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Abstract—The limit of Iarge activation energy is studied for the process of simultaneous mixing and chemical reac-
tion of two reactants undergoing a one-step irreversible Arrhenius reaction. Consideration is restricted to prob-
lems of the evolution type—Ilike unsteady mixing and boundary-layer combustion—for which the solution is
uniquely determined in terms of the initial conditions. The continuous transition from the nearly-frozen to the
near-equilibrium regimes is described. The analysis uncovers the existence of: (i) An ignition regime, in which a
mixing layer develops with only minor effects of the chemical reaction, until a thermal runaway occurs somewhere
within the mixing region; at this location chemical equilibrium then is established rapidly. (ii) A deflagration regime,
in which premixed flames originate from the ignition point and move through the mixing region to burn completely
the reactant not in excess. And (i11) a diffusion-flame regime, in which a thin diffusion flame, that is established
when the deflagration wave crosses the surface where the reactants are present in stoichiometric proportions, con-
sumes the excess reactants that could not be burned by the premixed flame. This is accomplished by a process in
which the reactants diffuse through a thick layer of reaction products. There exists experimental evidence to sup-
port this rather complex picture deduced theoretically.

NOMENCLATURE x = (l—erfn)/2
x2 coordinate in direction 2 (normal to the initial
a Reaction order, Eq. (3) interface)
A parameter defined in Eq. (83) y  reduced mass fraction, introduced in Eq. (14)
b  reaction order, Eq. (3) Y  mass fraction
B preexponential factor, Eq. (3) z  non-dimensional material function defined in
cp specific heat at constant pressure Eq. (6)
D diffusion coefficient | Z  stretched coordinate for the diffusion flame,
E activation energy defined in Eq. (82)
Ep = 47x,?exp(29,%)
arameter characterizing the diffusion flame
¥ Is)tructure., defined in Eq. (85) Greek Symbols
m parameter appearing in Eq. (47) characterizing a  stands for either of Yi/v, Yo, —cp,T/O
the structure of the reaction zone of premixed B = ¢p(Trio—T20)/Q Y10
3 flames. It takes different values in different Br = Tu(Tro—T2)/T102
' sections vy  variable proportional to the fuel mass fraction
M mean molecular mass appearing in Eq. (47): 1t takes different forms
p  pressure in different sections
po eigenvalue of Eqs. (47, 48) = (y— 0w I' independent variable for the diffusion flame
Q heat release per unit mass of fuel structure, defined in Eq. (81)
R universal gas constant A reduced Damkdhler number defined by Eq.(86)
t time A, minimum or extinction value of A
i characteristic chemical time defined in Eq. (13) e small parameter = T10/T,
T  temperature {  stretched coordinate for the premixed flame
T. activation temperature = E/R structure described by Eq. (47). It takes
up  velocity component in direction 2 (normal to different forms in different sections of the
the initial interface) paper
w  fuel mass consumption rate O = x—x,(7)
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n  similarity variable defined in Eq. (9)

m  gives the approximate location of the reaction
zone during the ignition stage, given by
Eq. (35)

>

Parameter of Eq. (44), defined in Eq. (45).
It equals 1/2

v stoichiometric mass ratio oxidizer/fuel

¢ = Pix

o  density

r  non-dimensional time = t/f;

r1  non-dimensional time defined in Eq. (37)

$  non-dimensional temperature increment due
to the chemical reaction, defined in Eq. (30)

Subscripts

0 initial

1 oxidizer

2 fuel

e asymptotic conditions at the infinitely thin

diffusion flame

frozen

refers to the ingition time and location
asymptotic conditions at the infinitely thin
premixed reaction zone

T~

1 INTRODUCTION

The purpose of this paper is to present an asymp-
totic analysis of the mixing and simultaneous
chemical reaction of two reactants undergoing a
one step irreversible Arrhenius reaction, when the
activation temperature is large compared with the
characteristic temperature of the system.

Two types of problems may be encountered in
the analysis of chemical reactions in unpremixed
systems: (a) Problems of the evolution type, like
unsteady mixing and boundary layer combustion
without a stagnation point, and (b) Quasi-steady
problems like stagnation point boundary layer
combustion and quasi-steady droplet combustion.
In quasi-steady problems, within a range of Dam-
kohler numbers, multiple solutions exist that cor-
respond to different combustion regimes. In prob-
lems of the evolution type the conservation equa-
tions are parabolic, because the terms representing
the diffusive effects have second order spatial
derivatives, while those terms representing the
local heating or convective effects are first order
with respect to time or with respect to a spatial
derivative that does not appear in the diffusive
terms. Then, the solution is uniquely determined

in terms of the initial and boundary conditions.
With increasing values of the time-like variable the
flow changes from nearly-frozen, with incipient
chemical reaction effects, to near-equilibrium, with
a diffusion controlled mode of combustion.

Chung et al. (1966) tried to elucidate by a numeri-
cal analysis under which conditions multiple solu-
tions would be obtained in problems of combustion
in unpremixed systems, so that a “‘simple” tran-
sition from nearly frozen flow to near-equilibrium
flow would not be possible; they failed to recog-
nize the essential difference between quasi-steady
and evolution type diffusion flames for which the
simple transition is always possible. Lindberg and
Schmitz (1969) indicated, in connection with bound-
ary layer problems with surface reactions, how the
multiplicity of the steady states i1s related to the
ellipticity of the equations, or some feed-back mech-
anism in the boundary conditions.

