial domain (in particular side lobes are sufficiently
small in amplitude to not be perceptible). We have now ∀x ∈ R

N , W TWx = x. Note
nevertheless that, due to the overcompleteness, in general WW Th is not equal to h:
∃h ∈ R

M , WW Th �= h.

It is then straightforward to show that W is a tight frame [117]. We have from
Eq. 2.3 (where x are the 2D spatial coordinates and v the 2D frequency coordinates):∑

x

|hr(x)|2 =
∑

x

|F−1 (Gr · F(x)) |2 (2.13)

By applying the Parseval theorem on the second member of Eq. 2.13:∑
x

|hr(x)|2 =
∑

v

|[Gr · F(x)](v)|2 =
∑

v

|Gr(v)|2 · |[F(x)](v)|2 (2.14)

Summing over all the filters r we obtain through the Eq. 2.12 and the Parseval theorem:∑
r

∑
x

|hr(x)|2 =
∑

v

[|[F(x)](v)|2 ·
∑

r

|Gr(v)|2 =
∑

v

|[F(x)](v)|2 = ||x||22 (2.15)

where ||x||2 is the norm-2 of the vector x. Moreover using the matrix notation,∑
r∈Ω

∑
x |hr(x)|2 =

∑M
k=1 | < wk,x > |2.
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This demonstrates that the dictionary of functions (wk) ∈ {1, ..M} forms a tight
frame, since for any x ∈ R

N ,

M∑
k=1

| < x, wk > |2 = ||x||22 (2.16)

2.3 Application to image denoising

The present log-Gabor wavelet scheme can be used efficiently in many classical image
processing applications such as edge extraction (see Chapter 3 and [63, 64]), image
fusion [170], image denoising (see Chapter 4 and [63, 169]), texture analysis [31] and
also image compression (see Chapter 4 and [60, 62, 64]). Here to illustrate the efficiency
of the transform we propose to compare its ability to segregate the noise from the signal
in an image denoising scenario.

Most currently used denoising methods are based on anisotropic diffusion [203, 188,
78, 70, 113] or wavelet thresholding techniques [44, 28, 20, 160]. Wavelet or multiresolu-
tion image denoising applications usually proceed in three stages: first a transformation,
then a thresholding operation and finally the inverse transform for reconstructing the
image. The transform aims at describing the signal in a domain where image content
(principally the contrast edges) has statistically different amplitude than the noise:
edges induce high amplitude coefficients while spatially incoherent noise produces a
low level of amplitude spread in all the coefficients. A basic thresholding permits then
to segregate most of the signal from the noise. There exist many methods for deter-
mining the optimal threshold [44, 101, 224, 20] (see reviews in [197, 165]). Moreover
more elaborated methods [21, 160] also use the context (i.e. they take into account the
neighborhood of each coefficient instead of solely the coefficient in order to decide if it
represents signal features or for noise).

Here we aim at comparing only the efficiency of the log-Gabor wavelet transform
in comparison with other multiresolutions independently of the method for threshold
determination. Therefore we will test the transform in a series of classical images
(128×128 tiles will be used) where Gaussian noise has been added. A gradient descent
technique is applied to find the best threshold, i.e. the one giving the highest PSNR
(Peak Signal-to-Noise Ratio) given the original image. The PSNR is calculated in dB
as −20log10(σe) where σe is the Root Mean Square Error (RMSE) between the original
and the denoised image. Thus, the experiment finds the best result achievable if the
threshold determination technique would be optimal. It measures then the ability of
each transform to separate the signal from the noise by thresholding. Note that these
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(a) Original image (b) noisy image, 20.07dB (c) 6 orient., 26.72dB

(d) 8 orient., 26.82dB (d) 12 orient., 27.10dB (f) 16 orient., 27.10dB

Figure 2.11: Denoising results through log-Gabor wavelets using different numbers of
orientations. b. The noisy image has a PSNR equal to 20.07dB. c. In the case of
denoising using 6 orientations a significant number of high amplitude noise points are
still visible. The PSNR is equal to 26.72dB. d. Using 8 orientations, the number of
noise points is reduced. The larger size of the filters could explain in part the better
segregation between edges and noise. The PSNR improves to 26.82dB. e. Using 12
orientations the PSNR is 27.099dB. Almost all isolated noise points are removed but
some elongated artifacts appear. f. Although the best PSNR result is obtained here
for 16 orientations (PSNR=27.100dB), many salient elongated artifacts appear.
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experiments are not only significant for image denoising but also for many other image
processing tasks such as image compression or edge and feature extraction for which
the possibility to code the image content through a reduced set of large coefficients is
of primary importance.

For each experiment all the multiresolutions are implemented with five scales. A
vector of five thresholds (one for each scale) is determined by gradient descent searching
for the best PSNR to the original image. In those experiments no strategy has been set
up for improving the response close to the borders of the image for any multiresolution.
This allows to visualize the artifacts (e.g. ringing) due to the abrupt edges in those
regions.

2.3.1 Number of orientations

Figure 2.12: Denoising results as a function of the number of orientations. The denoising
results are calculated over a set of 6 images (see the detailed results in Table 2.1), each
of them tested with 3 different levels of noise (the PSNR is around 14, 20 and 28 dB).
To reduce the influence of the large variability of conditions across experiments, the
mean and standard deviation (in dB) are calculated taking as reference the previous
number of orientations tested. Results show then how the denoising improves when the
number of orientations is incremented from 3 to 4 orientations, from 4 to 5, from 5 to
6, etc. Results improve clearly from 3 to 8 orientations, they then achieve a maximum
around 12 orientations and latter decrease slowly when more orientations are employed
(see also the filter shapes as a function of the number of orientations in Fig. 2.4.a).
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The first experiment aims at determining the optimal number of orientations to be
used with log-Gabor wavelets. The question of the number of orientations is important
since (bi-) orthogonal wavelets deploy just 3 orientations whereas more recent studies
claimed the necessity of 6 orientations [173, 96], 8 orientations or more [160, 63], a
variable number of orientations depending of the scale [41], or even up to 64 orienta-
tions [189].

Results gathered in Table 2.1 and Fig. 2.12 are calculated over a set of 6 images each
of them tested with 3 levels of noise. They show that the denoising improves importantly
between 3 and 8 orientations which confirms the necessity of using more orientations
than (bi-) orthogonal wavelets do. The better results are obtained around 8 to 12
orientations but with variability, since in particular cases the best results are obtained
with as few as 5 or 6 orientations or as many as 16 or 20 orientations. Visual inspection
of Fig. 2.11 allows to see first that the number of remaining noise points decreases when
the number of orientations increases particularly from 6 to 8 orientations and from 8
to 12 orientations. And secondly that 12 or 16 orientations yield elongated artifacts.
Such artifacts do not appear, or at least are much less salient when using 8 orientations
or less. All those results support the choice of 8 orientations as a good compromise
between a low mathematical error and a high perceptual quality. This choice is also
consistent with biological models of simple cells described in Section 2.2.1. Moreover it
will allow to fairly compare with the steerable pyramids used in [160], since they also
implement 8 orientations.

Note also that in the present scheme (as in other studies, see e.g. [189, 41]) the
bandwidth varies depending on the number of orientations. Nevertheless it would be
interesting to test both the number of orientations and the bandwidth parameters sep-
arately.

2.3.2 Comparison between different multiresolution schemes

In Table 2.2 log-Gabor wavelets with 8 orientations are compared with orthogonal
wavelets ’Db4’ [44], undecimated wavelets ’Db4’ [28, 20, 111], and steerable pyramids
with 8 orientations [160, 182] (see the shape of the filters Fig. 2.3 and Fig. 2.4). Soft
thresholding is applied in the first two methods. Given a threshold, it consists in the
diminishing (or shrinkage) of all coefficients by the threshold value (and consequently
it zeroes out all the coefficients which amplitude lies below the threshold). Table. 2.3
shows that for almost all the experiments soft thresholding provides better results than
hard thresholding (i.e. zeroing out the coefficients lying below the threshold and main-
taining unchanged the coefficients exceeding it) for critically sampled wavelets and also,
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(a) Original image (b) Noisy image, 15.56dB (c) orthogonal, 20.00dB

(d) undecimated, 20.57dB (e) steerable, 21.25dB (f) log-Gabor, 21.77dB

Figure 2.13: Denoising results. a. 128 × 128 pixel detail of the image "MIT". b. The
noisy version has a PSNR of 15.56dB. c. Denoising by orthogonal wavelets provides a
20.00dB denoised image. d. Undecimated wavelets yield a 20.57dB denoised image. e.
Steerable pyramid yields a 21.25dB denoised image. f. Log-Gabor wavelets achieve a
21.77dB denoised image.

although in a lower amount, for undecimated wavelets. This result is consistent with
previous studies, see e.g. [44]. On the contrary hard thresholding yields better results
for steerable pyramids and log-Gabor wavelets. Hard thresholding is then used for both
those methods. For log-Gabor wavelets the threshold is applied in the modulus of the
complex coefficients with exception of the first scale where it is applied separately on the
real and imaginary parts of the coefficients because, as exposed in Section 2.2.2, they
do not correspond exactly to the same position. It is not totally surprising that hard
thresholding performs better here than soft thresholding since it preserves better the
high amplitude coefficients which are the ones representing the image features. On the
contrary the fact that soft thresholding provides better results for orthogonal wavelets
could be due to the lower degree of matching between decomposition functions and
image features. This would induce that each image feature is represented by a sum of
transform coefficients having very different amplitude and being consequently less ade-
quate for the segregation by hard thresholding. The lack of translation invariance would
also enhance this effect (this would explain that soft thresholding does not improve so
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(a) Original image (b) Noisy image, 20.34dB (c) orthogonal, 24.37dB

(d) undecimated, 24.99dB (e) steerable, 25.52dB (f) log-Gabor, 26.01dB

Figure 2.14: Denoising results using different multiresolution schemes. a. 128 × 128

detail of the image "Lena". b. The noisy version has a PSNR equal to 20.34dB. c.
Denoising by wavelets provides a 24.37dB denoised image. d. Undecimated wavelets
yield a 24.99dB denoised image. e. Steerable pyramid yields a 25.52dB denoised image.
f. Log-Gabor achieves a 26.01dB denoised image. (see also in Table 2.2 for the entire
result set).

much the results of undecimated wavelets).

It appears from Table 2.2 that apart from very few exceptions, undecimated wavelets
always provide better results than critically sampled wavelets (+0.51 dB of improvement
in mean, the standard deviation being σ=0.18 dB). Steerable pyramids provide better
results than undecimated wavelets (+0.40±0.36 dB of improvement) and log-Gabor
wavelets outperform all the three former methods (+0.38±0.26 dB of improvement
compared with steerable pyramids. Improvements in terms of PSNR are observed
in each of the 30 cases tested). Visual inspection on the Fig. 2.13, 2.14, 2.15, 2.16
and 2.17 show that denoised images contain artifacts which shape is characteristic of
the multiresolution employed. Indeed the shape of the artifacts corresponds to the
shape of the decomposition functions shown Fig. 2.3 and Fig. 2.4. Residual features
due to noise also remain, their quantity could be reduced by a more severe thresholding.
Here the thresholds are adjusted for the best PSNR. The thresholding should be a bit
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Table 2.2: Denoising results given as PSNR in dB. The mean μ and standard deviation
σ are given in each case in comparison with the previous method. Best results are
indicated by boldface characters.

Original noise orthogonal undecimated steerable log-Gabor
image level soft soft hard hard

34.10 35.42 35.88 36.54 37.12
bar- 28.11 30.36 30.99 32.16 32.57
bara 20.25 24.6 25.27 26.70 26.72

14.74 21.08 21.64 22.69 22.92
10.25 18.52 18.82 19.14 19.28
34.33 35.28 35.83 36.01 36.45

tea- 28.41 30.12 30.90 31.24 31.63
pot 20.71 24.44 25.28 25.62 25.79

15.06 20.75 21.45 21.69 21.77
10.41 17.48 17.91 17.96 18.06
34.12 34.29 34.35 34.30 34.35

man- 28.09 28.65 28.83 28.96 29.06
drill 20.3 22.24 22.77 23.26 23.42

14.75 18.64 19.25 19.73 20.01
10.28 16.22 16.67 16.98 17.16
34.15 35.66 36.13 36.09 36.52
28.2 31.31 32.02 32.36 32.94

house 20.38 26.86 27.59 28.28 29.10
14.78 23.58 24.09 24.83 25.37
10.2 19.94 20.27 20.72 20.89
33.97 34.83 35.10 35.01 35.45
28.15 29.79 30.23 30.54 31.11

lena 20.34 24.37 24.99 25.52 26.01
14.89 21.27 21.80 22.16 22.59
10.26 18.32 18.67 18.78 18.94
34.82 35.73 36.12 36.06 36.94
28.79 30.51 31.10 31.22 32.29

mit 20.98 24.10 24.85 25.29 25.95
15.56 20.00 20.57 21.25 21.77
10.64 16.21 16.56 16.86 17.10
34 +0.95±0.42 +0.37±0.16 +0.10±0.26 +0.47± 0.25

mean 28 +1.83±0.76 +0.55±0.20 +0.40±0.35 +0.52± 0.29
improv- 20 +3.94±1.38 +0.69±0.096 +0.65±0.36 +0.39± 0.29
ement 15 +5.92±1.58 +0.58±0.062 +0.59±0.27 +0.35± 0.16
(μ ± σ) 10 +7.44±1.43 +0.37±0.053 +0.26±0.14 +0.16± 0.044

all +4.02±2.71 +0.511±0.180 +0.402±0.355 +0.378± 0.259
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Table 2.3: Comparison between hard and soft thresholding. Denoising results are given
as PSNR in dB and in last row as mean and standard variation of the Gain obtained
by the use of soft thresholding instead of hard thresholding.

image noise orthogonal undecimated steerable log-Gabor
level wavelets wavelets pyramids wavelets

hard soft hard soft hard soft hard soft
34.1 34.55 35.42 35.62 35.88 36.54 36.08 37.12 36.31

bar- 28.11 29.33 30.36 30.95 30.99 32.16 31.37 32.57 31.45
bara 20.25 23.7 24.6 25.43 25.27 26.7 25.83 26.72 25.68

14.74 20.22 21.08 21.52 21.64 22.69 22.18 22.92 22.15
10.25 18.35 18.52 18.73 18.82 19.14 19.03 19.28 19.09
34.33 34.47 35.28 35.3 35.83 36.01 35.84 36.45 36.08

tea- 28.41 29.07 30.12 30.42 30.9 31.24 31 31.63 31.13
pot 20.71 23.57 24.44 25.04 25.28 25.62 25.43 25.79 25.46

15.06 20 20.75 21.28 21.45 21.69 21.65 21.77 21.66
10.41 17.21 17.48 17.83 17.91 17.96 18 18.06 18.02
34.12 34.12 34.29 34.12 34.35 34.3 34.44 34.35 34.45

man- 28.09 28.09 28.65 28.15 28.83 28.96 29.05 29.06 29.07
drill 20.3 20.77 22.24 22.11 22.77 23.26 23.18 23.42 23.21

14.75 17.62 18.64 18.89 19.25 19.73 19.65 20.01 19.73
10.28 15.61 16.22 16.54 16.67 16.98 16.89 17.16 16.94
34.15 34.38 35.66 35.4 36.13 36.09 36.15 36.52 36.37
28.2 30.09 31.31 31.57 32.02 32.36 32.2 32.94 32.56

house 20.38 26.1 26.86 27.74 27.59 28.28 27.84 29.1 28.24
14.78 23.02 23.58 24.39 24.09 24.83 24.3 25.37 24.53
10.2 19.69 19.94 20.5 20.27 20.72 20.41 20.89 20.43
33.97 33.97 34.83 34.42 35.1 35.01 35.08 35.45 35.37
28.15 28.52 29.79 29.73 30.23 30.54 30.32 31.11 30.66

lena 20.34 23.16 24.37 24.62 24.99 25.52 25.24 26.01 25.48
14.89 20.56 21.27 21.69 21.8 22.16 22 22.59 22.2
10.26 18.03 18.32 18.61 18.67 18.78 18.74 18.94 18.8
34.82 35 35.73 35.85 36.12 36.06 35.79 36.94 36.45
28.79 29.65 30.51 30.91 31.1 31.22 30.79 32.29 31.43

mit 20.98 23.32 24.1 24.98 24.85 25.29 24.8 25.95 25.12
15.56 19.62 20 20.68 20.57 21.25 20.77 21.77 20.95
10.64 15.98 16.21 16.73 16.56 16.86 16.68 17.1 16.73

Gain - +0.76 ±0.35 +0.21 ±0.29 -0.24 ±0.25 -0.45 ±0.32
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(a) Original image (b) Noisy image, 28.41dB (c) orthogonal, 30.12dB

(d) undecimated, 30.90dB (e) steerable, 31.24dB (f) log-Gabor, 31.63dB

Figure 2.15: Denoising results on a 128 × 128 detail of the image "teapot".

higher for avoiding most of the residual noise at the cost of loosing an additional part of
the signal. This would be perceptually more pleasant even if the PSNR would be worst.
It is remarkable that the log-Gabor method generally induces less amount of artifacts
(particularly when compared with orthogonal and undecimated wavelets but also in
comparison with steerable pyramids) which would indicate an augmented statistical
separation in the transform domain between edge and noise features. In addition the
artifacts can appear more natural looking so that they can result less annoying and be
more easily perceived as image features (specially for images without human features,
see Fig. 2.13, Fig. 2.15, Fig. 2.16 and Fig. 2.17).

It has already been established that the translation invariance property improves the
results of overcomplete representations in comparison to critically sampled ones [182,
28, 20, 111], also because of the aliasing present in critically sampled wavelets. The
better resolution in orientation can explain the better results of steerable pyramids and
log-Gabor wavelets on undecimated wavelets. Note moreover that the finer bandwidth
in orientation yields larger filters in the space domain, consequently it involves more
pixels in the calculation of the coefficients: the noise is averaged on more pixels what
leads to a better noise robustness (Fig. 2.4.a shows how the filter size increases with
the number of orientations).
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(a) Original image (b) Noisy image, 10.28dB (c) orthogonal, 16.22dB

(d) undecimated, 16.67dB (e) steerable, 16.98dB (f) log-Gabor, 17.16dB

Figure 2.16: Denoising results on a 128 × 128 detail of the image "mandrill".