This paper is devoted to the analysis of the con-
tinuous transition from frozen flow to near-
equilibrium flow in unsteady or evolution type dif-
fusion flames. An asymptotic analysis, for large
activation energies, of the regimes appearing in
quasi-steady diffusion flames has been presented
by Linan (1973) in a separate paper.

The transition from frozen flow to near-equilib-
rium flow, for the problem of simultaneous mixing
and chemical reaction of two parallel streams of
fuel and oxidizer, was analyzed numerically by
Linan (1961), who also carried out a nearly frozen
perturbation analysis for the initial mixing region
and a near-equilibrium asymptotic analysis of the
structure of the thin reaction zone for large distance
of the origin of the mixing region, or equivalently
for large Damko&hler numbers. The mathematically
similar problem of the unsteady diffusion and reac-
tion of a substance through another occupying a
half space was considered by Pearson (1963) who
also obtained the equations describing the structure
of the reaction zone for large times.

Lifian (1963) extended to more general diffusion
flames his asymptotic analysis of the structure of
the reaction zone. Friedlander and Keller (1963)
described, independently, the structure of the reac-
tion zone in a steady one dimensional diffusion
layer for large Damkdohler numbers. Fendell (1965)
showed how these asymptotic analysis could be
refined by retaining higher order terms with the
method of matched asymptotic expansions.

More recent analytical studies specifically de-
voted to unsteady or boundary layer mixing prob-
lems are those of Waldman ¢t al. (1969) and



Krishnamurty and Williams (1971) where coordinate
expansions are obtained for small or large values
of the time-like variable. These expansions may be
used to describe the initial nearly frozen mixing,
or the asymptotic near-equilibrium conditions.

Mixing and chemical reaction occur also simul-
taneously, and the resulting equations are again
parabolic, in the turbulent mixing of a jet of fuel
in a coaxial air stream. A number of numerical
studies of this problem have been carried out be-
cause of its application to diffusive supersonic
combustion; see for example Ferri (1964) and
Brevig and Shahrokhi (1971). These studies make
use of some turbulent eddy diffusivity and fairly
complicated reaction mechanisms. However, their
use of laminar kinetics, that is their evaluation of
the reaction rates in terms of the local mean values
of the concentrations is not justified for these un-
premixed systems.

As representative of the diffusion flame problems
of the evolution type, we consider here the unsteady
mixing of two half spaces of fuel and oxidizer. The
problem of the steady mixing of two parallel
streams of fuel and oxidizer with equal velocities,
leads to the same mathematical problem as that of
the unsteady mixing of two half spaces of fuel and
oxidizer if the boundary layer assumptions are
applicable. The extension of the results to cases
where the streams have different velocities 1s
straightforward. The conditions under which the
boundary layer assumptions will break down are
given in Section VI.

Liebman er al. (1970) have carried out experi-
ments of flame propagation in an unsteady mixing
layer that confirm qualitatively the results pre-
sented below. Wolanski and Wbéojcicki (1973)
carried out experiments on the ignition of the
unsteady mixing layer that is formed when a com-
bustible gas flows into an oxidizing atmosphere.
In order to explain their experimental results, they
developed a mathematical model that is similar to
the one presented here, and obtained some numeri-
cal solutions.

Closely analogous problems are the vaporization
and boundary layer combustion of a flat plate of
fuel in a stream of oxidizer, as considered by Libby
and Economos (1963), Waldman et al. (1969),
Krishnamurty and Williams (1971), Kashiwagi and
Summerfield (1973) and also the unsteady vaporiz-
ation, ignition and combustion of a liquid or a solid
in a stagnant reacting atmosphere, as treated by
Waldman et al. (1969), Strahle (1969), and Her-
mance and Kumar (1970).

Most of the ideas and results obtained here are
applicable to the analysis of ignition and subse-
quent transition to a diffusion controlled regime in
more complex fluild mechanic situations and to
more complex reaction mechanisms.

In Section II we shall write the conservation
equations for the unsteady mixing case, and indi-
cate how the steady boundary layer mixing of two
parallel streams of equal velocities is described by
the same equations.

Then we shall show how in the limit of large
activation energies for early times (or small Dam-
kohler numbers) mixing occurs with very little
chemical reaction effects. However, for appro-
priately large times one or two regions of frozen
flow will coexist within the flow field with regions
of equilibrium flow without fuel or without oxidizer.
The frozen flow and equilibrium flow regions are
separated by thin transition regions which move
toward the frozen flow region as premixed flames,
burning completely the lean reactant in the mixture
formed up to that time, and leave behind a region
of local equilibrium, with the excess fuel or oxidizer,
mixed with the products of combustion. The two
types of regions of equilibrium flow are separated
by a thin reaction zone or diffusion flame where the
reactants burn in a diffusion-controlled situation.

For large values of the activation energy the pre-
mixed flame, that separates the regions of frozen
and equilibrium flow, becomes very thin compared
to the thickness of the mixing layer, and it may be
considered as a discontinuity of the derivatives of
the temperatures and the concentrations. If the
premixed flame moves sufficiently fast across the
mixing layer, the heat conducted from the equi-
librium region reaches only a transport layer in the
frozen region which is thin compared with the
thickness of the mixing layer. The thin reaction
zone or premixed flame together with the thin
transport zone ahead of it constitute a classical
deflagration wave that appears as a surface of dis-
continuity of the concentration and temperature
separating the regions of frozen and equilibrium
flow. In these regions heat conduction and mass
diffusion can be neglected when the flame is propa-
gating across the mixing layer.