The better performances of the log-Gabor representation in comparison to steerable
pyramids could be explained by four factors: (1) the Gabor (Gaussian) filter shape
offers an optimal joint localization in frequency and space, which is an improvement in
comparison with the raised cosine shape of steerable pyramids. (2) Log-Gabor functions
are complex-valued with odd and even parts which permit a better capture of both
edges and ridges [101, 63]. (3) The oriented high-pass log-Gabor filters are smooth
and without extra side-lobes in space (while the high-pass steerable filters [160] shown
in Fig. 2.4.c, bottom row seem to be constructed without the precautions described
in section 2.2.2). (4) The proposed log-Gabor filters have elongated shape whereas
steerable filters are more isotropic in size, i.e. log-Gabors have larger bandwidth in
frequency (1.43 octave against 1 octave for steerable pyramids) and narrower bandwidth
in orientation (37 degrees against 50 degrees for steerable). The elongated shape seems
more appropriate for two reasons: they are adapted from biological data and they are
also closer to the independent component of the natural images extracted by sparse
coding or ICA techniques [141, 43]. Thus the log-Gabor functions should match better
with edges of natural images (yielding a stronger statistical differential response between
edge and noise features) and as an additional advantage they can appear more "natural
looking" to human observers.
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(a) Original image (b) Noisy image, 20.38dB (c) orthog., 26.86dB

(d) undecimated, 27.57dB (e) steerable, 28.28dB (f) log-Gabor, 29.10dB

Figure 2.17: Denoising results on a 128 × 128 detail of the image "house".

2.4 Conclusions

We proposed an overcomplete multiresolution scheme mimicking the receptive field
properties of simple cortical cells and optimized for achieving exact reconstruction
through carefully designed filters. The proposed log-Gabor wavelet transform is op-
timized by taking into account mathematical, biological vision and image statistics
considerations. From the mathematical point of view, Gabor functions are optimally
joint-localized in frequency and space, which makes them optimal functions to charac-
terize signals. The log-Gabor wavelet transform is moreover self-invertible which has
been shown important for preventing the appearance of artifacts. Concerning biolog-
ical vision criteria, the transform filters mimic closely the receptive field of V1 simple
cortical cells. The proximity to biological vision can help simultaneously for choosing
adequate transform parameters, for limiting the saliency of the artifacts and for further
developing the biological models. And third, in relation with statistics of natural im-
ages, the transform filters have similar shape as the independent components learned
from natural images, which support the proposed log-Gabor wavelets as an adequate
scheme for matching natural image features.
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The transform showed excellent results for segregating the signal from the noise by
hard thresholding. The comparison with other methods (orthogonal wavelets, undec-
imated wavelets and steerable pyramids) showed an overall better performance of the
proposed log-Gabor wavelet technique both in terms of the mathematical error and per-
ceptual quality. The transform confirms then to be an adequate tool for representing
features of natural images and to segregate them from incoherent noise.

Among further developments, a whole image denoising application could be set up by
implementing a dedicated threshold determination method which took into account the
relationships between neighboring coefficients as proposed e.g. in [21, 160]. Many other
applications can also be derived since the ability of coding image features through a
reduced set of large transform coefficients makes the transformation suitable for many
applications such as image fusion or feature extraction. For image compression but
also for general applications the redundancy induced by the overcompleteness could be
recovered by deploying sparse coding algorithms (see Chapter 4).



Chapter 3

Edge extraction through energy
models

"Toute la vie des sociétés dans lesquelles règnent les condi-
tions modernes de production s’annonce comme un immense
accumulation de spectacles. Tout ce qui était directement vécu
s’est éloigné dans une représentation."

Guy Debord, la société du spectacle.

3.1 Introduction to edge extraction

First edge enhancement technics where developed early in the 1970. Prewitt [162]
and Sobel [187], among others (see [155] for a review) proposed convolutions with small
oriented kernels for edge enhancement. Later in the 1980 more complex models inspired
from the visual system were based on Laplacian filters, i.e. on isotropic bandpass filters.
Edges were then extracted as coincidence across scales of zero-crossing of the Laplacian
responses [125, 80].

It was further demonstrated that oriented bandpass filters are more efficient than
isotropic filters for edge extraction [16, 38]. In 1986 Canny [16] proposed a method based
on criteria of good detection (i.e. low probability to miss existing edges), good local-
ization and single detection (i.e. avoiding for an edge to be detected twice) to build
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antisymmetric 2D filters for edge extraction. Canny’s scheme implements additional
mechanisms for adapting the filter shapes to the noise level of the image or to gather
edges detected at different scales. It also avoids the appearance of gaps within contin-
uous contours by using a hysteresis mechanism: the threshold of detection is dropped
by a factor 2 to 3 if an edge was already detected in an adjacent pixel. Thanks also
to the optimization of such important details, the Canny edge detector still constitutes
nowadays a reference.

Energy models are based on the quadratic sum of two oriented bandpass filters in
quadrature of phase [1, 133, 149]. Such non-linear combination of filters is directly
inspired from biological models of complex cells of the primary visual cortex. It was
shown particularly efficient for the simultaneous extraction of both edges (i.e. contrast
changes in form of steps as in the example of the Fig 3.3.b), and ridges (i.e. dark
or bright lines or "roofs", see Fig 3.3.a. The term edge is also used here to refer
indistinctly to both the edges and ridges.) [175, 81, 102]. Later developments also deal
with contour completion [75, 79, 112, 131, 221, 205]. Reviews on biologically inspired
contour extraction methods can be found in [135, 109].

First energy models [133] proposed to extract edges similarly to the Canny method
by non local-maxima suppression. This procedure consists in filtering through oriented
kernels and in extracting only the coefficients which are local maxima across the di-
rection perpendicular to the filter preferred orientation. This procedure is also called
competition in [75, 131] or lateral inhibition in [221, 112]. A refinement incorporating
inhibition between orientation filters was latter proposed [75]. This non-maxima sup-
pression is itself biologically plausible since lateral interactions in V1 are also known to
induce inhibiting effects between neighboring cells (see [94] and Section 1.4). A second
known type of lateral interactions consisting in the facilitation between co-aligned and
co-circular cells were also implemented in later energy models for improving the edge
extraction [112, 221, 83, 75]. Those interactions are also called enhancement, cooper-
ation or excitatory horizontal connections. The facilitation consists in convolving the
oriented individual edges with a "8-shape" or "association field" inspired from psy-
chophysics [53, 84] or on Gestalt psychology [201]. Although recent edge extraction
energy models usually incorporate the same steps of oriented bandpass filtering, lateral
inhibition and facilitation, different kind of implementation were proposed. Yen and
Finkel proposed a facilitation based on the number of co-aligned edge segments [221].
Others simply deploy a convolution by the association field [75, 112]. Also, it is worth
noting that some models deploy the facilitation before the inhibition [221, 201] while
others implement first the inhibition [75, 131]. Another kind of interaction for edge
extraction could be based on the phase congruency across scales as proposed in [102].
Those procedures of inhibition/facilitation where shown able to extract edges but also
to segregate image features from spatially incoherent noise and to restore and enhance
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image features [75, 131, 201].

Key-point features like crossing and angles were also shown important for improving
the extraction. Their detection can itself be inspired from the V1 hyper-complex (or
end-stopped) cells [83]. Such key-points are necessary e.g. for extracting anomalous
contours due to occlusions [83, 129].

As a different biologically-inspired algorithm, Grigorescu et al. used a non-classical
receptive field model incorporating inhibition from surround for segregating edges from
texture [73]. Apart from energy models based on complex cells architecture, recent edge
extraction technics like tensor voting [201] are based on the Gestalt psychology [99, 204].
Iverson and Zucker used logical operations to refine the linear filtering [90]. By its part
the SUSAN operator is based on a similarity measurement inside a local window [186].
It can also be taken advantage of additional cues like texture [198] and color [126] to
improve the edge extraction (see [98] for a review on color edge extraction).

In this chapter we propose in Section 3.2 an energy model adapted to log-Gabor
wavelets. Results on edge/ridge extraction in comparison with the Canny method are
presented in Section 3.3 and conclusions are given in Section 3.4.

3.2 Edge extraction using log-Gabor wavelets

We propose here an edge extraction method based on previous energy models and
adapted to the log-Gabor wavelet scheme proposed in Chapter 2 (here the 6 orien-
tations 5 scales scheme is employed. 6 orientations are used instead of 8 to limit
the overcompleteness factor, nevertheless the 8 orientation scheme could also be used
advantageously here). The proposed edge extractor incorporates three steps: first a
hard-thresholding methodology for noise elimination (Section 3.2.1), second a lateral
inhibition step for edge localization (Section 3.2.2) and third a lateral facilitation for
evaluating the contour saliency and for eliminating residual noise or irrelevant edges
(Sections 3.2.3 and 3.2.4). The inhibition/facilitation stage is summarized Fig. 3.1
and included within the whole visual cortex model in Fig. 3.2. Table 3.1 gathers the
correspondences between the visual physiology and the image processing methods im-
plemented for edge extraction and also for compression (Chapter 4).
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Figure 3.1: Inhibition and facilitation between Gabor wavelet coefficients. The inhibi-
tion zeroes coefficients which are not local-maxima in the direction perpendicular to the
preferred orientation of the filter. It also occurs across orientations (see Section 3.2.2).
The facilitation or cooperation takes place between coefficients co-aligned in the pre-
ferred orientation of the filter (Section 3.2.4) and also across scales between coefficients
of the same or adjacent position and orientation (see Section 3.2.3).

3.2.1 Hard thresholding for noise elimination

The present contour extraction method is based on energy models [133, 82, 1]. Those
models simulate complex-cells activities through the quadratic sum of simple cells in
quadrature of phase according to the physiological knowledge [17, 82]. The complex-
valued log-Gabor functions defined in Chapter 2 are employed here to model the simple
cell activities, and their modulus model the complex cell activities (see also Table 3.1).

In the first step of thresholding, the complex cells whose activities do not reach a
certain spike rectification threshold are considered as inactive. The Contrast Sensitivity
Function (CSF) proposed in [176] is implemented here to model this thresholding. The
CSF establishes the threshold of detection for each channel, i.e. the minimum amplitude
for a coefficient to be visible for a human observer. All the non-perceptible coefficients
are then zeroed out.

In presence of noise, the CSF is known to modify its response to filter down the
highest frequencies (see [3] for a model of such behavior). This change in the CSF is
modeled here by lowering the spike threshold depending on the noise level. The new
threshold level is determined according to classical image processing methodologies for
eliminating most of the noise: the noise level σc induced in each channel c is evaluated
following the method proposed in [160] (if the noise variance in the source image not
known it is evaluated as in [20]). The spike threshold is set up experimentally to 1.85σc.
This threshold allows to eliminate most of the noise apart from residual and relatively
isolated noise features. Indeed, the threshold is fixed to a lower level than the optimal
threshold so as to preserve a larger part of the signal while the residual noise is expected
to be removed through the further processes of facilitation (Sections 3.2.3 and 3.2.4).
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Figure 3.2: Schematic structure of the primary visual cortex as implemented in the
present study. Simple cortical cells are modelled through log-Gabor functions (see
Chapter 2). They are organized in pairs in quadrature of phase (dark-gray circles). For
each position the set of different orientations compose a pinwheel (large light-gray cir-
cles). The retinotopic organization induces that adjacent spatial positions are arranged
in adjacent cortical columns. Inhibition interactions occur towards the closest adja-
cent positions which are in the directions perpendicular to the cell preferred orientation
and toward adjacent orientations (light-gray connections). Facilitation occurs towards
co-aligned cells up to a large distance (drak-gray connections).

3.2.2 Oriented inhibition

The inhibition step also follows energy models [133, 82] which implement non-local
maxima suppression between complex cells for extracting edges and lines. A very similar
strategy is also deployed in the Canny operator [16] which mark edges at local maxima
after the filtering through oriented kernels. As indicated by the light-gray connections
in Fig. 3.2 the inhibition occurs toward the direction perpendicular to the edge, that is
to the filter orientation. It inhibits (i.e. zeroes out) the closest adjacent orientations and
positions which have lower activity (no inhibition across scales is implemented here).

It is to note that the shape of the filter is critical here for an accurately localized,
single and noise-robust detection [16]. Fig. 3.3 illustrates that log-Gabor filters are
adequate for extracting both edges and ridges by non-local maxima suppression: (1)
both edges and ridges induce local-maxima in the modulus of the log-Gabor coefficients
and (2) that the modulus monotonously decreases on both sides of edges and ridges
without creating extra local-maxima (the modulus response is monomodal).
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Table 3.1: Correspondences between visual cortex physiology and image processing
operations defined in the different sections.

Visual cortex structures Image processing Section
Even-symmetric simple cell Real part of log-Gabor coef.
Odd-symmetric simple cell Coefficient imaginary part

Pair of simple cells Complex-valued log-Gabor coefficient
Pinwheel Set of orientations for a position 2.2

Retinotopic organization (x,y) arrangement of pinwheels
Complex cell Modulus of log-Gabor coef.

Spike threshold CSF and denoising 3.2.1
Anisotropic inhibition Edge extraction 3.2.2
Interscale facilitation Interscale reinforcement 3.2.3
Spatial facilitation Selection of salient chains 3.2.4
Set of spiking cells Selected subdictionary 3.2.4

Gain control Amplitude assignation 4.2.4
Hypercomplex cells Chain heads

Contour shape Chain movements 4.2.5
Contour representation Chain coding

In practice the procedure is the following one: for each channel the neighbors are
labeled from "1" for the neighbor in the direction closest to the perpendicular to "8"
for the closest to the channel orientation (see also Fig. 3.4). Coefficients are inhibited
(zeroed out) in two steps. First they are inhibited if any of their neighbors "1" and
"2" have larger modulus. Remaining coefficients constitute then one- or two-pixel-thick
chains. Coefficients constituting two-pixel-thick chains are extracted by convolution
with 3 × 3 kernels for determining if some of the 4 closest neighbors are themselves
neighbors one another (see the example shown in Fig. 3.4.d). One-pixel-thick chains
being desirable, the inhibition goes on with the neighbors "3" but only on two-pixel-
thick chains, then with neighbors "4" and so on with the neighbors "5" and "6", in each
case only on the two-pixel-thick chains. At the end only one-pixel-thick chains remain.
All those operations have low computational cost and consist purely in convolutions
through 3 × 3 kernels.

If the inhibition is realized only inside each channel, edges and ridges still induce
multiple responses in the channels of different orientation. Therefore the local maxima
criteria should be applied also across orientations. Each coefficient is then inhibited by
larger coefficients located not only in the same channel but also in the two channels of
adjacent orientation in the same scale (see Fig. 3.5). The rules and the neighbors in
the interchannel inhibition are the same as those of the intrachannel inhibition.
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(a) 1D log-Gabor response to a ridge (b) 1D log-Gabor response to an edge

Figure 3.3: Edge extraction through non local-maxima suppression on complex-valued
log-Gabor wavelets. a. Response of a 1D complex log-Gabor filter to an impulse
(ridge): the modulus (black continuous curve) of the response monotonously decreases
away from the impulse. It implies that the ridge is situated just on the local maximum
of the response. On the contrary the real (dot) and imaginary (dash-dot) parts present
various local-maxima and minima which make them less suitable for ridge localization.
b. Same curves for a step edge. The same conclusions hold.

(a) vertical (b) oblique (c) diagonal (d) 2-pixel-thick chain

Figure 3.4: Implementation of the local inhibition. a.-c. For each channel orienta-
tion the neighboring coefficients are labeled from the most perpendicular to the most
collinear to the preferred orientation of the filter. d. Configuration of two-pixel-thick
chains where the central coefficient is candidate to be inhibited (see explanations in the
text).

After inhibition is performed, most coefficients are set to zero and the remaining
coefficients already show a strong similitude with the edges and ridges perceived by
visual inspection (see Fig. 3.5 and Fig. 3.6.c). It is remarkable moreover that extracted
contours appear continuous and mainly without gaps. Nevertheless some isolated coef-
ficients still remain due to noise, irrelevant or less salient edges. Facilitation interactions
between coefficients will allow to evaluate the saliency and reliability of edges and to
remove residual noise.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 3.5: (e), (f) and (g) represent 3 third scale channels of adjacent orientation
from the log-Gabor transform of the 64x64 tile of the image "bike" presented in inset
(a). The real and imaginary components of the log-Gabor filters corresponding to the
channels (e), (f) and (g) are shown respectively in (b), (c) and (d). In the competition
any coefficient (e.g. the one marked with the cross-box symbol in (f) ) is susceptible to
be inhibited by its neighbors which are located in the same channel (f) or in adjacent
channels (e) and (g). The inhibiting neighbors are situated in the directions perpen-
dicular to the channel preferred orientation (thus in this case the inhibition occurs first
in the horizontal and NW-diagonal directions). Those inhibiting neighbors are plotted
within box-symbol. (h), (i) and (j) show the remaining coefficients in each channel after
the competition. They confidently localize the contours appearing in the image (a) in
a non-redundant way (i.e. no doble detection occurs) and with almost no gap between
extracted edge coefficients. Note that contours can skip across orientations.
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3.2.3 Facilitation across scales

Facilitation interactions have been described in V1 as excitative connections between
co-oriented, co-axial and aligned neighboring cells [94, 13]. Psychophysical studies and
the Gestalt psychology determined that co-aligned or co-circular stimuli are more easily
detected and more perceptually salient [84, 122]. Studies of natural image statistics also
show that statistically edges tend to be co-aligned and co-circular [104, 69]. Experimen-
tally we observe that log-Gabor coefficients arranged in chains of co-aligned coefficients
or present across different scales correspond to reliable and salient edges. Moreover the
probability that remaining noise features could be responsible for chains of coefficients
is decreasing with the chain length. Thus a facilitation reinforcing co-circular cells con-
forms a noise segregation process. For all those reasons a facilitation across scale is set
up to reinforce co-oriented cells across scales and a facilitation in space and orientation
reinforce chains of co-aligned coefficients (Section 3.2.4).

The facilitation across scales consists here in favoring those coefficients located where
there exist also non-inhibited coefficients at coarser scales. The parent coefficient (i.e.
the one in the coarser scale) must be located in the same spatial location (tolerating a
spatial deviation of one coefficient), in an adjacent orientation channel and be compatible
in phase (i.e. it must have a difference in phase with the child coefficient lower than
2π/3. See also [102] for an edge extraction method based on phase congruency across
scales). It is remarkable (see Fig. 3.6.c) that many edges and ridges extracted are closely
repeated across scales with coefficients linked by parent relationship. This regularity is
of great importance and it could be further exploited e.g. for efficient coding.