Figure 1 is a schematic showing the evolution of
the premixed and diffusion flames separating the
frozen and equilibrium flow regions. Figure la
corresponds to the case where the difference in
initial temperatures of fuel and oxidizer is small.
The chemical reaction effects in the mixing layer
can be neglected in first approximation; however,
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FIGURE 1 Schematic showing the evolution of frozen and
equilibrium regions, and the premixed and diffusion flames
separating them.

the incipient chemical reaction effects lead to a
runaway in temperature at a certain ignition time
at a point somewhere in the mixing layer. From
this point two deflagration waves move fast through
the mixing layer burning to completion the reactant
in defect and leaving behind the reaction products
and part of the reactant in excess. Two equilibrium
regions are established by this process which are
separated by a diffusion flame.

Figure 1b corresponds to the case where the
initial temperatures of fuel and oxidizer are differ-
ent and lower than the adiabatic diffusion-flame
temperature. A deflagration originates atanignition
point in the hot side and propagates across the
mixing layer in a short time compared with the
ignition time, burning completely the reactant in
defect; the two equilibrium regions left behind the
deflagration are separated by a diffusion flame.

Figure 1c corresponds to the case for which the
inttial temperature of the hot reactant is larger
than the adiabatic flame temperature. In this case
there is not a definite ignition point. The incipient
chemical reaction effects appear, as in the previous
case, in the hot edge of the mixing layer, leading
eventually to a premixed flame that slowly moves
across the mixing layer until it becomes a diffusion
flame. As a result of the slow motion of the flame
the heat released at the flame reaches the whole
mixing layer, so that it is not a deflagration wave.

The time evolution of the temperature profiles is
also shown in Figure 3 for the three cases con-
sidered. {The independent coordinate, x, is a de-
formed coordinate normal to the mixing layer to
be defined later.

In Section III we carry out a more detailed
analysis of the early nearly frozen flow region, so

as to show that in a first approximation the flow is
chemically frozen; but the incipient chemical reac-
tion effects, appearing in the second approximation,
lead after an ignition delay time to thermal run-
away, and the subsequent establishment of local
equilibrium in a certain point within the mixing
region.

In Section IV we analyze the flame propagation
process from the regions of equilibrium flow to-
ward the regions of frozen flow where mixing of the
reactants had taken place earlier.

In Section V we shall describe the near-equi-
librium diffusion flame structure left behind by the
premixed flame when it crosses the surface where
the reactants were in stoichiometric proportions.

In Section VI we indicate how upstream diffusion
has to be taken into account in the analysis of the
parallel mixing case when the premixed flame
velocity 1s of the order of, although smaller than :
the flow velocity. Upstream diffusion was retained
in an analysis by Clarke (1967a,b) of near-equilib-
rium diffusion flames by using the Oseen approxi-
mation for the conservation equations.

The discussion and generalization of the results
1s given in Section VII.

I FORMULATION

The equations that describe the unsteady one-
dimensional mixing and simultaneous chemical
reaction of two half spaces of fuel and oxidizer are:

Continuity
cp  dpus
— +

=0 1
ot JdXo ( )

where p is the density, ¢ the time. For convenience
we define a coordinate system in which the origin is
the fluid or material surface that coincides at ¢ = 0
with the original fuel-oxidizer interface and w2 and
xo are the velocity and coordinate normal to this
fluid surface. As a result of this choice us = 0 at
xo = 0. For any other choice of the coordinate
system this fluid surface will have a velocity and
position whose determination will require an analy-
sis of the flow in the regions exterior to the mixing
layer; however, we do not need to carry out this
analysis because, under the assumptions made
below, the structure of the mixing region does not
depend on the transverse motion of the fluid surface
mentioned above.




Species and Energy Conservation

- — (2)

ca da 1 ¢ ( 8a) w
p

ot dX9 P JX9

where a stands for Yi/v, Ys or —cp7/Q and w is the
overall mass rate of consumption of fuel, given by

w/p = MaB(pY1/M1)*(p Yo/ Ma)?exp(—To/T)  (3)

for a one-step irreversible Arrhenius reaction, of
preexponential factor B, activation temperature 7Ty,
and reaction orders @ and b; Q is the heat release
per unit mass of fuel, and v is the stoichiometric
mass ratio oxidizer/fuel. The activation tempera-
ture 7y equals E/R where E is the activation energy
and R the universal gas constant. Although the
preexponential factor, B, is considered constant in
this paper, the results are also applicable to cases
where B is a slowly varying function of 7, Y3 and Yo,
without zeroes in the range of variation of these
variables. M7 and M» are the molecular masses.

In order to obtain Eq. (2) as the conservation
equation for the reacting species and the tempera-
ture, we must assume equal diffusivities of heat and
mass D, and equal and constant specific heats c,.
We in addition neglect the kinetic energy associated
with the transverse flow when compared with the
changes in thermal energy. We neglect also the
spatial and time variations in pressure required to
produce the transverse velocity field, which implies
that the mixing region is unconfined. Because we
consider p to be constant we shall not make use of
the momentum equation.{

Equation of State
p = (R/M)pT (4)

where p is the pressure, R is the universal gas con-
stant and M is the local mean molecular weight,
which is a function of the mass fractions. We shall,
consistently with the previous assumptions, use a
constant mean value for the mean molecular
weight M.