3.2.4 Facilitation in space and across orientations

As proposed in Yen and Finkel’s V1 model [221], we implement a saliency measurement
linked with the chain length defined as the number of coefficients composing the chain.
It is calculated for each coefficient and consists in counting the number of coefficients
forward nf and backward nb along the chain. The compatibility in phase is also checked,
that is two successive coefficients which do have a difference of phase superior to 2π/3 are
not considered to belong to the same chain. The adjacent coefficient must moreover be
aligned in the direction of the channel tolerating a variation of arccos(0.6) (i.e. around
π/3.4. Note that this choice is not casual but optimized for the rectangular grid). The
present implementation makes possible for a chain to begin in one orientation channel
and latter change of channel. The number of coefficients is counted in each direction to
a maximum of lmax coefficients (with lmax = 16). The saliency is finally calculated as
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(a) Original (b) linear transform (modulus)

(c) inhibition (d) facilitation

Figure 3.6: Successive steps for multiscale edge extraction. a. 96×96 detail of the
"lena" image. b. The linear log-Gabor wavelet response is obtained from through
the log-Gabor wavelet transform defined in Chapter 2. All the orientation channels
are summed together so that one inset is shown for each scale. The first scale is
not represented. The different scales have different sizes due to the downsampling
applied. From the largest to the smallest the insets correspond respectively to the
2nd, 3rd, 4th, low-pass and 5th scales. c. Remaining coefficients after the inhibition
step (Section 3.2.2). d. The facilitation steps (Sections 3.2.3 and 3.2.4) preserve only
the coefficients arranged in sufficiently long chains or having parent coefficients within
coarser scales.

c = min(nf +nb, lmax), which permits to obtain constant responses along a same chain.

Since the log-Gabor wavelet transform and the inhibition step already provide chains
arranged along contours with almost no gaps between coefficients, the facilitation in
space is a very reliable measurement of the length of the contours. The measurement
can then be used with the facilitation across scales to remove the short chains and
isolated coefficients corresponding to noise or to less salient contours.

Finally the facilitation consists in retaining those edge coefficients which fulfill the
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following two criteria (while the other coefficients are withdrawn to be considered as
noise or less salient edges): First they must pass a certain length threshold depending
of the scale and the presence of parent coefficients. Typically the chain length thresh-
old is chosen as 16, 16, 8, 4, 2 respectively for the scales 1, 2, 3, 4, 5, half of these
lengths if coefficients have a parent, and a fourth of these lengths are if they have a
grandparent (i.e. the parent coefficient has itself a parent). Any coefficient which have
a great-grandparent is selected. Second, the amplitude must overpass a spike threshold
corresponding to twice the CSF threshold defined in Section 3.2.1. Each coefficient
is selected with its chain neighbors which implies that chains are selected or rejected
entirely. This avoids for a contour to be selected only by parts. It is equivalent to the
hysteresis implemented in the Canny edge extractor [16]. The final selection can be
seen in Fig. 3.6.d.

Both the lengths and CSF thresholds can be modified depending on the application
since for compression (see Chapter 4) the thresholding must be severe while for image
denoising (see Section 4.3.3) most of the edge information should be preserved which
requires more permissive thresholds.

Edges of the first scale are less reliable because the orientation selectivity is nec-
essarily lower at high frequencies since at Nyquist frequency both diagonals are indis-
tinguishable. Another reason is that first scale filters are not totally in quadrature of
phase, since there is a half-pixel shift in the imaginary part location (see Section 2.2.2).
In the present implementation first scale edges are not considered. Alternatively, for
image denoising (Section 4.3.3) or here for the reconstructions, edges selected in the
second scale will also be used for the first scale.

3.3 Results on edge extraction

Examples of contours extracted after the inhibiton/facilitation processes are shown
in Fig. 3.6, Fig. 3.7 and Fig. 3.8. The different orientations are summed up so that
edges belonging to each scale are represented together. As a comparison, Fig. 3.7.d
and Fig. 3.8.d show the edges extracted by the Canny operator. Log-Gabor wavelet
based edge extraction presents the following advantages: (1) it extracts both edges
and ridges while Canny only extracts edges drawing generally two edges where there
is one ridge (see in particular Fig 3.8.d). (2) As it will be shown in Chapter 4, it is
possible to reconstruct the image through the edge information. This is a warranty
of the nearly completeness of the extracted edges (see Fig. 3.7.c and Fig. 3.8.c for the
reconstructions). Reconstruction quality will be discussed in the Chapter 4 both in
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(a) fruits (b) extracted edges

(c) reconstruction (d) Canny

Figure 3.7: Edge extraction and reconstruction. a. A 96×96 pixels detail of the image
"Fruits". b. Multiscale edges extracted by the proposed log-Gabor wavelet based
energy model. c. Reconstruction from edges (see Chapter 4). d. Edges extracted by
Canny method.

cases where few edges are selected (image compression, Sections 4.3.1 and 4.3.2) or
when most of the edges are preserved (image denoising, Section 4.3.3). In spite of
those advantages of the present scheme, the Canny operator still contains sophisticated
mechanisms that were not implemented here yet, as e.g. the adaptative choice of the
filter width or the multiscale integration of edges so that it could eventually in some
cases offer more perceptually pleasant results.

In comparison with other energy models, the present implementation have the ad-
vantage to be implemented on a self-invertible wavelet scheme, what allows to extract
edges at multiples scales and also to reconstruct from edges (see Chapter 4). As an
important difference, it was not seen advantageous here to use the 8-shaped association
field [135] for the facilitation mechanism, although experiments were done in this di-
rection (see also Chapter 5). Instead the chain length saliency calculation is employed.
The first reason is that edge coefficients obtained after the inhibition are organized in
chains which rarely contain gaps. And because even if the 8-shape strategy could allow
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(a) bike (b) extracted edges

(c) reconstruction (d) Canny

Figure 3.8: Edge extraction and reconstruction. a. A 224 × 224 pixel tile of the image
"Bike". b. Multiscale edges extracted by the proposed log-Gabor wavelet based energy
model. c. Reconstruction from edges (see Chapter 4). d. Edges extracted by Canny
method.

to close the few existing gaps, it has been shown to induce many artifacts when applied
to natural images, as e.g. the inadequate closure between non-related edge segments.
We conclude then that the 8-shape facilitation should not be used as a general mecha-
nism for edge extraction but rather be restricted to extract occluded or discontinuous
contours. An implementation is proposed for such purpose in Chapter 5. As a physi-
ological support to this hypothesis, it has been shown that occluded contours are not
detected in the visual pathways before area V2 [212, 211]. This would suggest that
inhibition/facilitation mechanisms taking place in V1 are not dedicated to reconstruct
occluded or incomplete contours.
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3.4 Conclusion

We proposed an edge extraction mechanism inspired from biological knowledge on V1
cortical cells in particular through (1) the complex cell model consisting in the quadratic
sum between even and odd simple cells (corresponding to the real and imaginary parts
of log-Gabor coefficients) and (2) the lateral interactions of inhibition and facilitation
between neighboring complex cells. In the implementation it consists then in a self-
invertible linear log-Gabor wavelet transform followed by non-linear steps of quadratic
sum, hard thresholding for denoising and inhibition and facilitation between neighboring
transform coefficients. Those steps are able to extract continuous chains of coefficients
located on the edges and ridges of the image, achieving an efficient contour extraction.
The resulting mechanism show advantages in comparison with the Canny method, since
it simultaneously extract edges and ridges, and in comparison with other energy models
thanks to the use of a wavelet framework allowing image reconstruction.

As a further improvement the coincidence across scales could be further exploited
for a more robust edge extraction and for building an unified edge representation in-
corporating edges of any scales.



Chapter 4

Sparse approximation based on edge
extraction

"L’américain type consacre, pour sa part, plus de 1500 heures par an à sa
voiture : il y est assis, en marche ou à l’arrêt, il travaille pour la payer, pour
acquitter l’essence, les pneus, les péages, l’assurance, les contraventions et
les impôts. Il consacre donc quatres heures par jour à sa voiture, qu’il s’en
serve, s’en occupe ou travaille pour elle. Et encore, ici ne sont pas prises
en compte toutes ses activités orientées par le transport : le temps passé à
l’hôpital, au tribunal ou au garage, le temps passé à gagner de l’argent pour
voyager pendant les vacances, etc. A cet Américain, il faut donc 1500 heures
pour faire 10000 kilomètres de route, 6 kilomètres lui prennent une heure."

Ivan Illich, La convivialité.

Several drawbacks of critically sampled wavelets can be solved by over-
complete and sparse multiresolution transforms. Facing the difficulty to
optimize such non-orthogonal and non-linear transforms, we implement in
this chapter a sparse approximation scheme based on models of the primary
visual cortex. The scheme consists in a linear log-Gabor wavelet transform
followed by inhibition and facilitation steps between neighboring transform
coefficients for extracting the edges and ridges of the image. The edge co-
efficients are shown sufficient for reliably reconstructing the images, while
their coding permits efficient image compression. Additionally, the ability to
segregate the edges from the noise yields promising image denoising results.
Parts of this study were previously presented in [64, 63, 62, 60, 59, 56, 169]
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for image compression and in [64, 61, 63, 169] for denoising applications.

4.1 Introduction

Recent works on multiresolution transforms showed the necessity of using overcomplete
transformations to solve drawbacks of (bi-) orthogonal wavelets, namely their lack of
shift invariance, the aliasing between subbands, their poor resolution in orientation and
their insufficient match with image features [182, 189, 41, 96, 43]. Nevertheless the
representations from linear overcomplete transforms are highly redundant and conse-
quently inefficient for such tasks needing sparseness as e.g. image compression. Several
sparse coding algorithms have been proposed to address this problem by approximating
the images through a reduced set of decomposition functions chosen from an over-
complete set called dictionary [118, 22, 167, 153] (see reviews in [22, 147, 202]). Such
methods are also referred perhaps more adequately as sparse approximation algorithms.
Fast and optimal algorithms (e.g. [29]) have been described for particular cases. In the
general case it is often not possible to build optimal algorithms. Two main classes of
algorithms are then available: Matching Pursuit (MP) [118, 167, 151] which chooses one
by one the highest coefficients in all the dictionary and Basis Pursuit (BP) [22] which
solves the linear system minimizing a penalizing function corresponding to the sum
of the amplitude of all coefficients. Both of these algorithms perform iteratively and
globally through all the dictionary, they are computationally costly algorithms which
only achieve approximations of the optimal solutions.

The objective to improve and optimize image transformations which are overcom-
plete, non-orthogonal and non-linear is extremely complicated by the huge degrees of
freedom offered by the new conditions. Non-orthogonality allows the use of any shape
of filters while non-linearity is the most general case and permits for instance the imple-
mentation of a wide variety of interactions between the transform coefficients. Entire
new classes of algorithms are now potentially candidates for the multiresolution trans-
form. We propose here to build a new sparse overcomplete transform designed not only
through mathematical and classical image processing criteria but which would also be
inspired from the known physiology of the Primary Visual Cortex (V1) of primates. The
rationale behind the biological modeling is the plausibility that V1 could accomplish
an efficient coding of the visual information: (1) V1 simple cells show a Gabor shape
oriented receptive field [36] and they plausibly implement an oriented multiresolution
Gabor-like transform (see Chapter 2). (2) V1 supposedly implements a sparse coding
scheme [139]. (3) Non-linear interactions between V1 cells such as inhibitions between
non-aligned neighboring cells and facilitation between co-aligned and collinear cells have
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been described by physiological and psychophysical studies [94, 122, 84]. These inter-
actions have been shown efficient for image processing in applications such as contour
extraction and image restoration [131, 79, 83, 221, 208]. We make here the hypothesis
that these lateral interactions deal not only with contour extraction or noise segregation
but also allow to achieve a sparse representation of the visual information.

The sparse approximation method presented in the following is based on previous
image processing works: first on the study of Mallat and Zhong [119] which proposed
to code the images through chains of wavelet coefficients located on the image edges
extracted through the Canny operator, and on Elder’s work which showed the possibility
of reconstructing the images from their edges [51]. By their part Desai et al. [39] used
basic methods to extract edges and code them through chains for image compression
at high compression rate. Those studies motivate the present sparse approximation
strategy consisting in coding the image by uniquely the transform coefficients located on
image edges and contours. Because such representation is not necessarily adequate for
representing textures, recent studies proposed an additional separate coding of residual
textures generally by means of sparse coding algorithms [148, 190, 214].

The method is also based on image denoising applications by wavelet thresholding
or shrinkage [197]. Overcomplete transforms have been shown more efficient than crit-
ically sampled ones in the denoising tasks. An augmented resolution in orientations
has also been shown important [189] as well as interactions between neighboring coeffi-
cients [160]. Moreover denoising has been described as closely related to wavelet image
compression [20].

Therefore, we propose to build a biologically inspired sparse approximation method
constituted by a linear overcomplete log-Gabor wavelet transform and a non-linear stage
of sparse approximation based on the edge extraction proposed in Chapter 3. The sparse
approximation step aims at selecting a reduced set of transform coefficients located on
edges and ridges of the image and able to approximate the image. Therefore each
edge segment must be coded by very few coefficients. This implies the decomposition
functions are diverse and adequate for matching with edges of natural images, which
advocates one additional time for the use of an overcomplete transform. It is to note
moreover that the image-adaptive selection of a few coefficients and the elimination
of the other coefficients is only possible because the transform is overcomplete which
implies that the coefficients are not linearly independent and consequently that there
exist important degrees of freedom in the distribution of the amplitude. It is notable
that in opposition to classical sparse approximation algorithms like MP or BP, here
the selection of the coefficients is achieved through local operations and either through
multiple selections at each iteration or even in a non-iterative manner. In both cases
the computational complexity is dramatically reduced.
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The chapter is structured as follows, Section 4.2 describes the sparse log-Gabor
transforms. Section 4.3 presents the results on image compression and denoising in
comparison with the state of the art image processing algorithms. Conclusions are
drawn in section 4.4.

4.2 Methods

Figure 4.1: Scheme of the algorithm. The lossy parts, i.e. the operations inducing
information losses, are depicted with gray color.

The present algorithm is composed of three parts (as summarized in Fig. 4.1): it
begins with the linear and self-invertible log-Gabor wavelet transform defined in Chap-
ter 2, decomposing the image in oriented band-pass channels. Afterwards it follows with
the different non-linear operations described in Chapter 3: a noise elimination through
thresholding, an inhibition of the non-edge coefficients by non-maxima suppression and
a facilitation across scales and between co-aligned coefficients. Those non-linear op-
erations aim at extracting the edges of the image and are biologically-inspired from
lateral interactions between V1 cells. The present chapter describes the third part and
proposes algorithms for building sparse representations based on the edge content of
the images. Once the edge coefficients are extracted, there is still to assign them the
amplitude which provides the closest possible reconstruction. This is achieved through
two algorithms: the first one exposed in Section 4.2.3 proceeds by iterative edge selec-
tion while the second one (Section 4.2.4) operates a single-pass edge extraction. The
first algorithm was designed at an earlier stage of the development of the present thesis.
Although important improvements were incorporated in the second algorithm like the
predictive chain coding strategy, this first algorithm is here reproduced since it provides
better results in terms of mathematical error. The second one has the advantage to
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extract continuous contours which can be further decorrelated by a predictive coding
through chains of coefficients as described in Section 4.2.5. First of all, in Section 4.2.1,
some examples are presented to illustrate the concept of sparse approximation under
overcomplete dictionary, after what in Section 4.2.2 the problem of amplitude assigna-
tion will be formulated in the matrix notation.

4.2.1 Non-uniqueness under overcomplete dictionaries

As a first example illustrating the sparse approximation objectives lets consider an
image x composed of a single log-Gabor function (Fig. 4.2.a) which can be coded by
a pyramid h∗ containing a single non-zero coefficient (Fig. 4.2.b). Applying the linear
log-Gabor wavelet transform W (the 4 scale 4 orientation with high-pass filter scheme
is used here, see Fig. 2.1) on x does not provide the pyramid h∗ but a pyramid h

(drawn in Fig. 4.2.c). This pyramid h contains a large number of coefficients spread
out in the transform domain in the spatial and frequency neighborhood of the original
Gabor function. It is straightforward to show that both pyramids h∗ and h can be
used for exact reconstruction of x by the inverse transform WT (see Chapter 2 and
Section. 2.2.9 for the exact reconstruction properties of W). Nevertheless h∗ is a much
sparser representation: after quantization, an entropy calculation gives 19 bits for h∗

and 1697 bits for h. Hence, because of the overcompleteness, to each image correspond
different pyramids of exact reconstruction which have very different sparseness. The
goal of the sparse approximation algorithm would then be to obtain the less redundant
pyramid, that is the h∗ pyramid preferentially to the h one.

Coefficients of h represented Fig. 4.2.c can be considered as the projection of the
unique non-zero coefficient of h∗ (Fig. 4.2.b) over the whole dictionary of log-Gabor
functions, since from Eq. 2.7 and Eq. 2.8, we have:

Wx = (< wk,wj >)k∈{1,..,M} (4.1)

where (wk)k∈{1,..,M} is the log-Gabor dictionary and wj is the single non-zero log-Gabor
function of h∗ (see also Table 4.1 for the notation). Thus from Fig. 4.2.c it can be seen
that the transform coefficients are not orthogonal to their spatial and frequency neigh-
bors. Moreover the magnitude of their correlation < wk,wj > is directly appreciable
through the gray-scale level in Fig. 4.2, showing its progressive decrease away from the
original non-zero h∗ coefficient.

Note also that the linear transform does not optimally localize image features: the
single Gabor function is detected in a large set of coefficients at different scales, ori-
entations and positions. From h pyramid it is even difficult to say how many Gabor



77

(a) x (b) h∗-pyramid (c) h-pyramid

Figure 4.2: Comparison between two exact reconstruction pyramids a. The 32×32 pixel
image x is composed of an unique Gabor function that can be coded by the pyramid
h∗ shown in (b). b. The h∗-pyramid contains a single non-zero coefficient. Here a 4
scale, 4 orientation scheme with low-pass and isotropic high-pass is used (see the filters
in Fig. 2.1). The low-pass and high-pass channels are located on the first row. The
bottom row represents the first scale, i.e. the highest frequency channels. The different
orientations are arranged in columns. Each band-pass coefficient contains a real and an
imaginary part, although only the modulus is shown here. c. h pyramid is the linear
transform of x (explanations are given in the text).

functions are present in the image (a). From the h∗ pyramid, the answer is clearly one.
Thus only a non-linear sparse representation is potentially able to describe image fea-
tures at the optimum of localization theoretically offered by the Gabor framework [68],
that is through single Gabor functions, what a linear representation is unable.

As a second illustration let’s consider a pyramid h∗ containing a horizontal chain
of coefficients (real and positive) in the third scale, fourth orientation channel (see
Fig. 4.3.a, here a 4 scale and 6 orientation scheme is used, see Fig.2.2). Its reconstruction
is the image x = WTh∗ (drawn in Fig. 4.3.b). And the linear transform of x is
h = Wx = WWTh∗ shown Fig. 4.3.c. It is clear from Section 2.2.9 that h and
h∗ have the same reconstruction by WT . Nevertheless the linear transform h is a
much less sparse representation than h∗. Wx represents the edge present in x by
an important redundant number of Gabor coefficients spread in a spatial, scale and
orientation neighborhood of the optimal coefficients (i.e. h∗ coefficients).

4.2.2 The problem of amplitude assignation

Chapter 3 allows to select a sub-dictionary of functions D∗ from which we propose here
to approximate the image. There is still to assign the correct amplitude to each coef-
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(a) sparse pyramid h∗ (b) x = WTh∗ (c) linear pyramid h = Wx

Figure 4.3: Example of the behavior of the linear Gabor wavelets. a. The h∗ pyramid
is a sparse representation of the image x with only one line of coefficients in the 3rd
scale. Here a 4 scale and 6 orientation scheme inspired from Fig.2.2 is used. b. The
image x is constructed from the pyramid h∗ as x = WTh∗. c. The linear transform of
x is h = Wx. The amplitude of h is spread in a neighborhood of the coefficients of h∗.
It is remarkable that the largest coefficient of h is 6.79 times lower than the non-zero
coefficients of h∗.

ficient of this sub-dictionary. The problem of amplitude assignation can be formalized
in the matrix notation as follows. The source image is x, and the sub-dictionary D∗

has been chosen through the edge extraction energy model from the overcomplete dic-
tionary D. h is the log-Gabor wavelet transform of x, defined by h = Wx. h = W∗x
corresponds to the linear pyramid h where only the coefficients of D∗ remain. It is to
find a subpyramid h∗ and the reconstruction x∗ = W∗Th∗ which minimizes the squared
error SE = ||x∗ − x||2. The whole notation is summarized in Table 4.1. We have then:

SE =<
∑
i∈I∗

h∗
i wi − x,

∑
i∈I∗

h∗
i wi − x > (4.2)

d

dhi
SE = 2 < wi,

∑
j∈I∗

h∗
jwj − x > (4.3)

SE is minimum if d
dhi

SE = 0, ∀i ∈ I∗. Then:

< wi,
∑
j∈I∗

h∗
jwj >=< wi,x >, ∀i ∈ I∗ (4.4)

We have then:
W∗W∗Th∗ = W∗x = h (4.5)

W∗W∗T has a direct interpretation, since it is the matrix of correlations between the
vectors wi of the sub-dictionary D∗.

(W∗W∗T )i,j =< wi,wj > (4.6)

Note that W∗W∗T is invertible only if the vectors of D∗ are linearly independents, which
is generally not the case. W∗W∗T being generally not invertible, the optimal h∗ could
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Table 4.1: Sparse approximation variables
Name Symbol Description
Original image x x ∈ R

N

Overcomplete Dictionary D card(D) = M

Dictionary functions wi D = (wi)i∈{1,..,M}
Dictionary indices I I = {1, .., M}
Multiresolution transform W W ∈ R

N×M

Inverse transform WT WT ∈ R
M×N

Transform pyramid h h = Wx = (< wi,x >)i∈I

Reconstruction xr = x xr = WTh

Selected subdictionary D∗ D∗ ⊂ D, card(D∗) = M∗

Subdictionary indices I∗ card(I∗) = M∗

Transform on subdictionary W∗ W∗ ∈ R
N×M∗

Inverse on subdictionary W∗T W∗T ∈ R
M∗×N

Subpyramid on D∗ h h = W∗x = (< wi,x >)i∈I∗

Optimal subpyramid on D∗ h∗ SE = ||W∗Th∗ − x||2 minimal on D∗

Reconstruction on the selection h∗ x∗ x∗ = W∗Th∗

be found by applying the pseudo-inverse of W∗W∗T on h. Nevertheless, the results
obtained by this method were not shown satisfactory for the computational cost, the
apparition of artifactual noise and the presence of very small eigenvalues of W∗W∗T .
Other solutions are then proposed in the following.

4.2.3 Iterative sparse approximation algorithm

The first proposed algorithm is iterative and proceed through the following steps to
define at each iteration n a new pyramid hn with exact reconstruction.

Step 1. Coarse edge extraction by linear Gabor wavelets: A first coarse
extraction of the edges is obtained by the linear Gabor wavelets presented in Chapter 2
(h0 = Wx).

Step 2. Edge selection and coefficient inhibition: In the first iterations the
image is approximated with only few coefficients situated on the edges considered as
the most reliable, and at each further iteration a new set of coefficients is additionally
employed. The reliability for a coefficient to belong to an edge is given by en defined
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as:

en =

∣∣∣∣∣
n−1∑
k=0

ck · hk

∣∣∣∣∣ (4.7)

where · is the multiplication coefficient by coefficient, | | is the absolute value and
ck is the contour saliency calculated as the chain length in Section 3.2.4. In this al-
gorithm the facilitation based in the "parent" coefficient is not taken into account
although it could constitute a further improvement. Eq. 4.7 implies that the edge re-
liability of any coefficient increases according to three parameters: its contour saliency
(ck)k∈{0,..,n−1} calculated in the successive iterations, its amplitude in all the previous
pyramids (hk)k∈{0,..,n−1}, and the number of iterations n already completed (then the
reliability of coefficients tends to increase through iterations).

hn−1 coefficients which en parameter surpasses a given threshold τ are considered as
reliable. τ is chosen 10 times higher than the highest h0 coefficient (τ = 10 max|h0|).

Two new pyramids an and rn are build such that each hn−1 coefficient appears only
one time either in an or in rn (while the other an and rn coefficients are zeros). Then:

hn−1 = an + rn (4.8)

an∈R
M is the approximation pyramid which gathers the reliable hn−1 coefficients. an

is then a selection of coefficients supposedly best adapted for reconstructing the im-
age. rn∈R

M is the residual pyramid composed by the rest of the coefficients, i.e. the
coefficients susceptible to be inhibited.

Step 3. Exact reconstruction by projection of the residual: The new hn is
defined as follows (it is important to note that for many z∈R

M , WWTz �= z, although,
as pointed out in Section 2.2.9, WTWy = y, ∀y∈R

N ):

hn = an + WWTrn (4.9)

Note first that hn reconstructs the image x through WT (the following successive equal-
ities, based on the Eq. 4.9, Eq. 4.8 and the Section 2.2.9 statements constitute an
iterative proof):

WThn

by Eq.4.9
= WTan + WTWWTrn

(Section 2.2.9)

=

WTan + WTrn

by Eq.4.8
=

iteratively

WThn−1 = WTh0

(Section. 2.2.9)

= x

(4.10)
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In Eq. 4.9, WWTrn is the projection of the residual rn on the whole transform
space. Thus part of the amplitude pf rn coefficients (but not all) is projected over the
non-zero coefficients of an. Through that mechanism, at each iteration, some amplitude
transfers from rn coefficients to non-zero an coefficients, hence the amplitude tends to
concentrate on the non-zero an coefficients, i.e. on the reliable edge coefficients.

Step 4. Loop: Next iteration begins from step 2.

Difference with Matching Pursuit in the amplitude assignation

MP selects one unique coefficient hk at each iteration and assigns it an amplitude defined
by:

hk =< x,
wk

||wk|| > (4.11)

where the wk

||wk|| are the normalized dictionary functions, see also Section 2.2.6 for the
matrix notation. In the present case of multiple simultaneous selections, the iterative
approximation could be defined similarly as in MP by:

h = (< x, δD∗
wk

||wk|| >)k∈I (4.12)

where D∗ is the set of selected decomposition functions, δD∗ value is 1 if k ∈ D∗ and 0
otherwise. But because the decomposition functions overlap, this amplitude assignation
strategy would artificially enhance the edges in the image domain as illustrated Fig. 4.4.

Alternatively, and making the hypothesis that an edge can be coded by its central
chain (as in Fig. 4.3.a-b), the residual will be projected on the an coefficients. This
is accomplished by the operation WWTrn which project rn on the whole transform
space.

hn = an + WWTrn (4.13)

Through this operation, part (but not all) of the residual amplitude transfers to an

coefficients. The operation requires to be iterated to be able to transfer most of the
amplitude (see in Fig. 4.5 how the amplitude concentrates through iterations). There
is a second reason for iterating the algorithm: it permits to refine the approximation an

through iterations, selecting first the most salient chains and adding less salient chains
at later iterations. This allows to process less salient edges without to be influenced
by residual coefficients coming from edges of higher amplitude, which could yield a
displacement of the local maximum and then a miss in their localization.
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Figure 4.4: Amplitude assignation in a MP-like strategy. The central edge line of x

(Fig. 4.3.b) is drawn here as the dotted line. If the amplitude of the selected coefficients
where assigned as in MP following Eq. 4.12, each of them would reconstruct a Gabor
function (in continuous line, in the 1D slide along the y dimension, Gabor functions
have a Gaussian shape) with a maximum of amplitude higher than the edge to code by a
factor of

√
2. Moreover the sum of contributions of all selected coefficients (in dashed)

would exceed the edge by a factor 5, yielding an inappropriate enhancement in the
reconstruction. Note that the present example is representative of an usual situation
in natural images where edges form long and continuous contours of constant contrast.
The MP amplitude assignation seems then to overrepresent at least by a factor

√
2 the

edge segments embedded in continuous contours (Note nevertheless that in classical
MP the factor 5 is avoided thanks to the iterative selection).

Remarks on the algorithm

In contrast to other sparse approximation methods like Matching Pursuit [22, 147, 202],
this algorithm is able to select many coefficients at the same iteration. Thus the number
of iterations is reduced and it does not depend on the image size (for the following results
300 iterations are used). No proof of convergence has been established for the present
implementation. Note nevertheless that experimentally the algorithm always converges
in a very regular way. Moreover a proof of convergence for a variation of the algorithm
is also proposed in the following section (see Section 4.2.4).

The algorithm is entirely implementable through a fixed number of local operations
(W and WT can also be implemented through local operations) being the complexity
O(N), where N is the number of pixels of the image.
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Figure 4.5: The dynamical evolution throughout iterations of the amplitude of a vertical
slide of h(5,3) (from Fig. 4.3.c) is shown. While the residual is backprojected by the
operation Eq. 4.9, the selected coefficients grow to the maximum (i.e. by a factor of
6.7) in 30 iterations, whereas close coefficients in the same channel and in neighboring
channels (not shown) vanish to zero. The edge is then correctly extracted.

As an example illustrating the abilities of the present method, the algorithm is
applied in a basic image containing three Gabor functions shown in Fig. 4.6. It is able to
extract progressively through iterations the corresponding three transform coefficients
and to zero all the other coefficients.

Quantization and entropy evaluation

A compression application based on the current scheme is described in the following. It
contains three stages: the log-Gabor wavelet transform, a quantization and an entropy
calculation. The transform is of exact reconstruction thus the quantization is the only
lossy part of the compression. The quantization stage is based on a Contrast Sensitivity
Function (C.S.F.) [120], which gives the sensitivity of the overall visual system at each
frequency. The CSF proposed by Rust [176] has been implemented with a low-pass
correction for avoiding the low-pass frequency decay of the CSF [50]. Each channel is
normalized by its mean contrast sensitivity level. All coefficients can finally be quantized
by the same non-linear steps following the method described in [222]. The step widths
follow a non-linear progression with an exponential factor of 1.25.

For evaluating the compression rate, an entropy calculation is performed in bit per
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(a) Image (b) h1, 4.57 b.p.p.

(c) h80, 3.34 b.p.p. (d) h140, 0.39 b.p.p.

Figure 4.6: Results of the algorithm for a basic example. a. The original image (16×16
pixels) is composed of 3 Gabor functions: one in the first scale (phase 0), one in the
second scale (phase −π

2
) and one in the 3rd scale (phase π). Here the 4 scales, 4

orientations and high-pass filter scheme is used (see Fig. 2.1). The following insets
shows the quantized pyramids. b. The linear transform (before applying the first
iteration) contains 197 non-zeros. Entropy is evaluated as 4.57 b.p.p., the PSNR of the
reconstruction is 33.49dB. c. After 80 iterations, only 45 coefficients are kept, most
of them close to zero. One 2nd scale and one 3rd scale coefficient appear enhanced.
Entropy is 3.35 b.p.p., PSNR=31.78dB. d. After 140 iterations, the algorithm has been
able to code the image by only 19 coefficients (including the 16 coefficients of the low-
pass channel): it has localized the 3 original Gabor functions. Entropy is 0.39 b.p.p.,
PSNR=35.97dB.

pixel (bpp) as:

H = −M

N

∑
q

p(q)log2p(q) (4.14)

where q is the quantization level, and p(q) its probability, N is the number of pixels
of the image and M the number of coefficients of the transform domain. The factor
M
N

> 1 is due to the transform domain expansion. (Note because every scale has dif-
ferent statistics, the entropy of each scale is separately calculated before to be summed
up. For the low-pass filter a basic DPCM is applied). Entropy is a measurement of the
amount of information contained in the source to be coded. The difference of entropy
between the linear and the sparse pyramids can then be considered as a direct evalua-
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tion of the redundancy reduction (with the condition that reconstruction qualities are
similar). Moreover the entropy gives the theoretical limit (in bit per pixels, b.p.p.) of
the compression rate and it is a good evaluation although somewhat optimistic, of the
file size that can be produced by an efficient coder. Note nevertheless that contextual
coding methods like the one used in JPEG-2000 or chain coding ([168] and Section 4.2.5)
are able to produce a file size smaller than this entropy value.

The quality of the reconstructed image is mathematically evaluated using the root
mean square error (RMSE) and the Peak Signal to Noise Ratio (PSNR), defined as
−20log10(RMSE). However it is well known that such mathematical error calcula-
tion does not correlate well with the perceptual quality evaluated by human observers.
Therefore direct observation will provide a better insight about the performance of the
scheme.

4.2.4 Non-iterative sparse approximation

Instead of selecting iteratively the most reliable edges, it is also possible to select in
one-pass through the inhibition and facilitation steps (see Chapter 3) the whole set of
coefficients. We desire to reconstruct an approximation of the image from this set called
subdictionary. As previously exposed in Section 4.2.2, to realize the sparse approxima-
tion, there is still to assign an amplitude to each of those selected coefficients. As most
coefficients of the log-Gabor wavelet transform have been zeroed out, the transform
domain lost part of its energy, and the amplitude of selected coefficients has to be
enhanced to compensate this lost.

This compensation could be realized through a fixed gain factor. But for a better
reconstruction, we adopt a strategy close to Matching Pursuit [118] which plausibility
as a biological model has been studied in [153]. MP selects at each iteration the largest
coefficient which is added to the approximation while its projection is subtracted from
the residual (i.e. the transform of the approximation error). This projection, which
depends on the correlation between dictionary functions, can be interpreted as a lateral
interaction [153]. Here as a difference with MP, the residual r0 defined as the set
of non-selected coefficients is projected on the subspace V spanned by the selected
subdictionary. We do not know the projection operator P ∗ that realize this operation.
Thus the projector P = WWT that projects the residual on the whole transform space
is iteratively used instead1. Let’s be D the diagonal matrix defined on the dictionary
space and which eigenvalues are 1 on the selected subdictionary and 0 on the residual

1It is direct that P is linear and P 2 = P , hence P is a projector.
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(a) linear log-Gabor transform (b) sum of orientations

(c) sparse log-Gabor transform (d) sum of orientations

Figure 4.7: Two pyramids providing exact reconstruction for the 96×96 tile of the image
’Lena’ presented in Fig. 4.19.a. a. In the linear transform each edge is described through
a large number of coefficients spread in a space/scale/orientation neighborhood. b. The
same pyramid is shown with orientations summed together for a better visualization
(3th, 4th, 5th and low-pass are drawn on the right side). c. After applying the non-
iterative sparse approximation algorithm, the signal energy is concentrated in much
fewer coefficients which form continuous chains located along the object contours. d.
Sum of orientations for the sparse pyramid.

(D is clearly a projection). x is the source image. We set:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0 = DWx

r0 = (1 − D)Wx

ak = ak−1 + DPrk−1

rk = (1 −D)Prk−1

(4.15)

By the self invertible property we have WTP = WTWWT = WT and it comes:

WT (ak + rk) = WT (ak−1 + Prk−1) = WT (ak−1 + rk−1) (4.16)
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Iteratively and using again the self-invertible property and Eq. 4.15 we have finally:

WT (ak + rk) = WT (a0 + r0) = WTWx = x (4.17)

Hence, WT (ak + rk) reconstructs exactly the source image.

It is also straightforward to show that ak and rk converge: let’s Q be defined as
Q = (1 − D)P. We have now,{

ak = a0 + DP
∑k

q=1 rq−1 = a0 + DP(
∑k

q=1 Qq)r0

rk = Qkr0

(4.18)

P and D being projections, ||Qe|| ≤ ||e|| for any vector e (where ||.|| is the quadratic
norm). Moreover any vector e′ which verifies ||Qe′|| = ||e′||, is eigenvector of P (with
eigenvalue 1) and of D (with eigenvalue 0), then of Q (with eigenvalue 1). Thus (1)
DPQqe′ = 0; and (2) the eigenvalues of Q different than 1 are strictly smaller than
1. Hence for any r0, DP(

∑k
q=1 Qq)r0 and ak converge. And from (2) we have the rk

convergence. The convergence is moreover exponential with a factor corresponding to
the highest eigenvalue of Q which is strictly smaller than 1.

In practice we observe that the algorithm converges with regularity and that in 40
iterations the responses becomes stable. If the dictionary has been adequately selected,
most of the residual coefficients dramatically decrease their amplitude and the selected
coefficients encode almost all the image information (see example of reconstruction
Fig. 3.7 and 3.8). But because some edges and ridges can lack in the dictionary, in par-
ticular around corners, crossing and textures, a second pass can also be advantageously
deployed for selecting new edge coefficients.