We should add to Egs. (1) to (4) a relation giving
the diffusion coeflicient D in terms of the tempera-
ture, pressure and concentrations. However, we
shall assume below that p2D is a constant, as this
will not affect essentially the results but will
simplify the mathematical analysis.

T As a result of this assumption we neglect the effects of
pressure waves that could eventually generate a detonation
wave.

As initial and boundary conditions we shall take

Yi= Yo, Yo=0, T=Ty at t =0,
xe>0 and at >0, x9—>00, (5a)

Y1=0, Yo= Yoo, T = Ty at = 0,
xo<<0 and at >0, xo—— 0 (5b)

The above system of equations and subsidiary con-
ditions will determine the temperature, density
and concentration fields for times, ¢, larger than Q.

We should indicate at this stage that the same
mathematical problem is obtained when analyzing
the process of mixing and simultaneous chemical
reaction between two streams one with oxidizer of
mass fraction Yo and temperature 719 and the
other with a mass fraction of fuel Yy and a tem-
perature T29. They both flow originally in the x;
direction with equal velocity ¥ and are allowed to
mix for x;>0.

If the Peclet number VL/D, based on the chara-
teristic combustor length L, is large, the boundary
layer approximations may be used for the analysis
of the mixing process. This means that we may
neglect diffusion in the upstream direction and in
addition consider the pressure constant.

The momentum equation in the x; direction, if
we neglect the effect of the boundary layers in the
separation plate, shows that the velocity component
v1 1s constant v; = V.

The continuity equation and the species and
energy conservation equations take then the form
of Egs. (1) and (2) if we neglect the kinetic energy
associated with the transverse flow compared with
the thermal energy. The variable ¢ stands now for
.7C1/V.

We thus reproduce Eqs. (1) to (4) as describing
this parallel mixing problem. The conditions for
the validity of the approximations involved as well
as the extension to cases with different velocities
are left for Section VI. See also Williams (1965).

Because of the constancy of p2D we may use a
Howarth-Dorodnitzyn transformation to reduce
Eq. (2) to an incompressible form. Let us introduce
the variables

T =t/
and

L2

z = (p2Diy) 112 f odxs ©)

0

where t; 1s a chatacreristic time which we shall
choose later, and z 1s a nondimensional material



function originating from the continuity equation
(1). In terms of these variables Eq. (2) takes the
form of the heat conduction equation

da d%a w

or 0z B _tl;_ 0

— e

Equation (7) may also be written as
1 J2a
4+ on?

———— T e te——— SE—

= —hw/p (8)

in terms of the variables r and n, where
1 = z[24/(7) (9)

is the similarity variable for the chemically frozen
heat conduction. That is, if we integrate Egs. (7)
or (8) without the source term, subject to the sub-
sidiary conditions (5), we obtain the frozen flow
temperature and concentration distributions

Y1 = Yir = Yio(l +erf n)/2
Yo = Yoy = Yool —erf n)/2 (10)
T = Tf = T10+(T20——T10)(1—el‘f7))/2

When treating the reacting case, because of the
assumption made of equal diffusivities of mass and
heat, by using the Schvab-Zeldovich procedure, we
may further reduce the unsteady mixing and chemi-
cal reaction problem to the solution of just one
partial differential equation, the heat conduction
equation for T with a source term, which is a non-
linear function of T and 7. To do this, we first
notice that the combinations Yi/v+cp7/Q and
Yo+ cpT/Q do satisfy the heat conduction equation
(8) without source terms. So that when the con-
dittons (5) are taken into account, we obtain

Nijv+cpT/Q = Yig/v+cpTy/Q (11)

Yo+ cpT|Q = Yor+cpTy/Q (12)

where the terms in the right hand side are functions
of n given by Eq. (10).

The relations (11) and (12) giving the concentra-
tion distributions in terms of 7 and %, enable us
to reduce our problem to obtaining the solution of
the heat conduction equation with a source term
which is a nonlinear known function of 7" and 7.
This equation is obtained from Eq. (7), taking
Eqgs. (3), (11) and (12) into account. If we choose
for t; a characteristic chemical time based on the
maximum initial temperature, which for definiteness

we assume to be T, ‘

) ava)
h =
M32B\ p10 Y10/ \ p1oY2o

CpTIO T10
X exp(Ta/Tm), (1 3)
Q TIa
we obtain,
cT oeT
_3_; 0z2
Ty02 /T10 \2T? T, T- TIO]
= @ 1y ex (14)
Ta (T) yrye p[TIO T

In Eq. (14) the reduced concentrations y1 = Y1/ Y10
and ys = yaf Yoo are given, according to Eqs. (11)
and (12), by

y1 = 1 — X — xVCp(TIO — Tzo)/Q Y10 —
vCp(T—- Tm)Q YlO (1 5)

Y2 = x-—xcp(Tlo-—-T20)/QY20—CP(T— T10)/Q Y20(16)

where
= (1 -—-erf n)/2. ‘

Equation (14) should be solved with the subsidiary |
conditions

T = Ty for r =0, z>0, and for >0, z—w !
and
T = Teofor r = 0, z<0, and for >0, z—— o0 (17)

An important conclusion that can be obtained
from this formulation is that the temperature and
concentration profiles for different values of the
diffusion and heat conduction coefficients are simi-
lar. The thickness of the mixing layer 1s propor-
tional to the square root of the diffusion coefficients
as can be seen from Eq. (6). The time is scaled with
a characteristic chemical time (Eq. (13)). Thus, the
time of thermal runaway or ignition time will be
independent of the transport coefficients, although
a dependence with the Lewis number would appear
if we did not consider equal diffusivities of heat
and mass.