Concerning the overall computational complexity, all the hard thresholding, inhibi-
tion and facilitation steps are computed by local operations consisting in convolutions
by small kernels (mainly 3 × 3). The linear and inverse log-Gabor wavelet transforms
W and WT are computed in the Fourier domain in O(NlogN) operations but could
also be implemented as convolution in the space domain, which is moreover a more
biologically plausible implementation. In such a case the algorithm would consist in a
fixed number of local operations. As in the former implementation the computational
complexity would then be as low as O(N).

4.2.5 Chain coding

The former processes composing the sparse approximation allowed to represent the vi-
sual information through continuous and quite long chains of coefficients representing
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contour segments (see Fig 3.6.d). The next step in the integration of the visual infor-
mation would be to build an efficient representation of such chains. It is also plausible
that such descriptions of integrated contours could take place in higher visual areas
like V2 and V4 which are supposed to provide increasingly complex descriptions of
visual shapes. A psychological hypothesis, synthesized in the Attneave’s cat, affirms
that curvatures are more perceptually salient than straight features, specially those
abrupt changes like corners or contour endings. Many psychophysical and physiological
experiments from the pioneering works from Hubel and Wiesel 50 years ago [87] have
confirmed the existence of hypercomplex or end-stopped cells which are supposed to
preferentially respond to ridge endings, abrupt corners and other types of junctions and
crossings. Heitger et al. [82] and Dobbins et al. [42] provided end-stopped models for
image processing. Recent advances have discovered cells in V4 area highly specialized on
complex contour representations [144]. These cells would respond to curvature degree
(concavity) and to angles between aggregated curved segments. Thus V1 hypercomplex
cells are candidate to represent endings and curvature changes in contours. And V4
neurons could integrate whole curved segments and angles linking adjacent segments.

As a first implementation we choose to represent contours by their endpoints, called
chain heads, simulating hypercomplex cells and the contour shape through elementary
displacements called movements. This shape representation through successive move-
ments is not biologically inspired but it corresponds to a relatively simple and classical
image processing method called chain coding. In future implementations a full bio-
logical model representing contours through shape parameters such as curvatures and
angles could advantageously be set up.

The contour representation aims at further integrating the visual information and
at providing a description more easily exploitable by the highest visual areas dealing in
particular with object recognition. This objective is known to be directly linked with the
redundancy reduction and the decorrelation of the visual information [3]. The sparse
approximation already induces an important decorrelation of the visual information
and the contour representation aims at removing even higher order correlations. The
chain coder is then designed for redundancy reduction, and consequently for image
compression.

For improving the compression, we first take advantage of the overlapping of log-
Gabor functions to periodically rule out coefficients along chains. In spite of introducing
hollows, if these are sufficiently narrow they can be covered enough by the elongated log-
Gabor filters so that they are not perceptible. This is the case, for instance, when two
over three coefficients are zeroed (as it will be shown Section 4.3.2 and Fig. 4.12, 4.13).
This strategy will be exclusively adopted for image compression tasks since it requires
a much sparser representation.
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Figure 4.8: Scheme proposed for contour representation.

Chain coding has been many times revisited for efficient representation of contours,
whose main precursor was Freeman [67]. He proposed to gather contours in clusters
(chains) linking the non-zero adjacent pixels by elementary movements. Here a chain
coder has been specially adapted from [168] to log-Gabor channels features2. Chains
are described by three data: head coordinates which are the starting point of chains,
movements which are the displacement directions to scan chains and amplitudes which
are the values of log-Gabor coefficients. Fig. 4.8 depicts a scheme of the proposed
contour representation.

• Head Coordinates: The term head is often referred to as the beginning of
chains. Two coordinates are then required, vertical and horizontal. They are
coded considering the distance between the current head and the previous coded
head. The benefit comes from the idea of avoiding to code always the absolute
location within channels. Prefix codes compress efficiently such relative distances
according to their probabilities. Since channels are scanned by rows, short vertical
differences are more probable than long ones, whereas horizontal differences are
almost equiprobable.

• Movements: Depending on each channel, only those movements not implicated
in the lateral inhibition are possible. Two or three movements are then possible.
The Fig. 4.9 shows the code-words associated to the three schemes of movement
employed. One additional symbol codes the end chain points.

• Amplitudes: The modulus of the coefficients is quantified using steps depending
on the Contrast Sensitivity Function (CSF) [176] as in Section 4.3.1, while the
phase is quantized in 8 values (−3π

4
, −π

2
, −π

4
, 0, π

4
, π

2
, 3π

4
, π). Data to code is the

difference between the coefficient value of a log-Gabor coefficient and the previous
2The present chain coding method and its implementations have been developed in collaboration

with Rafael Redondo.
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(a) 2 possible movements (b) 3 movements (c) 2 movements

Figure 4.9: Coding schemes applied to movements along chains. Note that they must
be oriented according to the log-Gabor channel. Code-word at the bottom of figures
means the end of the chain.

one along the chain (prediction error). Moreover head amplitudes, which are used
as offsets, can also be predicted, although their correlation is not so high. Two
predictive codings (module/phase) for head’s amplitudes and two for link (i.e.
non-head chain coefficient)’s amplitudes are then encoded by arithmetic coding.

Additionally the residual low-pass channel hnl is coded by a simple neighboring and
causal predictor followed by an arithmetic coding stage. An outstanding report about
the here mentioned codings can be found in [86].

As previously mentioned, a much sparser representation can be accomplished if
periodic hollows are inserted along chains. However this causes an obvious trouble to
track the chains. In order to solve this problem two types of pyramids are used, one
pyramid which preserves continuous chains to code heads and movements and a second
pyramid which contains the leaky chains to code amplitudes.

Furthermore, revisiting the concept of contour and how is treated by the sparse
approximation, natural contours usually present complex shapes unable to be covered
by a single channel, they spread across different orientation channels and even across
scales. Therefore the channels are not coded independently but an interchannel chain
coding step concatenates adjoining chains by their end(starting)-points jumping from
one oriented channel to another orientation not necessarily contiguous. See how the
contour of the Lena’s hat after sparse approximation (Fig. 4.7 and Fig. 3.6.d) can be
almost completely outlined through orientations. Further implementations should also
envisage interchannel coding between scales taking into account the strong predictability
of contours across scales.

4.3 Applications
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4.3.1 Image compression through iterative sparse approxima-
tion

2nd scale edges

3rd scale edges

4th scale edges

5th scale

low-pass

Figure 4.10: Edge coefficients and low-pass channel used to reconstruct the image at
0.57 b.p.p. (no 1st scale edge is used).

Table 4.2: Compression results for iterative sparse coding (see also Fig. 4.11). For
sparse coding, the entropy is given as compression rate.

b.p.p. scheme PSNR Comments
JPEG 31.15 good quality

2.08 JPEG-2000 31.55 very good q.
sparse coding 31.50 good quality

JPEG 24.50 ringing, blocks
0.57 JPEG-2000 26.78 ringing, aliasing

sparse coding 24.57 blurring

Results are shown for a 256×256 tile of the ISO image "bike". For both low and high
compression rate i.e. entropy values of 2.08 and 0.57 b.p.p., the PSNR for sparse edge
coding is slightly better than the one given by JPEG, although worse than the JPEG-
2000 one (see Table 4.2). Considering moreover that many improvements are possible
for the present scheme, those results show that such sparse edge coding strategy could
be competitive with the orthogonal coding methods even in terms of mathematical
error.

An observation of the reconstructed images through the three compression meth-
ods (Fig. 4.11) shows that sparse approximation using log-Gabor dictionary reduces
importantly the high frequency artifacts usually introduced by the orthogonal methods
(ringing, blocking or aliasing). Due to the smooth shape of the decomposition functions
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Original JPEG JPEG-2000 Iterative sparse coding

Original JPEG JPEG-2000 Iterative sparse coding

Figure 4.11: Compression results for iterative sparse coding at 0.57 b.p.p. on a 256×256
tile of the image "bike" in comparison with JPEG and JPEG-2000. Edges used for
sparse coding are shown in Fig. 4.10. The second line shows the results for a 64×64
zoom tile of the same image.

and the lack of aliasing, the major degradation introduced is a smooth disappearance
of edges or blurring. Thus the results can appear visually more pleasant to the hu-
man eye than JPEG or JPEG-2000 compressed images, even with higher or similar
mathematical error.

4.3.2 Image compression through non-iterative sparse approxi-
mation and chain coding

Table 4.3: Compression results for non-iterative selection and chain coding in terms of
PSNR for Lena, Boats and Barbara.

Image bit rate JPEG JPEG2000 model
Lena 0.93 22.94 26.09 22.38
Boats 0.30 <21.08 24.48 22.67

0.55 24.09 27.21 24.06
Barb 0.64 24.62 28.68 24.50

1.16 30.38 34.10 25.14
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(a) original (b) JPEG (c) JPEG-2000 (d) model

(e) original (f) JPEG (g) JPEG-2000 (h) model

(i) coefficients selected for Lena (j) coefficients selected for Bike

Figure 4.12: Non-iterative sparse approximation applied to the compression of "lena"
at 0.93 bpp and Bike at 1.14bpp. a. and e. 64 × 64 tiles of Lena and Bike. Lena
is compressed using (b.) JPEG, (c.) JPEG-2000, (d.) the porposed model. bike
compressed using (e.) JPEG, (f.) JPEG-2000, (g.) proposed model. i. and j.
Coefficients selected through the sparse approximation steps respectively for Lena and
Bike (2 over 3 coefficients have been zeroed along chains).

The whole process of non-iterative sparse approximation composed by the inhibition,
the facilitation and the amplitude assignation, and finally the chain coding are applied
to several test images as summarized in Fig. 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17 and
in Table. 4.3. Such experiments also aim at evaluating the abilities of the present
model of the priamry visual areas to reduce the redundancy of the visual information.
Redundancy reduction can be measured through image compression applications which
offer a direct evaluation of the methods in terms compression rate (in bpp, bit per
pixel), mathematical error and perceptual quality (i.e. visual inspection). JPEG and
JPEG-2000 are respectively the former and the actual golden standards in terms of
image compression, they are then the principal methods to compare the model with.
Additionally, a comparison with MP is included in Fig. 4.13 and Fig. 4.14.
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(a) original (b) selected MP coefficients (c) selected coefficients

(d) JPEG (e) JPEG-2000 (f) MP (g) model

Figure 4.13: Compression results at 1.03 bpp. a. 96×96 tile of the "Bike" image. b. Co-
efficients selected through the MP algorithm. c. Coefficients selected through the sparse
approximation steps (one over two coefficients are zeroed along chains). d. Compres-
sion with JPEG, PSNR=25.73dB. e. Compression with JPEG-2000, PSNR=29.61dB.
f. Reconstruction by the MP algorithm, PSNR=25.03 dB. g. Compression using sparse
approximation on log-Gabor wavelets and chain coding, PSNR=26.05dB.

The sparse approximation applied to a tile of "Lena" shown in Fig. 4.12.a induces
the selection of a subdictionary shown in Fig. 4.12.i. The chain coding zeroing two over
three coefficients along chains compresses the image at 0.93bpp and the reconstruction
is shown in Fig. 4.12.d. The comparison at the same bit rate with both JPEG and
JPEG-2000 compressed images are shown in (Fig. 4.12.b-c). Similar results for Bike at
1.14bpp are shown Fig. 4.12.e-j. Other results at 0.30, 0.55, 1.03 and 1.90 bpp for the
image "bike" are shown in Fig. 4.13 and 4.15, where an additional comparison with MP
is proposed.

As shown in Fig. 4.14 the compression standards provide better results in term of
PSNR3 at bit rates higher than 1 bpp for the image "bike". In contrast at bit rates
lower than 1 bpp the model provides better PSNR than JPEG, and at bit rates lower
than 0.3 bpp better than JPEG-2000.

Nevertheless it is well known that mathematical errors are not a reliable estimation
of the perceptual quality. Since images are almost exclusively used by humans, it is im-

3 The Peak-Signal-to-Noise-Ratio is measured in dB as PSNR = −20log10(RMSE) where RMSE

is the Root Mean Square Error between the original and the reconstructed image.
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Table 4.4: Gain in terms of quantity of information obtained through the use of chain
coding (first two experiences zero 2 over 3 coefficients along chains. The other ones zero
1 over 2. The mean is given for this last case).

Input Final Coefficients Chain code Gain
image bit rate entropy entropy %
Lena 0.93 0.66 0.58 12.12%
Bike 1.14 0.90 0.70 22.22%

1.94 1.89 1.36 28.11%
Bike 1.03 1.066 0.684 35.87%

0.547 0.538 0.362 32.73%
0.299 0.295 0.184 37.50%

Boats 0.55 0.538 0.362 32.71%
0.30 0.25 0.143 42.80%

Barbara 1.16 1.125 0.81 27.97%
0.64 0.582 0.412 29.21%

Mean 33.36%

portant to evaluate the perceptual quality of reconstructed images by visual inspection.
As the proposed scheme is supposed to model the primary visual areas, it is hoped that
the distortions introduced by the model present similarities with the ones produced by
the visual system. Then one expectation could be that the distortions introduced by
the model would appear less perceptible.

This expectation is fulfilled in a large part since a first remarkable property of the
model is the lack of high-frequency artifacts. In contrast to JPEG or JPEG-2000, no
ringing, aliasing nor blocking effects appear. Moreover the compressed images look nat-
ural and contours appear preserved even when the mathematical error is significantly
higher. A requirement of the lossy compression algorithms is the ability to introduce er-
rors in a low perceptible manner. In that sense the model behaves in a very satisfactory
way.

Compared with MP, the model provides a more structured arrangement of the se-
lected coefficients (compare Fig. 4.13.b with Fig. 4.13.c), which induces more continuity
of the contours in the reconstruction. The model also preserves better the smooth re-
gions thanks to the elimination of isolated coefficients.

Reconstruction quality appears worst in junctions, crossings and corners of the dif-
ferent scales (see also Fig. 4.16 for an image containing many of such features). This
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Figure 4.14: Evolution of the PSNR for different compression rates for the image Bike.
The proposed method can offer a reconstruction competitive with the compression
standard in terms of PSNR at very high compression rates.

can be explained by the good adequacy of log-Gabor functions for matching edges and
ridges and their worst match with junction and crossing features. One can argue that
the present sparse approximation should be completed by the implementation of junc-
tions/crossing detectors as other models do [82]. This lies nevertheless out of the scope
of the present study.

The second problem concerns textures which are generally not well treated by edge
extraction methods. One of the worst possible cases are the pure sinusoidal patterns
which in some conditions do not even induce local-maxima in the modulus of complex
log-Gabor functions. Nevertheless in the majority of cases, textures can be considered
as sums of edges. For example in Fig. 4.12 the bristles of Lena’s hat constitute a
texture and at least the most salient bristles are reproduced. In the same manner the
texture constituted by the hat striation is not reproduced integrally but the most salient
striations are preserved (note moreover that the striations also tend to disappear in the
JPEG and JPEG-2000 compressed images). For further improving the reconstruction
quality, and to extract more edges, a few additional passes of sparse approximation
can be deployed. For example, a second pass allows the extraction of a significant part
of the textures in Barbara’s scarf and in its chair as shown in Fig. 4.17. Nevertheless
the method does not allow to capture so much sparse representations for textures than
it does with contours, the compression quality at the same rate is then significantly
lower. As future improvements, it could then be advantageous to deal with textures
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1.90 bpp: (a) JPEG (b) JPEG-2000 (c) model

0.55 bpp: (d) JPEG-2000 (e) MP (f) model

0.30 bpp: (g) JPEG, 0.55bpp (h) JPEG-2000 (i) model

Figure 4.15: Compression results for the image Bike at 1.90 bpp (insets (a), (b), (c)),
0.55 bpp (insets (d), (e), (f), (g)) and 1.90 bpp (insets (h), (i)). The method used
(JPEG, JPEG-2000, MP or the present model) is indicated under each inset.

through a separate dedicated mechanism exploiting the texture statistical regularities
as those proposed e.g. in [159, 5, 190], or more simply using a standard wavelet coder
as proposed in [148, 214]. Such improvements stay nevertheless out of the scope the
present study.

The reduction of information quantity between the sparse and the chain repre-
sentation can be evaluated as around 33% through classical entropy calculations (see
Table 4.4). As the chain coder does not introduce information losses (the reconstruction
is the same), the information quantity reduction is uniquely due to a redundancy reduc-
tion. Thus chain coding offers a significant redundancy reduction for free. This shows
the importance of applying an additional transform for grouping selected coefficients in
further decorrelated clusters like chains. It is then an important advantage upon MP
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0.30 bpp:

(a) Boats

0.55 bpp:

(b) JPEG (c) JPEG-2000 (d) model

(e) JPEG (0.46bpp) (f) JPEG-2000 (g) model

Figure 4.16: Compression results of "Boats" at 0.55 bpp (upper row) and 0.30 bpp
(bottom row). a. This 96 × 96 tile of "boats" image contains many junctions and cor-
ners, which are difficult features to be captured by the model. b. and e. Compression
with JPEG. c. and f. Compression with JPEG-2000. d. and g. Compression using
sparse and chain coding.

which induces a representation less structured then harder to further decorrelate.

4.3.3 Non-iterative sparse approximation applied to denoising

Denoising results are presented in Fig. 4.18, 4.19, 4.21 and 4.20 in comparison with the
standard method by wavelet shrinkage [28] (orthogonal and undecimated wavelets ’Db4’
are used) and the GSM model using steerable pyramids [160]. For all methods the noise
level is supposed to be known ans the implementation proposed in [160] is used both for
the GSM and the wavelet shrinkage methods. In denoising the quality of reconstruction
is important, then no edges should be missed in the sparse approximation. Consequently
the sparse approximation steps are deployed two additional times on the reconstruction
error, so as to extract the residual edges not detected in the first passes.

It is first to note that the method is able to extract and reconstruct almost all the
image features. E.g. the reconstruction of the image boats (Fig. 4.18.e) incorporates
almost all the original image features. Nevertheless some few edges are lost, in particular
close to intricate junctions; as e.g. in the junctions between the twin wires with another
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0.64 bpp:

(a) Barbara

1.16 bpp:

(b) JPEG (c) JPEG-2000 (d) model

(e) JPEG (f) JPEG-2000 (g) model

Figure 4.17: Compression results of "barbara" at 1.16 bpp (upper row) and 0.64 bpp
(bottom row). a. 96× 96 tile of "Barbara" image. This image contains textures which
are also more difficult features to be encoded by the model. b. and e. Compression
with JPEG. c. and f. Compression with JPEG-2000. d. and g. Compression using
sparse approximation and chain coding. (Two passes of subdictionary selection are
deployed.)

wire in the center/bottom part of the image (see also Lena’s right eye and the upper
part of the hat border in Fig. 4.19). Thus, at very low noise level the method can not
compete with other denoising methods due to the imperfect reconstruction.