Because the source term in Eq. (14) is a function
of T and n (or x) there is some advantage in writing
the heat conduction equation (14) in terms of the
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or in terms of the variables  and x if we substitute
. the left hand side of Eq. (18) by

¢T  exp(—292) 2T

5: 4t ox?

The boundary conditions are

T =Ty for >0, n—>c0
and
| T =Ty for >0, n—>—o (19)

~ which takes into account both the initial and bound-
I ary conditions (17), if we add the condition that
T and its first and second derivatives with respect
to » be continuous at 7 = 0. When the variable 7
is replaced by x, the limit n — 400 correspond to
x =0 and x = 1, respectively.
For small times

" T = Tr(n)+ 7Fi(n) + 2Fo(n)+ . .. (20)

where T(n) is the frozen flow temperature distri-
bution

B Ty = To+(Tao—T10)(1 —erf n)/2 (21)

and Fi(n) is the solution of the differential equation,
obtained by introducing Eq. (20) into Eq. (18),

T102 Tf )-—(CH—b)
Ta (TIO

Fi—nF/[2—F"/4 =

(22)

a b Ta Tr—Tio
- XylfJ’?feXp(

T1o Ty

to be solved with the boundary conditions
Fl(— OO) = F1(-|— OO) = Q.

i“ The temperature at fixed » is seen to increase,
for small values of time =, linearly with 7, according
to Eq. (20).

The expansion (20) is not convergent for large
values of time, when according to Eq. (18), chemi-
cal equilibrium should be approached. Chemical
equilibrium means that y; = 0 on one side of a

thin reaction region and y2 = 0 on the other. That
1s:

For n<n,, or x>x,:

n=0, T=Tr+QYis/ve, (23a)
or
T = T+ (1—x)(QYio/vc,+Tio—T20) (23b)
lff)r N>ne O Xx<<Xe |

y2 = 0, T — Tf+ Q Yzf/cp (24a)
or
T = Tw+x(Q Yeo/c,—Ti0+T20)  (24b)

where 7, (or x,) gives the location of the thin flame
where the concentration of both reactants vanishes
and T takes the adiabatic flame value, 7%;

Te=Ti0+(Q Y20/cp— Tr0+ T20) Y10/( Y10+ v Ya0) (25)

and
xe = (1 —erf?]g)/2 = Y10/( Y10+ v Yo0) (26)

If we would plot, see Figure 2, the temperature,
at n = n, for example, as a function of time we
would get a continuous transition from the frozen
flow value Tr(n¢) to the adibatic flame value T,. It
is the purpose of the present work to analyze this
transition by obtaining the solution of Eq. (18) with
the boundary condition (19), or equivalently the
solution of Eq. (14) with the subsidiary conditions
(17), for large values of the non-dimensional acti-
vation energy 7,/710, and fixed values, in principle
of order unity, of all the other parameters in the
system.

The fact that the ratio 7,/T10 appears as a factor
in the Arrhenius exponent in Eq. (18) makes it clear
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FIGURE 2 Schematic showing the transition of the tem-
perature from its frozen to its adiabatic flame value for
different values of T1o.



that the chemical production term will become
exponentially large for T>T;9 and exponentially
small for T<Tjp unless the difference T— 77 1s so
small as to make 7T'— T1g of order T19%/Tq or y1 = 0
or y2 = 0.

It is then clear from Egs. (20) and (22) that for
small times a small linear increment in temperature
above the frozen flow value, T— T10~ 7710%/T%, 1s
obtained with a correspondingly small effect on the
reactant concentration. However, higher order
terms in the expansion (20) have to be retained
when 7 reaches order unity because of the large
effect of the Arrhenius exponent in the reaction
rates when T,/(T'— T10)T102 becomes of order unity,
or larger. The reaction rates then become so fast,
and thereby the rate of heat release so large, that
suddenly a thermal runaway leading to the estab-
lishment of local chemical equilibrium, occurs
somewhere in the mixing region. The choice of ¢,
as given by Eq. (13), as the characteristic time, was
made so as to have the ignition event occurring at
an ignition time, 77, of order unity. The factor
T10/Tw was left in Eq. (18) so that at r ~1 the incre-
ment in temperature above the frozen flow value
was of order T19%/T,, as required to initiate the
thermal runaway.

As indicated before, the limiting forms of
Eq. (18) for T10/Tw—0 and 7 of order unity are, if
we anticipate that the derivatives of T are of order
unity,

Frozen flow

T =Ty (27)
or Equilibrium flow with

y1=20 (28)
or Equilibrium flow with

y2 =0 (29)

We shall show below, that, within the mixing
layer, regions of equilibrium flow may coexist with
regions of frozen flow.

When chemical equilibrium is established locally
by the thermal runaway process, either y; or ys
become zero at that location and the temperature
increases suddenly from a nearly frozen value to
that given by Eqgs. (23) or (24).