In contrast, long edges and lines are particularly preserved. E.g. the boat wires in
Fig. 4.18 are particularly well preserved while they tends to disappear and are smoothed
in the other methods. This contour preservation remains at high noise levels, where
it allows for the image Lena a significant gain over the other methods (the difference
is around 0.6 dB with GSM, see Fig. 4.20. Fig. 4.21.g-k lets show that contours are
preserved sharper than in the other methods also at very high noise level.

Moreover as in compression, an important quality of the model is to yield recon-
structions without high frequency artifacts which allows in particular the preservation
of smooth gradients of luminance (see e.g. Lena’s skin in Fig 4.19).

For explaining the results, it is worth noting that an important difference between
methods reside in the thresholding. Wavelet shrinkage only considers the amplitude of
the coefficient, retaining the highest ones as signal and eliminating the smallest coeffi-
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(a) Boats (b) orthogonal wavelets (c) undecimated wavelets

(d) GSM (e) model (f) zoom

Figure 4.18: Denoising results for a low noise level. a. The original image "Boats"
already contains a low level of noise. The image is denoised using (b) orthogonal
wavelet, (c) undecimated wavelet, (d) the GSM model and (e) the present model.
The proposed method preserves particularly along lines and edges, as e.g. the wires at
the top and at the left of the image. Different details appear smoothed by the other
methods while they remain sharp in inset (e). (f) Zoom for original, undecimated,
GSM and the present model respectively (from left to right and top to bottom).

cients as noise. GSM model considers the 3x3 neighborhood and the parent coefficient
in the thresholding decision. In contrast the proposed model takes into account larger
neighborhoods by considering that contours are arranged in long chains of co-aligned
edges while noise is spatially incoherent.

4.4 Conclusions

We proposed two sparse approximation methods inspired from biological knowledge
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(a) Lena (b) Noisy version (c) orthogonal wavelets

(d) undecimated wavelets (e) GSM model (f) model

Figure 4.19: Denoising results with Lena image at medium noise level. a. 112 × 112

detail of the image "Lena" corrupted by Gaussian noise for a PSNR of 20.22 dB in
(b). c. After denoising using orthogonal wavelets a high level of artifacts appears. The
level of artifacts is reduced thanks to the use of undecimated wavelets (d), GSM model
(e) or the proposed model (f). The model preserves particularly smooth gradients
of luminance. Nevertheless it shows difficulties in capturing some intricate features in
particular close to junctions (see e.g. the right eye) and to adjacent parallel lines (e.g.
upper end of the hat border).

on V1 cortical cells and optimized for image processing tasks. They build on the self-
invertible linear log-Gabor transform propose in Chapter 2 and in the non-linear steps
of inhibition and facilitation between neighboring transform coefficients described in
Chapter 3. Those steps are able to extract continuous chains of coefficients located
on the edges and ridges of the image, achieving an efficient contour extraction. The
sparse approximation schemes select either iteratively or non-iteratively uniquely those
contour coefficients and assign them an amplitude for building an approximation of the
image.

Such sparse approximations gather a number of interesting properties which can be
summarized as follows. First, they are non-linear, invertible and allow an exact recon-
struction (if the residual is included). Second, the inverse transform is just performed
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Figure 4.20: Denoising results at different noise levels. (a) The evolution of the denois-
ing results is plotted for Lena (see also Fig. 4.19) as the gain (i.e. the improvement in
terms of PSNR), as a function of the noise level (also measured as PSNR). For low level
of noise (PSNR of 33.90 and 26.02 dB), the model yields poorer gain than with other
methods. This could be due to the approximated reconstruction offered by the sparse
approximation method. For high noise level (PSNR lower than 15 dB), the model offers
a higher gain than the other methods.

by the linear log-Gabor wavelet inverse transform, what makes it very fast. Third, the
information contents and the redundancy are highly reduced (i.e. efficient compression
is possible). Fourth, visual events (edges) are enhanced, sharper and thinner localized
in the transform domain (in opposition to the linear log-Gabor wavelet transform, the
sparse log-Gabor representation allow to achieve the theoretical optimal limit of local-
ization, being able to represent features through single Gabor coefficients. Finally the
computational complexity O(N · log(N)) is reasonably low and can be even reduced
to O(N) if log-Gabor wavelets are implemented in the space domain through filters of
limited support.

The iterative selection seems to yield better results in terms of mathematical errors,
but non-iterative selection provides particularly good results in terms of perceptual
quality. As an additional advantage of the non-iterative method, the coefficients can be
predictively encoded by a chain coding procedure. For both methods the schemes ap-
pear potentially competitive with standard image compression algorithms, particularly
at high compression rates. By its part, the chain coding is able to code predictively
the edge coefficients arranged in continuous contours. It offers then an efficient rep-
resentation of contours. It has been shown to significantly decrease the entropy of
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(a) Lena (b) Noisy version (c) orthogonal wavelets

(d) undecimated wavelets (e) GSM model (f) proposed model

(g) orthogonal (h) undecimated (i) GSM (j) Sparse (k) Noisy

Figure 4.21: Denoising results with Lena image at low and high noise level. a. Original
tile "Lena". b. The same tile corrupted by Gaussian noise for a PSNR of 33.90
dB. Denoising using (c) orthogonal wavelets, (d) undecimated wavelets, (e) GSM
model, (f) the proposed model. Although the proposed method yields the worst PSNR
of all four methods, the perceptual quality is outstanding first for the elimination of
high frequency artifacts and second for the preservation of smooth gradients. It is
again remarkable that the sparse approximation reconstructs almost all image features.
Bottom insets show denoising results using (g) orthogonal wavelets, (h) undecimated
wavelets, (i) the GSM model, and (j) the present model on a noisy version of "Lena"
(k) including a high level of noise (the PSNR is 11.97 dB).
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the representation and at the same time it offers an encoding method for writing the
compression file. The low redundancy of such chain representation could also make it
adequate to build descriptors for object recognition.

In parallel the ability for extracting contours can be exploited for signal to noise
segregation. Indeed the method shows promising results for image denoising since it
preserves particularly long lines and contours and reduces the appearance of artifacts.
Best results are obtained at high noise levels, the worst results at low noise level can
be explained in part by the approximated reconstruction.

This confirms the potential of overcomplete transforms and sparse approximation
algorithms for image processing and in particular for compression applications. The
present study confirms that overcomplete transforms can offer important advantages
in terms of perceptual quality in particular for avoiding the appearance of artifacts
and preserving smooth gradients and continuous sharp contours. Another significant
advantage is a high interpretability of transform coefficients in terms of edges and
contours.

On the other hand, the efficiency of the scheme for such a diversity of image pro-
cessing tasks (edge extraction, denoising and compression) is an additional argument
in favor of the hypothesis that similar processes could take place in the primary visual
cortex.

It can result interesting to compare the present model with another biologically in-
spired model called divisive normalizaton [213]. In such model, non-linear interactions
between neighboring cells allow an important decorrelation of the transform domain
(the scheme is currently employed with (bi-)orthogonal wavelets or overcomplete trans-
forms such as steerable pyramids). Decorrelation and redundancy reduction are tasks
supposedly performed by the visual system [7, 3]. Nevertheless it should be taken
into consideration that decorrelation by itself does not necessarily implies redundancy
reduction. E.g. white noise is decorrelated but it is not sparse and it contains the
maximum quantity of information. Thus the "whitening" aimed by the decorrelation
and the divisive normalization which does not zero the majority of coefficients could
reveal in some cases pathological and could miss to reduce the quantity of information.
The proposed model is then different in different aspects: first in the objectives since it
aims at sparsifying the transform domain and not at decorrelating it. And second in the
approach, since divisive normalization is presented as a general mechanism plausibly
present at any level of the cortical pathways while the proposed model is based on the
priori information on the type of data to be analyzed (i.e. contours), it is then a specific
mechanism adapted to a particular neural function.
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Among further improvements, end-stopping operators dealing with the extraction
of junctions, corners and crossings could be implemented, which could improve the
performance in the proximity of such features. Another unresolved difficulty is to deal in
a non-iterative manner with pure sinusoidal patterns and textures which do not induce
local maxima in the log-Gabor modulus. Many improvements are also possible in all
the different steps of the algorithm, in particular to improve the selection of coefficients
by a more sophisticated combination of saliency measurements (chain length, presence
of parent coefficients and coefficient amplitude), or to exploit the predictability of the
coefficients across scales for image compression.



Chapter 5

Contour completion using tensor
voting

"Une lutte contre la pauvreté serait possible. [...]. Elle lutterait contre
la pauvreté d’un mot, richesse, auquel a été retranché l’essentiel de son
sens. La vraie richesse humaine, plutôt que dans l’accumulation indi-
viduelle ou collective délirante d’argent et de biens matériels, n’est-elle
pas dans une capacité constante à acquérir et partager de la connais-
sance, de la sagesse, des sciences, de l’intelligence, de l’imaginaire, de
la beauté, de la puissance poétique, une haute conscience de l’autre ?
Si tout à coup c’était bien cela la richesse, on verrait qu’elle est mieux
répartie, mieux partagée que ce que l’on croit, comment chacun en a
mais aussi en est un morceau."

Jean-Michel Bruyère et Issa Samb, La guerre aux Pauvres, 2002.

Tensor voting methods have been developed in a series of papers by Medioni
and coworkers during the last years. The method has been proved efficient
for grouping and feature extraction and has been applied successfully in a
diversity of applications as contour and surface inferences, motion analysis,
etc. We present here two studies on improvements of the method. The first
one consists in iterating the tensor voting process, and the second one inte-
grates curvature information. In contrast to other grouping methods, tensor
voting claims the advantage to be non-iterative. Although non-iterative ten-
sor voting methods provide good results in many cases, the algorithm can be
iterated to deal with more complex or more ambiguous data configurations.
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We present experiments that demonstrate that iterations substantially im-
prove the process of feature extraction and help to overcome limitations
of the original algorithm. As a further contribution we propose a curva-
ture improvement for tensor voting. Unlike the curvature-augmented tensor
voting proposed by Tang and Medioni, our method evaluates the full curva-
ture, sign and amplitude. Another advantage of the method is that it uses
part of the curvature calculation already performed by the classical tensor
voting, limiting the computational costs. Some new curvature-modified vot-
ing fields are also proposed. Results show smoother curves, a lower degree
of artifacts and a high tolerance against scale variations of the input. The
methods are finally tested under noisy conditions showing that the proposed
improvements preserve the noise robustness of the tensor voting method.

The present study have been presented in [58, 57]. Tensor voting method
aims at grouping edge segment in continuous contours. It completes then
the Chapter 3 on edge extraction, and could also serve as a basis for the
Chapter 4 on sparse representation from edges. Nevertheless at this stage of
implementation tensor voting methods were not integrated neither with the
edge extraction nor with the sparse coding. First because the tensor encod-
ing of edges is different to the log-Gabor representation, but also because
the proposed method for edge extraction is sufficiently efficient to deal with
natural images without necessity of grouping separated edge segments. In-
deed edge extraction proposed in the Chapter 3 already achieves continuous
representation of contours in most cases.

5.1 Introduction

Perceptual contour extraction methods aim at drawing and completing contours in im-
ages on a similar manner a human would do. Methods are often based on Gestalt
psychology [99] but also in recent psychophysical experiments [55, 84, 122] and physi-
ological studies of the visual cortex [94, 145]. Based on such studies some algorithms
achieve perceptual contour extraction by simulating the behavior of visual cortex neural
networks [221, 112, 131, 79, 135, 63, 208]. Other methods as tensor voting [129, 201, 77]
implement the Gestalt laws. Alternatively there exist also algorithms based on curves
of least energy [179] or stochastic motion [218].

Tensor voting algorithms have been developed by Medioni and coworkers as an
efficient method for contour extraction and grouping. Full descriptions of the algorithms
can be found in, e.g. [129, 201, 77], and a comparison of tensor voting with other
algorithms can be found in [218].
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Tensor voting is a non-iterative procedure, in the sense that the original scheme
implements only 2 steps of voting, claiming that no further iterative cycles are needed.
Many other methods for perceptual grouping, e.g. [221, 112, 131, 79, 135, 63], refine
the results by iterative loops. Thus, the first aim of this study is to investigate how the
incorporation of iterations in the voting mechanism can improve the results of tensor
voting. Some basic examples are analyzed and a statistical study on the influence of
iterations is set up in a simple case.

A curvature improvement has already been proposed by Tang and Medioni [195] for
3D images. It computes the sign of curvature to modify the voting fields. For the 2D
case, we propose a more sophisticated calculation of the curvature information with a
low computational cost. Instead of the sign of curvature, the proposed method evaluates
the full curvature information using part of the calculations previously performed by
the tensor voting. We adopt a curvature compatibility approach that was described
by Parent and Zucker [143]. A statistical evaluation is presented and the methods are
finally tested with complex data and in presence of noise. The present work builds upon
and further extends the preliminary investigations presented in [57]. New results have
been included here for a more complete evaluation and a comparison of the different
methods. In particular an evaluation of the noise robustness have been set up. Note
also that, very recently Tong and Tang [200] proposed tensors of curvature, showing
the increasing interest of curvature evaluation for tensor voting.

Unlike Medioni and coworkers who usually apply tensor voting to volumetric data
(3D images) or even N-dimensional features [196, 136], we preferred to restrict the
present work to 2D images for the following reasons: (1) 2D examples are easier to un-
derstand, which facilitates the study of the basic properties of the underlying approach.
(2) Contour extraction in 2D images still remains an unsolved problem, which makes
the presented approach an interesting alternative to state-of-the-art algorithms. (3)
2D applications have lower computational cost, which is important since tensor voting
methods are computationally expensive.

Section II briefly introduces the tensor voting method. Section III presents a
study on iterated tensor voting and the section IV describes improvements that can
be achieved when both curvature information and iterations are used. Section V eval-
uates the robustness of the methods in presence of noise. Finally some concluding
remarks are drawn in section VI.
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5.2 A brief introduction to tensor voting

Tensor voting algorithm (referred as TV in the following) encodes a local description of
the curves at each point of the image by a symmetric positive 2x2 tensor. Those tensors
permits to represent an evaluation of the tangential orientation, of the uncertainty on
that tangential orientation and of the possible presence of a junction in that point.

Tensors can be diagonalized, their eigenvalues are denoted by λ1, λ2 with λ1 ≥ λ2 ≥
0. The corresponding eigenvectors are denoted by e1, e2. Tensors are decomposed as
follows:

T = (λ1 − λ2)e1e
T
1 + λ2I (5.1)

where I is the identity matrix. The first term is called the stick component, where e1

corresponds to an evaluation of the tangential orientation of the curve segment. The
stick saliency λ1 − λ2 gives a confidence measure for the presence of a curve. The
second term is called the ball component, and its saliency λ2 measures the confidence
to have a junction. Note that the ball components can also denote an uncertainty on
the tangential orientation.

For binary images, tensors can be initialized as ball tensors, i.e. as the identity
matrix I at locations that contain data points and null tensors at other locations.

The classical tensor voting algorithm proceeds by two voting steps in which each
tensor propagates to its neighborhood. Stick tensors propagate mostly in the direction
of e1. The region of propagation is defined by the stick voting field which decays as
a function of the distance and curvature (see Eq. 5.3 and Fig. 5.3.h). Stick voting
fields are built by following the Gestalt laws in perception. These establish criteria for
grouping together points that lay on a curve: "good continuation", proximity, favoring
low curvatures over large ones and consistency of the curvature [129]. Ball tensors, on
the other hand, isotropically propagate in all directions decaying with distance. After
the tensor propagation, all contributions are summed up to define new tensors that
will be used for the next step. That summation can be considered as averaging or
voting. The first voting step is referred as sparse vote because the vote is performed
only on points where tensors are not zero. The second voting step is called dense vote
because the vote is accomplished at every location. After all voting steps are completed,
curves are extracted at local maxima of stick saliency along the normal direction to
stick components. Note that a threshold τ is necessary to eliminate low-saliency local
maxima. Fig. 5.1 summarizes the different steps of the algorithm.

The tensor voting algorithms will not be described more in detail here. For a more
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Figure 5.1: The classical tensor voting method is composed of four steps. (1) Tensor
initialization, (2) sparse voting, (3) dense voting, and (4) feature extraction.

in depth study the reader can refer to [129, 201, 77, 195].

The novel contributions described in the following are represented Fig. 5.2 in bold-
face characters. They consist in iterating the sparse voting step (section III) and inte-
grating curvature information for using curved voting fields (section IV).

Figure 5.2: The new contributions (in boldface characters) consist in iterating the sparse
voting step, evaluating the local curvature and incorporation that curvature information
into the voting fields.
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5.3 Iterated tensor voting

5.3.1 Example

The original tensor voting approach [129] is particularly efficient for grouping sparse
data-points that are separated by gaps of comparable size. A free parameter σs, called
the scale factor (see Eq. 5.3), has to be minimally adjusted to the inter-distance between
points. If σs is miss-adjusted, extraction results loose quality: if σs is too small points
will not be grouped; if σs is too big the grouping is less selective.

Fig. 5.3.a shows an example where points are situated along a spiral. Because
the distance between two following points is smaller than the distance between two
successive arcs and assuming the curvature is low, the Gestalt rules predict that the
points have to be circularly grouped along the spiral but not radially. Because the gaps
between points vary along the spiral, it is not possible to adjust σs for proper extraction
of the whole spiral. As it is shown in Fig. 5.3.c, σs need to be small, i.e. around 5,
for grouping the central part of the spiral. But only a large σs, around 11, is able to
group the external part of the spiral (Fig. 5.3.i). Between these values (σs around 8,
Fig. 5.3.f) neither the central part nor the external one are grouped properly.

The accuracy of voted tensors can be checked comparing their orientation with the
one of the ideal spiral defined by its mathematical equations. We will consider a tensor
as misoriented if the angular error exceed π/10. With σs =5, 8 and 11, respectively 5,
5 and 16 tensors are misoriented (over the 57 tensors situated in the data points).

5.3.2 Iterative tensor voting (IT) method

One objective of the sparse voting step is to evaluate the orientation (tangent) of the
curve in each data point, while the dense voting step mostly bound those points (fill
the gaps) by propagating the tensors thanks to the voting fields. In principle both
sparse and dense voting steps could be iterated, nevertheless it has been chosen not to
iterate the dense voting step for the following reasons: (1) The dense voting step has
a much higher computational complexity, then its iteration could be extremely costly.
(2) The dense voting step frequently produces some irrelevant votes which themselves
would propagate through iterations, yielding divergent and unrealistic results. (3) In
contrast the sparse voting step only modifies the eigenvalues and eigenvectors of the
existing data points, refining them through mutual voting. But it does not add any
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(a) Original image

(b) σs=5 (c) TV (d) IT

(e) σs=8 (f) TV (g) IT

(h) σs=11 (i) TV (j) IT

Figure 5.3: Example tested for different values of the scale factor σs with the non-
iterative method (TV) and with 12 iterations (IT method). a. Data points are located
along a spiral. b, e, h. Contours of the voting field for σs = 5, 8 and 11 are drawn at
50% (solid line) and 5% (dash-dot line) of the maximum value (voting fields are defined
by the Eq. (5.3)). c, f, i. Extraction results with TV. d, g, j. with IT.

tensor in other points. No outlier point appear which is important for the stability of
the iterative process.

A divergence of the eigenvalue amplitudes could nevertheless occur by iterating the
sparse vote. This can be counteracted by a normalization stage keeping constant the
sum of eigenvalues of each tensor. This normalization is applied after each iteration.
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Therefore, as it is shown in Fig. 5.2, the sparse voting stage is the only step to be
iterated. For n iterations, n − 1 sparse votes and one dense vote are realized.

As a consequence, the iterations will mainly refine the orientations of the tensors
(i.e. the tangents of the curves), but due to the lake of dense voting iterations, the
range of propagation will not be increased by the iterative process.

Fig. 5.3.d, g, j shows the results for 12 iterations with σs = 5, 8 and 11 respectively.
Iterations do not fill the gaps between points where σs is too small, that is, as predicted,
iterations do not increment the range of propagation (Fig. 5.3.d, g). On the contrary,
iterations refine tensor orientation so that the central part of the spiral is accurately
extracted even for large values of σs (compare the central parts of the Fig. 5.3.g, j to the
ones in the Fig. 5.3.f, i). Iterations thus allow to extract the entire spiral for σs = 11

(Fig. 5.3.i) while non-iterative tensor voting fails. Note that all tensors are accurately
oriented for all σs = 5, 8 and 11.

5.3.3 Statistics on the influence of iterations

A very basic 3x3 array of points, inspired from [93] and shown in Fig. 5.4.a, is used
to evaluate the effect of iterations on tensor voting. Vertical and horizontal distances
between points are denoted by Δx and Δy respectively. In the following, Δx will be
chosen smaller than Δy. In such case, following the Gestalt rule of proximity, points
have to be grouped vertically (in opposition if Δx > Δy, points would have to be
grouped horizontally). A quality measure of good tensor orientation can be defined as:

Q1 = −log10

[
1

9

9∑
i=1

(
1 − Ti(1, 1)

Si

)]
(5.2)

where i indexes the 9 points of the array. Ti is the tensor of the point i, Si is the sum
of eigenvalues of Ti and Ti(1, 1) the vertical component of the tensor Ti.

As vertical lines have to be extracted, tensors are correctly oriented if they have a

form close to Ti = Si

[
1 0

0 0

]
. In such case

∑9
i=1(1−

Ti(1,1)
Si

) is close to zero, providing

a high value for Q1. It can be considered that tensors are misoriented and that the
extraction has failed when Q1 < 1 (in such case it can be derived from Eq. 5.2 that the
mean error of orientation for stick tensors is larger than 18 degrees). Also when Q1 > 2,
tensors can be considered as well orientated and the structure as correctly extracted
(the mean error of orientation is then smaller than 6 degrees).
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(a) Δx=4, Δy=9 (b) TV (c) IT

Figure 5.4: Systematic evaluation of the influence of iterations using a three by three
array of points. a. Original array of points separated by Δx=4, Δy=9 b. Contours
extracted with TV: central points are not grouped, lateral points are grouped but not
in strictly vertical lines, moreover some artifacts appear (Q1=0.40). c. The structure
is well extracted by IT (10 iterations): points are grouped in vertical lines (Q1=2.38).
This example corresponds to the case 1 described in the following. σs = 10 and τ is the
same for both insets b and c. Note that, because σs is larger than Δy and Δx, σs is
too large to discriminate adequately between horizontal and vertical grouping in only
one sparse voting iteration.

5.3.4 Results

Figure 5.6 presents the results obtained for different parameters Δx, Δy and n (number
of iterations). For all cases the scale factor σs is fixed to 10. Again, it is necessary to
remark that in this study we are only considering cases where Δx<Δy.

• Case 1: If Δy�σs (that is if 8<Δy<12) TV fails to extract the curves. In
contrast, iterations progressively improve the extraction quality to obtain the
correct structure. This can be observed in Fig. 5.6.a in the center part, Fig. 5.6.b
in the left part and also Fig. 5.4.a, b and c.

• Case 2: Similarly if Δx�Δy TV fails. There is conflict between horizontal and
vertical grouping, yielding to extracted curves of different orientations. The use
of iterations permits to group them adequately (see Fig. 5.5 and Fig. 5.6.c left
part). Note that, for the most difficult cases, a high number of iterations can be
necessary (50 iterations for the configuration with Δx=13, Δy=14).

• Case 3: If Δx<Δy � σs it is impossible to extract the structure even if more
iterations are deployed (see Fig. 5.6.a left part), the scale factor is indeed too large
to be selective enough between horizontal and vertical grouping.

• Case 4: TV is accurate only if σs � Δy: Δy is sufficiently large in comparison
to σs (such that the algorithm is able to segregate between vertical and horizontal
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(a) original (b) TV (c) IT

Figure 5.5: a. Array with Δx=13, Δy=15. b. Results for TV. c. Results for IT (10
iterations). Those results correspond to the case 2, details are given in the text.

grouping) and if there is no intrinsic conflict between vertical and horizontal
grouping (that is where Δy and Δx are sufficiently different, i.e. Δx � Δy).
Even in those cases the measurement Q1 shows an improvement on the extraction
for any increase of the number of iterations.

In conclusion, only if the features to be extracted are sufficiently simple, such that no
conflict between different orientations of grouping appear, the non-iterative algorithm
would suffice for correctly extracting image features. For more complicated cases, when
some conflict between grouping orientations is present or when the scale factor σs is
not precisely adjusted, more than two iterations are required. Moreover, it has been
shown that in almost all cases iterations do not impair the quality of the results. Rather
iterations refine the final structures even in simple cases.

5.3.5 Further remarks on the use of iterations

The number of iterations can be considered as an additional parameter of the algorithm.
A procedure could also be implemented for stopping the iterations when the results do
not differ much from one iteration to the next [226]. For all examples presented here
a fixed number of iterations has been used. Generally, if data does not contain special
difficulties (e.g. competition between directions of grouping or scale parameter dis-
adjustment), a small number of iterations, i.e. between 6 to 10 iterations, has been
shown to be sufficient.

The computational cost of deploying additional iterations is small in comparison to
the total cost. The reason is that iterations are done only during the sparse voting
step which computational costs are highly reduced in comparison with the dense voting
step.



116 Chapter 5. Contour completion using tensor voting

(a)
(b)

(c)

Figure 5.6: Extraction quality of the Fig. 5.4 for different parameters Δx and Δy. The
number of iterations n is indicated by different gray shades in the bars (two iterations
bar corresponds to TV which uses two voting steps). σs = 10 and the threshold τ are
held constant for the entire experiment. Q1 < 1 indicates the extraction has failed and
Q1 > 2 that it is accurate. a. Δx fixed to 4 and 5≤Δy≤13. b. Δx=8 and 9≤Δy≤15.
c. Δx = 13 and 14≤Δy≤19.

The problem of scale parameter adjustment could alternatively be solved by multi-
scale analysis as recently described by Tong et al. [201].
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5.4 Curvature improvement

5.4.1 Method

In addition to the iterative improvement we also propose a novel mechanism for ex-
tracting and incorporating curvature information. This last improvement introduces a
curvature calculation and modified stick voting fields.

The curvature is evaluated in each voting point by averaging over all receiver points
the curvature calculation ρ already computed by the classical tensor voting. In the
classical tensor voting, a voter A votes by adding in any point B a tensor of an amplitude
described by the following stick voting field:

V (A, B) = exp

(
−s(A, B)2

σ2
s

− θ(A, B)2

σ2
θ

)
(5.3)

where s(A, B) is the length of the circular arc AB which is tangent to
→
e1 (A) in A (see

Fig. 5.7.a). θ is the angle between the vectors →
e1 (A) and

−→
AB. The scale factor σs and

σθ are constants. This type of voting field has been described e.g. in [77]. Fig. 5.3.b, e, h
shows the contours of those voting fields for different values of σs.

Eq. 5.4 expresses the geometric relation between the curvature ρ(A, B), the length
s(A, B) of the arc AB and the angle θ (see Fig. 5.7.a):

s(A, B) =
2 θ(A, B)

ρ(A, B)
(5.4)

Thanks to Eq. 5.4, the Eq. 5.3 can be expressed as a function of ρ(A, B):

V (A, B) = exp

(
−s(A, B)2

(
1

σ2
s

+
ρ(A, B)2

4 σ2
θ

))
(5.5)

Another field described by Eq. 5.6 and Fig. 5.7.c is also frequently used by Medioni
and coworkers [129]:

V (A, B) = exp

(
−s(A, B)2 + c ρ(A, B)2

σ2
s

)
(5.6)

Nevertheless it is not employed in this study: the former field of Eq. 5.3 has the advan-
tage that the angular range σθ of the field does not require to be readjusted when σs

is changed, whereas the value of c in Eq. 5.6 has to be manually adjusted for each σs

value.
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To permit inflexion points and changes of curvature, the curvature of any voter A
is calculated separately for both half planes P+(A) and P−(A) defined respectively by
P+(A) = {B ∈ P, (

→
e1 (A),

−→
AB) > 0} and P−(A) = {B ∈ P, (

→
e1 (A),

−→
AB) < 0}, where

P denotes the whole image plane (see Fig. 5.7.f). The weighted average over each half
plane gives γi(A) (where i = + or −), which is a curvature evaluation at the point A:

γi(A) =

∑
B∈Pi(A)

(λ1(B) − λ2(B)) V (A, B) ρ(A, B)∑
B∈Pi(A)

(λ1(B) − λ2(B)) V (A, B)
(5.7)

where λ1(B), λ2(B) are the eigenvalues of the tensor B. The weighted average is very
similar to the “voting” used in tensor voting: the same weighting functions composed
by the voting fields V and the stick saliency λ1 − λ2 are used.

The γi determined at one iteration, can then be used in the next iteration for
modifying the stick voting fields, that is accomplished by extending Eq. 5.5 as follows
(Note that the sign of γi(A) has to be changed from one iteration to the next if the
orientation of the eigenvector e1 varies more than π

2
.):

For any B ∈ Pi(A),

V (A, B) = exp

(
−s2

(
1

σ2
s

+
(ρ(A, B) − γi(A))2

4 σ2
θ

))
(5.8)

Some examples of such curvature-modified voting fields are shown Fig. 5.7. e, f, g
(for a comparison see the classical voting field in Fig. 5.7.b).

The ball components of significant level denotes the presence of a junction or an
uncertainty on the tangent orientation. In both cases the tangent estimation given by
the first eigenvector can not be trusted, and as a consequence the curvature calculation
is not reliable. It is then preferable not to use curved voting fields that is to consider γi

as zero. Thus for all the following simulations we set γi(A) = 0 for any point A which
verifies λ1(A)

λ2(A)
< 3.5 (threshold empirically chosen).

The method follows the “voting” methodology. The curvature is computed by av-
eraging weighted by the same voting fields V and saliencies λ1, λ2 as in tensor voting.
It should help to preserve the good properties of the tensor voting, like the robustness
to noise. The curvature improvement does not entail an important additional compu-
tational cost in comparison to the classical method. It uses the same kind of averaging
operations as the tensor voting and reuses calculations already done. E.g. in the cur-
vature calculation of Eq. 5.7 all variables λ1, λ2, V and ρ are already computed by the
classical tensor voting.
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(a) (b) (c) (d) (e) (f) (g)

Figure 5.7: a. Tensor voting fields are build by calculating the distance d, the angle
θ, the arc longitude s and the curvature ρ between the voter A oriented by its first
eigenvector e1 and the receiver B. In CI the curvature is evaluated in the voter A by
averaging ρ over all receivers. b. Classical voting field without curvature. Contours are
drawn at 50% and 5% of the maximum value, σs = 15 for all voting fields of the figure
and σθ = π/6 for insets b,d,e,f,g. c. Stick voting field defined by Eq. 5.6 (with σs = 15

and c = 210, 000). d. TM voting field modified by the sign of the curvature [195]. e.
Symmetric curved voting field with curvatures γ+ = γ− = .06. f. Curved voting field
with different curvature in both half planes, γ+ = .09 and γ− = .03. g. Curved voting
field with inflexion, γ+ = .06 and γ− = −.06.

Note also that an increased number of iterations is necessary to refine the curvature
calculation. Six iterations have been seen to be sufficient unless the structure to extract
presents some special complexity (e.g. competition between directions of grouping).

In all examples and both for iterated and curvature improvements, the iterative
process has been seen to converge. Nevertheless it is not to exclude that in particular
data configurations the process would not converge but for example oscillate between
two states. Then, and in spite of the usually good behavior of the iterations, no proof
of convergence is provided here.

In the following, the curvature improvement (CI) will be compared with the non-
iterative tensor voting (TV) and with Tang and Medioni’s method taking into account
the sign of curvature (TM) [195]. In this last method, that has been developed for 3D
images, the sign of curvature is employed to decide if the entire voting field or only half
of it should be used (see Fig. 5.7.d for an example of a half voting field). Note one more
sparse voting step has to be implemented to make the curvature calculation possible.
(Results of the Tang and Medioni’s method presented here are obtained by our own
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implementation adapted for 2D images).

5.4.2 Statistical study

(a) Original image (b) TV

(c) TM (d) CI
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Figure 5.8: Comparison between methods. a. The input image is composed by a sparse
set of dots dispersed along a curve in form of 8. b., c. and d. Extraction results with,
respectively, TV, TM [196], and CI (6 iterations). In insets b., c. and d. σs = 20 and
τ is adjusted for obtaining the best result following the Q2 calculation. In all cases the
curve is extracted, but TV and TM produces artifacts. CI produces the best result i.e.
without artifacts and with smooth curves. e. Results for σs varying between 1 and 60.

Fig. 5.8.a shows an image composed by sparse points randomly chosen along an
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eight-shape curve defined by the following equation:{
x = α(t) cos2(t)

y = α(t) cos2(t) sin(t)
, t ∈ [−π

2
, 3π

2
[

with α(t) =

{
75 if t ∈ [−π

2
, π

2
[

−41 if t ∈ [π
2
, 3π

2
[

(5.9)

75 and 41 are respectively the width in pixels of the right and the left loops of the curve.

In Fig. 5.8.a the distance between points vary between 2 to 26 pixels. This example
is used for comparing the three versions of the algorithm. For different values of the
scale factor σs, the extraction quality Q2 is measured following:

Q2 =
TP − FN

NP
(5.10)

where TP (True Positive) is the number of points correctly extracted along the curve
tolerating a deviation of one pixel from the ideal curve defined by Eq. 5.9, FN (False
Negative) is the number of points erroneously extracted outside the curve (i.e. artifacts,
outliers), and NP (Number of Positive) is the total number of points along the ideal
curve (Eq. 5.9). If Q2 = 1 the extraction is exact and if Q2 = 0 the extraction is totally
wrong, which means that there are more artifacts that points on the curve. For each
experiment the threshold τ has been automatically adjusted in order to obtain the best
results (i.e. the highest Q2 value). Fig. 5.8.b-d shows results for the 3 methods with
σs = 20.

All versions of the algorithm require a σs value higher than a minimum threshold
for extracting the curve (σs ≥ 3 in the present case). A smaller value of σs does not
group the points together. On the other hand, the number of outliers increase for large
values of σs. For TV, the number of misplaced points increases significantly (Q2 < 0.7)
when σs > 20. Similar level of outliers appear with TM when σs > 30, whereas for CI
the quality does not fall off before σs > 50.

TV and TM adequately extracts the contours, but always with artifacts, for σs

between 3 and 20 and between 3 and 30, respectively. CI provides similar results (that
is Q2>0.7) for σs between 3 and 50, giving in addition a better results for any σs value.
Moreover it also yields smoother slopes. It is also remarkable that no artifact appear
in the present example for any σs between 15 and 30.

In conclusion, CI yields smoother curves, produces much less artifacts and outliers,
and increases the range of σs value in which the extraction is accurate. Moreover those
advantages are obtained through a small additional computational cost.
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5.4.3 Hand-written text example

(a) Original

(b) TV

(c) TM

(d) IT

(e) CI

Figure 5.9: A hand drawn example. a. Test image “Salt”. For a better visualization
points are magnified by a factor of 3. b. Extraction results with TV. c. with TM (our
implementation). d. with IT (10 iterations). e. with CI (10 iterations).

Fig. 5.9 shows another example of contour extraction with the four versions of the
algorithm: TV, TM, IT with 10 iterations and CI (also with 10 iterations). The 147x439
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pixel image “Salt” (Fig. 5.9.a) is composed of sparse points along handwritten characters
and along the spiral described in the first example Fig. 5.3. Same parameters are used
for each method (σs = 15, σθ = π/6 and τ are the same for all experiments).

Small improvements are observed using TM instead of TV (Fig. 5.9.c). The reason of
this improvement could reside in part in the additional voting step that TM implements,
since each additional voting step helps in orienting the tensors.

IT (Fig. 5.9.d) closes the curves better than TV and TM (Fig. 5.9.b and Fig. 5.9.c).
Thus, it appears that even in such a case which do not seem to contain competitions
between orientations of grouping, iterations are required to refine the orientations of
the tensors.

With CI (Fig. 5.9.e) extracted contours of the curves are much smoother, and the
level of artifacts is highly reduced. As a consequence, CI extracts the spiral much more
accurately as TV and IT methods in Fig. 5.3.

For regions with straight segments and junctions both CI and IT behaves similarly.
Hence, CI does not impair the results even for data which does not include curves. This
allows then to use CI for any kind of images.