Chemical equilibrium then extends to the other
nearly frozen regions of the mixing layer by means
of a deflagration wave mechanism, see Figures 1
and 3. Heat conducted from the region of chemical
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FIGURE 3 Schematic showing the evolution of the tem-
perature profiles.

equilibrium to the frozen flow regions of lower
temperature increases the temperature, and con-
sequently the reaction rates, so that equilibirium is
finally reached in a region which advances toward
the frozen flow region at a well defined speed.

We shall see below how two deflagration waves
of small thickness compared with the thickness of
the mixing layer, originate at the ignition plane
and move across the mixing layer in a time small
compared with the ignition time. These deflagra-
tion waves, or premixed flames, locally consume
one of the reactants leaving behind the products of
the reaction, together with the fraction of the react-
ant that was in excess. When the deflagration wave
crosses the surface where the reactants were in

L
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stoichiometric proportions (n = 7 in our case), a
thin diffusion flame is established, where the react-
ants that were not burned by the premixed flame
are consumed after diffusing across the layer of
products of the reaction.

We shall first analyze in Section III the ignition
period where the incipient effects of chemical reac-
tion lead eventually to a thermal runaway. We
shall then analyze in Section IV the structure of the
premixed flame or transition region between the
regions of frozen flow and equilibrium flow. From
the analysis of the structure of the premixed flame
we shall obtain the local premixed flame propa-
gation velocity which will enable us to calculate
the trajectory of these flames in the (x2, ¢) plane.

III IGNITION STAGE

Small relative temperature increments, (7— 7o)/
Tho, of order T19/T, suffice to increase the reaction
rate by a large factor and thereby produce the
precipitous rise in temperature leading to local
equilibrium. To show this we shall write the expo-
nential Arrhenius factor in the form

exp(—— Ta/T) = exp(— Ta/Tlo) exp{Ta(T— Tlo)/TmT}

For small temperature increments, (7'— T10)/T10, of
order T19/7T4, the argument in curly brackets of the
last exponential is of order unity, and the reaction
rate changes from its value at the temperature 719
by an important factor. (For example, this factor
is 20 for (T— T10)/T10 = 3T10/Ta,.)

To describe the ignition stage we shall therefore
write Eq. (14) in terms of the variable

¢ = (T—Ty)To/T10 (30)
i We thus obtain
; aqs 324) Tf —(a+b)
—_— e ——— — (-——-- + €§6)
oT 0z T1o
+ e W(T¢/T190—1
X 319 yab equS it~ 1) (31)
Ty |T10+ €

‘ where ¢ is the small parameter T10/74, and

Y1 = l—x— ec}SCpTlov/Q Y10
Yo = X— egﬂc‘me/Q Y20

| T7/Ti0o = 1 —(T10— T20)x/T10
 where x = (1—erf »)/2.

This equation is to be solved with the initial con-
ditions ¢ = 0 at + = 0, and the boundary con-
ditions ¢ = 0 at z—--oo0.

The negative term ¢ 1(Ty/T10—1) in the Arrhenius
exponent 1s indicative of the fact that the chemical
reaction will be quenched for z such that Ty/Tyg is
well below 1. Unless the initial temperature differ-
ence of both reactants is small enough to make

P1 = (1 —Tx/T10)/¢ (32)

of order unity, the chemical reaction will be con-
fined in the ignition stage to a thin region where the
frozen temperature is high, close to 779. We shall
begin with the analysis of the case when 8; ~1.

Ignition for Nearly Equal Initial Temperatures

If in Eq. (31) we now take the limit ¢—0, for fixed
B1 of order unity, we obtain the equation

3(;{) 829’) b a
= = W -xeplp—px] (33)

it we anticipate that ¢ and its derivatives remain
finite in this limit process.

We could also obtain Eq. (33) by neglecting
terms of order ¢ in Eq. (31); or by inserting in
Eqg. (31) an expansion of ¢ in terms of € and equat-
ing terms of equal order in . Notice that Eq. (33)
results from calculating in the energy equation the
reaction rate in terms of the frozen reactant con-

- centrations and by linearizing the Arrhenius ex-

ponent around the temperature 73p.
Equation (33) gives the temperature increment
above the frozen flow value in terms of the variables

FIGURE 4 Non-dimensional temperature increments due
to chemical reaction during the ignition stage for small initial
differences in temperature.



T=5.81
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r and z. Eq. (33), or more exactly the equation
with the heat conduction operator written in terms
of the variables = and n, was numerically integrated
for several values of Bianda = b = 1. Some of the
resulting profiles &(n, 7) or &(x, r) are shown in
Figure 4 and 5.

The temperature increment ¢ becomes infinite
at * = v and » = n; thereby determining the
ignition delay and ignition spot. Figure 6 shows
how ¢ increases with = at » = v, and in Figure 7,
71 and xy are shown as a function of 8,. When ¢
becomes large compared with 1, the neglected terms
in Eq. (31) will become important and Eq. (33) and
its solution will not adequately represent the tem-
perature distribution. However this occurs at = so
close to 7 that the ignition delay will be only
slightly modified by this term. The infinite in ¢ is
due to the linearization of the Arrhenius exponent;
instead, the temperature ¢, as given by the solution
of Eq. (31), does not increase to infinity when = and
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FIGURE 6 Non-dimensional temperature increment at
x = xj, showing thermal runaway at r = 7.



FIGURE 7 Ignition location and ignition time as functions
of B1 = (Ta/T10%)(T10— T20).

b

n approach =7 and ny but grows rapidly until either
y1 or y2 become very small.

Ignition for Different Initial Temperatures of the
Reactants

When B; becomes large, the »; of ignition moves
toward the region of higher initial temperatures.
The Arrhenius exponent causes the heat release in
the ignition stage to be negligible in regions where
e T¢/Tio—1) = — Bix 1s a large negative number;
the chemical reaction is therefore confined to the
region where Bi1x = £, the appropriate variable for
the description of the reaction region, 1s of order
unity. For the analysis of the reaction region in the
ignition stage we first write the energy equation (31)
in terms of the variable x = (1 —erf )/2 so that we
obtain the equation

— 2
r 967— exp( 27 )96:2:.1: — [1— eBix+ €¢]—(a+b)

4nr

¢ — Brx
1 —efix+ ecﬁ,

X ylaygb exp (34)

i Notice that the second term of this equation
combines the convective and diffusive terms of
Eq. (18). We shall show that this equation in the
reaction region simplifies in first approximation to
the form given by Eq. (38), representing a quasi-
steady balance of the diffusive-convective term and

the chemical production term, because

1) The chemical production term takes for small
e and large B1 the simplified form

y2? exp(¢ — Brx) = B17%(&— Bb)® exp(d — ¢)

11) The factor exp(—2%2) in the diffusive-convec-
tive term can be replaced for small values of x,
corresponding to Bix of order unity, by its asymp-
totic form

exp(—2792) = 4mwx°n?

where the factor »2 in the right hand side can be
replaced by a constant large number 7;2, given
below by Eq. (35), with relative errors of order
1/m*=. To show this, we replace the factor x2 in the
above equation by £2/8:12 and take logarithms; then,
we obtain a relation giving a constant value »; for
n, namely,

m? = In(B1/2y/7)—In m (35)

if a term, —In &, is neglected in the right hand side.
In the reaction zone, where ¢ is of order unity, the
relation between ¢ and » 1s simplified to

m =m—(1/2m)In ¢ (36)

showing that the reaction zone is located around
z = m2+/7 with a thickness of order 1/(7)/71.

The convective-diffusive term 1s thus seen to be
of order m?2/~. If we want %2/7 to be of the order,
Bi1~b, of the reaction term, the characteristic time
for the ignition stage must be of order B;?712. As a
consequence, for the analysis of the reaction layer
in the ignition stage, we shall use the variables

& = le and 7 = T/Blb‘r)lz (37)

When Eq. (34) is written in terms of these vari-
ables, we find that it reduces, if we neglect terms of
order 1/m:2 compared with those retained, to the
ordinary differential equation,

— 2117y = (6~ BB)? exp(d — &), (38)

where 71 acts as a parameter together with B,

B = c)(Two—Te0)/QYe0 (39)

T The parameter B measures the initial difference in tem-
perature of oxidizer and fuel relative to the increment in
temperature due to the reaction. According to Eq. (25), the
adiabatic flame temperature 7. 1s larger than Tio, if B <1,
and vice versa if 8 >1.



Notice that the left hand side of Eq. (38) is obtained
from Eq. (18) if the unsteady term is neglected, the
factor » in the convective term is replaced by i,
and Eq. (36) 1s used as the appropriate simplified
relation between n and ¢ in the reaction zone.

Eq. (38) will be integrated with the boundary
conditions ¢(0) = 0, ¢(o0) = 0. From the results
of this integration we shall obtain ¢(o0) = du(71).

The boundary condition ¢.(oc) = 0 for the
solution in the reaction zone is obtained from the
matching conditions with the solution of the heat
conduction equation in the much thicker chemi-
cally frozen region, n/n1<<1. In this region, where
n~m1, Eq. (18) simplifies to

o
cT1 271 Om

0 (40)

because the diffusive term is of the order 1/x2
compared with the terms retained, and the chemical
production term is negligible.

The general solution of Eq. (40) is ¢ = f(n2m1),
or equivalently ¢ = f1(z), where the function fis to
be determined from the matching conditions, for
n—m, with the solution for the reaction region.
Thus, the temperature increment due to the chemi-
cal reaction in the region where 1 <7< is given by

¢ = doo(717°/M1%) (41)

In the region where n~1, or negative, ¢ Is zero in
first approximation.

Figure 8 shows &(¢) for b = 1, several values of
71, and three representative values of B8, as obtained
by numerical integration of Eq. (38). Figure 9
shows ¢« In terms of 71 for several values of B.
From the results we notice that if B<1, there are
two valuest of ¢ for all times lower than a maxi-
mum value 771, which is a function of 8, and no
solutions for 71<<771; 71 becomes infinite when B
approaches 1. For B>1, the relation ¢x(71) 1S
single-valued. When B<1 and r approaches 71,
ddo/dT1 becomes infinite and the quasi-steady
equation (38) ceases to be valid because the time
derivative can no longer be neglected in Eq. (34).
We may then expect that the solution of the com-
plete energy equation will show that the tempera-
ture will keep increasing very rapidly so that local

T The model equation (38) does not provide an upper
bound for the temperature increment ¢, and consequently no
triple valued solutions are found for ¢.(71) as sometimes
occurs in other combustion problems.
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FIGURE 8 Temperature increment due to chemical reac-
tion during the ignition stage, for initial differences in tem-
perature of the order of the adiabatic flame temperature, as
predicted by the quasi-steady analysis for the reaction layer.