5.5 Robustness to noise

5.5.1 Evaluation methods

Noise robustness is evaluated on images of the type presented in Fig. 5.8 where different
noise densities are added. Moreover the average gap g between data points varies
between 2 and 20 points (see Fig. 5.10.a, b, c). σs is fixed to 20 for all experiments.

For each value of g, the number of noise points N(g) supported by the methods is
evaluated through the quality measurement Q2 (Eq. 5.10). N is defined as the number
of noise points for which Q2 = 0.5 in the mean. For each value of g, 250 successive
experiments with a different number of noise points R are realized. Results are plotted
as points in the space (Q2, R), then the best line (lg)Q2 = aR+b fitting the experimental
points is extracted by linear regression and N is finally determined at half the high (i.e.
for Q2 = 1

2
).

Following the usual notation of Medioni and coworkers papers, the noise robustness
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will be first expressed as the ratio M between the number of supported noise points N

over the number of data points D (that is expressed as a percentage of noise points):

M =
N

D
(5.11)

5.5.2 Measurement based on average gaps

We argue that the M measurement is not really appropriate since data points are
concentrated along a 1D curve while noise points are dispersed throughout the whole
2D plane. Moreover it has been shown by Kovacs and coworkers [100] that the critical
factor for humans in detecting a contour embedded in noise is the relative distance
between elements of the contour and elements of the noise. We will then express the
noise robustness as M ′, the relative of average gap (or distance) between data points
and between noise points.

Note first that the average gap (expressed in units of length) can not be the inverse
of the density since the density of noise is expressed in points per surface unit. A
detailed calculation of M ′ is given as follows:

Let be P the image plane and S the number of points of P . Let’s consider for each
noise point Ci the region Pi defined as the set of points that are closer to Ci than to
any other noise point Cj (i.e. the Voronoi cell [49]). The mean area s of the Pi regions
is:

s =
S

N
(5.12)

Approximating Pi as a disk of area s, we obtain h, the mean gap between two noise
points as the diameter of such disk:

s = π

(
h

2

)2

(5.13)

From Eq. 5.12 and Eq. 5.13 we deduce:

h = 2

√
S

π N
(5.14)

Let l be the number of points of the curve to extract. The mean gap g between data
points is directly defined by:

g =
l

D
(5.15)
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The average gap between data point over the average gap between noise points is
then:

M ′ =
g

h
=

l

2

√
π

S

√
N

D
(5.16)

If l is unknown M ′ should be expressed proportionally to
√

N
D

:

M ′ ∝
√

N

D
(5.17)

Note that M ′ is a function of
√

N
D

whereas M is a function of N
D

. The square root is
suited to appropriately take into account the 2D repartition of noise points in relation
with the 1D repartition of data points.

5.5.3 Results on noise robustness

Results presenting M versus g are shown in Fig. 5.10.d. Note first that M dramati-
cally depends of the average gap between points (g): when gaps are small (g=2) the
robustness M is very high (around 300% i.e. the methods are able to extract the curves
in presence of 3 noise points for each data point) and it is decaying strongly when g

gets higher (around 200% for g=4 and 20% for g=12, that is five time less noise than
data). This represents a variation in the noise robustness by a factor of 15. M ′ plotted
in Fig. 5.10.e shows more consistent results under variation of the average data gap
g. M ′ ∈ [0.28, .65] for all methods and for any g ∈ [2, 12], i.e. the methods are able
to extract the curves if the average noise gap h is from 1.5 to 3 times larger than the
average data gap g. The variation of the noise robustness is only a factor of 2 which is
more realistic considering the intuitive difficulty of extracting the curve in the situations
presented Fig. 5.10. a, b, c.

Kovacs and coworkers [100] shown that humans are able to extract the contour
formed by unoriented elements only if the distance between data elements is larger
than the distance between noise elements (that is M ′ ≤ 1). The M ′ measurement
permits then a comparison with the performance of humans. The best rate is 0.55 for
the classical tensor voting and 0.65 for the curvature improvement, to be compared
with 1 for humans.

A related trouble of the measurement M is that it could let think that tensor voting
methods are able to extract the structures where there is more noise than reliable data.
That is true whether we forget that the image is inhomogeneous, e.g. in the image
Fig. 5.10.a there are 3 times more noise points than data points. But this does not take



126 Chapter 5. Contour completion using tensor voting

into account that the data points are concentrated in the curves while noise points are
dispersed. Indeed the measurement M ′ shows (see Fig. 5.10.e.) that the average gap
between data points need to be at least 1.5 times lower than the average gap between
noise points to extract the structure. Hence it appears that the tensor voting methods
succeed only if there is significantly more data points than noise points around the
curves to extract.

It is not surprising that results provided by all methods decay when gaps increase
because there are less points for "voting" (the noise robustness is based on the "voting"
process which is similar to an averaging). Results also decrease for g small (i.e. smaller
than 4 to 7, depending on the method) what could be explained by the discrete grid: for
highest data densities, the rounding off positions complicate the extraction of tangents.

The experiments also demonstrate that IT and CI yield similar and even slightly
better results than TV and TM methods, particularly when the average gap between
data points is larger. Even for low density of data (g = 20), CI is still able to deal
with a noise gap h 2.5 times larger than the data gap g, whereas TV fails to extract
the curve for any g ≥ 15. As a conclusion, the described improvements do not impair
the noise robustness nor the ability to discard outliers of the tensor voting method but
even improve them.

5.6 Conclusion

This study shows first that iterations are useful for tensor voting, particularly for ex-
tracting correct contours in difficult or ambiguous situations like competition between
grouping orientation or scale parameter misadjustment. The iterations refine and im-
prove the extraction quality yielding to more accurate results.

Further experiments extending the method by the incorporation of curvature in-
formation show better results especially for curved features. This extension provides
smooth curves and reduces the level of artifacts, besides the fact that it also increases
the robustness of the method to scale parameter misadjustment.

The proposed improvements have low computational cost, and they preserve and
enhance the good robustness to noise of the original method.
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(a) g=2; M=3.5; M ′=.52

(b) g=4; M=2; M ′=.56 (c) g=10; M=0.5; M ′=.44
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Figure 5.10: Ratio of noise supported by the different methods of tensor voting. a.
Image with 2 pixels gaps between data points (g=2) and M=3.5 noise points for each
data point. b. g=4 and M=2. c. g=10 and M=0.5. Images a, b and c contain the
maximum quantity of noise for which algorithms are able to extract the structure. d.
Results showing the ratio of noise points (M) supported for each method. e. Ratio of
the average gaps (M ′) supported by each method.



Chapter 6

Conclusion

"Nous sommes perdus si nous oublions que les fruits sont
à tout le monde et que la terre n’est à personne."

Jean Jacques Rousseau

The present thesis proposes new contributions for overcomplete transformations
inspired by the functional architecture of the primary visual cortex. On one hand
the efficiency of overcomplete transformations in image processing applications and
on the other hand the difficulty to optimize with systematic methods overcomplete
and non-linear transformations, conduced to build the proposed multiresolution on
available knowledge about psychophysics of the perception, physiology and models of
primary visual cortex and statistics of natural images. We show how studies of these
fields can serve as guidelines for the construction of highly efficient image processing
multiresolution transforms.

The first part of this thesis (chapter 2) proposes a self-invertible log-Gabor wavelet
transform which mother wavelet is inspired from the classical receptive field of V1 simple
cells; and the scale/orientation arrangement is also consistent with the knowledge on
simple cell populations. This transform is highly sensitive to edges and lines of the
natural images and show remarkable good results in feature to noise segregation by hard
thresholding in comparison to other multiresolution transforms often used in denoising
(wavelets, translation invariant wavelets, steerable pyramids).

The second part of the thesis (chapter 3) presents an edge extraction method as a
synthesis of existing energy models, most of them being already biologically inspired.
The advantages of the proposed method is that it detects both lines and edges, what for
example the popular Canny edge extractor is not able to do; and it permits to recon-
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struct the image from the extracted edges through the sparse coding scheme developed
in the chapter 4 of this thesis.

The chapter 4 proposes a new sparse coding scheme based on the edge extraction
framework proposed in chapter 3. We propose the hypothesis that the most important
image features can be coded by solely the transform coefficients located at local maxima
of energy, that is the edges and lines. The residual, composed of the coefficients located
out of the local maxima, is projected on the local maxima coefficients. The image can
then be accurately reconstructed from a small subset of the coefficients. The model
codes particularly adequately the contours, but can be blind to some textures and not
deal optimally with crossing or junctions. Therefore a separate processing for such
features could be used advantageously to complete the present scheme, although some
few iterations of the sparse coding are also able to overcome the problem.

The sparse coding by contour extraction brings with him the important advantage
that the sparse coefficients are located along smooth continuous contours. This allows
to apply an additional transform for a further decorrelation of the image information.
It consists in a chain coding which encodes predictively the position and the value of
the coefficients inside the transform domain, yielding higher compression rates.

The chapter 5 is dedicated to contour grouping, that is to form continuous contours
from separated edge segments. Such method uses the tensor voting framework which is
based on Gestalt psychology. We propose improvements consisting in the deployment
of iterations and the use of an evaluation of the curvature for improving the integration
of contours.

As a conclusion, the present thesis proposes new contributions in multiresolution
transform which could be used as alternatives to the most popular families of wavelets
or oriented bandpass transforms for low-level processing of natural images. Although
the transform is overcomplete, important sparsity can be achieved through the use of
the proposed dedicated sparse coding method. Thus, the transform benefits both for
a excellent specificity to features of natural image and for sparseness (low information
redundancy), it is then suitable for many usual low-processing tasks such as denoising,
feature extraction, image fusion, image compression.
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6.1 Further work

The present thesis open many new lines of research in the different aspects of the im-
plementation. The self invertible log-Gabor wavelet transform could be optimized by a
more systematic test of the free parameters (bandwidth in scale and orientation, num-
ber of orientations). Also since physiological study states that there exist cells with
different bandwidth ranges [40], it could be implemented together various family of fil-
ters, i.e. various mother wavelets, with different bandwidths and frequency/orientation
arrangement.

The edge extraction method could be improved by the incorporation of endpoints
detectors to refine the extraction in proximity of junctions, crossing and line-endings,
as proposed in [83]. For edge extraction under noisy conditions, a rigorous probabilistic
approach could permit a better segregation between existing contours and noise points
aligned by chance. The tensor voting approach could be extended to the log-Gabor
wavelet framework for binding together separated contour segments in applications of
occluded contour completion.

The sparsification algorithm could be upgraded by the development of non iterative
projection techniques and the optimization of the choice of regularly spaced coefficients
along the contours. Moreover a separated texture encoding should advantageously by
implemented.

Promising open issues lie on further decorrelation by predictive contour encoding.
The improvement of the actual chain coding can follow two directions: first the encod-
ing of whole contour parts from its endpoints and tangent and curvature parameters.
Second by a predictive coding of the scales exploiting the high degree of similarity of
the features across scales. Such improvements should yield much better compression
rates and should offer efficient descriptors for object recognition.
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Appendix A

Philosophical viewpoints in cognitive
science

"Thus, in the early days of industrial capitalism, slave owners could and did
point out that if you own a piece of machinery, you are likely to treat it with
more care than if you merely rent it. Similarly, the slave owner is likely
to treat his possession with more care and solicitude than the capitalist who
merely rents people for his temporary purposes. Slavery, then, reflects higher
moral standards than "wage slavery." No sane person would now accept this
argument, though it is not entirely absurd by any means. As civilization pro-
gressed, it came to be understood that slavery is an infringement on essential
human rights. We may look forward to the day when wage slavery and the
need to rent oneself to survive may be seen in a similar light, as we come to
have better understanding of the moral values rooted in our inner nature."

Noam Chomsky, Language and Problems of Knowledge:
The Managua Lectures [25], p154.

Under the neuroscience modeling debates underly philosophical or even ideological
aspects staying unfortunately too often hidden. A review on the underlying philosoph-
ical ideas could then benefit to the scientific debate.

• Ambientalism sometimes meet antiracism since it states that the cognitive pro-
cesses are mostly learned, then do not depend importantly on the genetic. In-
natists by their part consider that genetical differences are significative between
species but not between individuals. They then do not support racism as a su-
perficial critics let think.

• Ambientalists often consider that there is no human nature, and that humans are
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the pure product of the environment. Innatists consider that there is a consistent,
strong and innate human nature due to the genetic load of the specie.

• The ambientalist point of view that the human being is formed mainly by influence
of the external world is consistent with the ideologies that intent to transform and
"improve" the human life on a rational basis. Today’s ambientalists are often the
fervent defensors of the ideologies of progress and civilization development : the
political modification of life conditions could "improve" the human life in a never-
ending progress. Moreover the supposed lack of innate basis leads to depreciate
the primitive forms of human life. Innatists can be more conservators. They
think an unalterable human nature underlies the human life. Such human nature
responsible for the richness of the human behaviors and abilities was already
present before the expansion of the civilization. Therefore for them the well-
being could be in the best case the understanding and the free maturing of this
human nature, and some innatists can even consider that civilization progresses
bring more sickness than health in the human life. Such conservative point of
view towards the progress could be a reason for the distrust of many intellectuals
towards innatism.

• The opposition between ambientalists and innatists is particularly evident in
education where ambientalists developed the conditioning techniques trying to
demonstrate that it is possible to totally "reformat" the human mind, whereas
for innatists "teaching should not be compared to filling a bottle with water but
rather to helping a flower to grow in its own way" (Chomsky in [25]). Many
persons are afraid by the idea of a human nature since there exists a real risk
that a way of living would be imposed once the "human nature" would have been
described "scientifically". For innatists this fear is unrealistic: the human nature
is by definition innate, it would then be meaningless to impose it.
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Developing Big Brother

"On peut discuter des applications "bonnes" ou "mauvaises" de la recherche,
soutenir que "l’outil est neutre" et l’usage seul en cause, qu’il ne faut pas "jeter
le bébé avec l’eau du bain", "le bon grain avec l’ivraie", etc. mais un fait demeure
indiscutable : dans un monde où s’opposent dominants et dominés, tout "progrès
des connaissances" sert d’abord les dominants, leur sert d’abord à dominer, et
autant que possible à rendre irréversible leur domination. Les "retombées posi-
tives" n’étant que les moindres maux dont on achète la soumission des dominés.
"Progrès" curatifs et palliatifs, quand la prévention serait de renverser la domi-
nation qui provoque tant de nos maux, pour s’en rendre ensuite l’indispensable
thérapeute.
Ce simple fait ne devrait-il pas conduire tout chercheur prétendument équipé

d’une conscience à objecter ? Et l’ensemble de sa corporation à proclamer un mo-
ratoire sur toute recherche tant que ne serait pas réglée la question du pouvoir ?"

Simples citoyens, Nanotechnologies / Maxiservitude, Des contributions
grenobloises à l’automatisation du cheptel humain.

The advances of technology and the increasing probability to achieve the building
of efficient artificial vision systems that could perform accurately tasks of scene inter-
pretation, can give rise to a justified fear. Such systems could be used for instance for
systematically controlling human movements and reducing human freedom. I would like
to stress here two related questions: firstly to throw doubts on the largely represented
belief that the technology systematically makes the human life more pleasant and more
free. And secondly to review some actual failures in the democratic systems which are
sufficiently serious to prevent the institutions to confidently protect the citizens and to
obey to the public opinion concerning technologic developments and usages.
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It should be considered that new technologies do not necessarily improve the way
of life, but in some cases, or even in many cases, they restrict and denature the human
life. Let’s take as example one of the inventions that strongly modified the human life
during the 20th century: the automobile. It has drastically modified the way of living,
the urbanism, the social interactions, the way of working and consuming, etc. It is
generally thought that the automobile is a tool and that one can freely use it or not.
Instead the automobile induced changes in the urbanism that made everyday’s travel
distances irresistibly larger and finally increased the travel time. Chemical, auditory and
esthetic contaminations made the cities unpleasant, dangerous and unhealthy places.
The overall ecological equilibriums are under threat. In parallel we cannot freely escape
of this technology since in many cities it is necessary to drive a car to have a job, to
buy everyday’s food, etc. In some aspects we get the captives of that technology since
we can no more live without, even if we are aware that it brings major drawbacks.

There is a real faith in the never-ending improvement of the life quality through the
technologies. The objective to improve the life quality through technological solutions
is unrealistic for at least three reasons: first because humans are themselves animals
that requires their ecological environment to live. The technology severely deranges
the ecological equilibriums reached through millions of years of co-evolution between
vegetal and animal species and the physical environment. Moreover it stays very hypo-
thetical that future technologic improvements will offer solutions for all the ecological
disequilibriums that the former and actual technologies produce. Second because many
human problems like the ability to live in peace, the ability not to dominate nor to plun-
der its neighbor do not reside in a technology but in the individual wisdom, education
and knowledge (non-necessary academic). And third because, as some science fiction
writers pointed out, human abilities decreases as the technology preforms their parts
of everyday’s tasks. Humans get highly specialized, every time more single-task and
ignorant of what stay beyond their speciality: "The logical end of mechanical progress
is to reduce the human being to something resembling a brain in a bottle [...] some
frightful subhuman depth of softness and helplessness." (George Orwell, The Road to
Wigan Pier, Chapter 12). Concluding, it is sure that the technology is modifying dras-
tically the human life, but it could reveal to be more destructive and submissiveness
than constructive and liberating. It is then worrying that the technology appears today
like a new religion on which everyone believe hopping for a happy future. A bit more
of scepticism could be salutary.

Nowadays it is no more possible (and it was perhaps never the case) to trust the
political and institutional decisions for preserving everyone wellbeing. The old democ-
racy set up in the 18th century was certainly not designed for resisting to the influences
of big corporations and companies which are today more powerful than governments
and states. Such companies are extremely powerful for its financial capacities, for their
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influence on governments, but also for owning the mass-media. (Today’s mass-media
in Europe or the USA are almost exclusively controlled by a very small number of
corporations. Silvio Berlusconi is a caricatural example of this concentration of fi-
nancial, media-related and political power.) Therefore the corporations are not only
non-democratic institutions, they also play a drastic role in making the democracy
working as a coarse spectacle in which most people already lost interest.

Then, can we confidently offer to such institutions new technologies able to strongly
limit the human freedom? It would be rather preferable to revendicate first a working
and efficient democracy at every stages of the actual modern society, including within
the corporations. This democracy would not consist in the actual spectacular elections
where two parties ruled by the same financial caste face in a shallow theater. It would
be a participative democracy, where all opinions can express with roughly equal media
support. The media would therefore not be owned by a financial caste. And important
questions on the society construction and technology development and usage can at last
be discussed.
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