equilibrium, with y2 = 0, will be reached shortly
after = = 1. The non-existence of solutions of
the quasi-steady Eq. (38) for <1 at times larger
than 771, and the rapid increase in chemical-heat
release at times close to 771 may be used asindicative
of ignition, and 771 may be considered as the ignition
time,

-"
-

i
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FIGURE 9 The maximum increment in temperature
resulting from the quasi-steady analysis of the ignition stage.
For B <1 the relations ¢..(71) are double branched, and only
the lower one has physical significance.
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For times of the order of rr;, which are large
when 1 — B 1s small, and for large =; when 8>1, the
numerical solutions in Figure 8 show the existence
of a region where chemical equilibrium (¢ = £/B)
has already been reached. This region is separated
from a region of frozen flow (¢ = ¢«) by a tran-
sition reaction region located around ¢ = B
where ¢« 1s large. This transition region is thin
compared with the equilibrium region, at smaller
¢, or the chemically frozen region, at larger £. We
may use the fact that ¢, in these cases, is a large
number, to obtain analytical expressions for
do(71, B) and 7ri(B). To do this we shall pose our
problem so as to find the solution of Eq. (38) and
the value of 71 for which &é(c0) 1s a given large
number é». We shall only consider here the case
b= 1.

Anticipating that for large ¢ the chemical reac-
tion will only be important at values of ¢ close to
the large value Bé., and that there the deviations
of ¢ from its local equilibrium value &/8 will be of
order unity, we shall write Eq. (38) in terms of the
dependent variable y, proportional to the fuel mass
fraction,

y = ¢8—b 42)
and the independent variable £,
= [¢— B(dw+po)]/B. (43)

The stretching factor B8, and the additional trans-
lation Bpp (which we anticipate to be of order unity)
are chosen so as to obtain a certain normalized
equation, [Eq. (47)] and boundary conditions
[Eq. (48)], 1in the limit ¢eo—> 0.

When Eq. (38) is written in terms of y and ¢, it
takes the form,

[1+(L+ po)/doo]? d>y[dL?

= Ay exp[—y+(1-8){] (44)
where

A = 71Bdw 2 exp[(1 = B)gc +p0)],  (45)

Equation (44) must be solved with the boundary
conditions

y =0 at = —(¢o+po) (46a)

y—{ =po for (—o0 (46b)

‘These boundary conditions correspond to the con-

ditions ¢ = 0 at ¢ =0, and ¢ = ¢p at E—o0,
respectively.

It is not difficult to show that the factor A in
Eq. (44) may be chosen arbitrarily, and then

po(A, B, ) will be obtained as an eigenvalue when
solving Eq. (44) with the boundary conditions (46).
Because these equations have no solution in the
limit ¢oo—>00, for B =1 unless A = 1/2, we shall
choose A = 1/2 in Eq. (44).

The problem of solving Eq. (44) for large ¢«
turns out to be a singular perturbation problem.
There is an inner reaction layer where the appro-
priate independent variable is {. In addition, there
i1s an outer layer to the left, where the appropriate
independent variable is &, with the chemical reac-
tion frozen to orders exponentially small in ¢e if
B<1, or in equilibrium if B>11. To the right of
the inner reaction layer, the chemical reaction is
frozen to all algebraic orders in ¢!, so that
y—{ = po; the eigenvalue py admits an expansion
in powers of ¢»~1 beginning with a term of order
unity.

The first approximation for y, within the reaction
layer, can be shown to be given by the equation,

2d%y[d(? = y exp(—y+m0), (47)

where m = 1— 8, to be solved with the boundary
conditions

y§=0 for (— —oo0, and
'y§=l for (- oo. (48)

This equation has been integrated numerically to
obtain (¢, m), and, as part of the solution, we
then obtain the first approximation for pg, po =
(y — {)w, which is a function only of m shown in
Figure 10; also shown in Figure 10 is y_s, which
is identically zero for m <0. There are no solutions
for m>1/2, or B<1/2.

The second approximation for ¢ in the equi-
librium or frozen region for ¢<<B¢« is given by
b = &/B— Ey—w/Bbw.

Asymptotic methods may also be used (Lifian,
1973), to obtain analytical expressions for (y— {)w
and y_« 1n terms of m, for values of m close to 1/2,
0, or large negative m. By taking into account
these asymptotic expressions, the following cor-
relations, with relative errors of the order of 2 per-

t It should be noticed, however, that because of the factor
£2 in Eq. (38), chemical equilibrium will always exist for all
values of 71, in the region where £2 is small enough to make
the reaction term dominant if ¢é— B¢ does not tend to zero
with ¢ faster than €. Even though the chemical reaction is
frozen for ¢ <é» and B <1, equilibrium must exist there in
the first approximation, if matching with the reaction layer
is to be possible.
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FIGURE 10 Asymptotic values resulting from the Egs.
(47) and (48), describing the reaction zone structure of pre-
mixed flames.

cent or lower, were found for (y — {)» as a function
of m.

m(y — Do = 1.344dm —4dm2(1 —m)/(1 — 2m)

+ 3m3 —In(1 — 4m?) (49a)

for m > —0.2, and
m(y — 0o = —In(0.6307m2—1.344m+1) (49b)

for negative values of m.

With po known as a function of B, Eq. (45), with
A = 1/2, provides a first approximation to the
relation between 71, ¢« and B, as

71 = (1/2B)¢x? exp[(B— 1)($a + po)]

The relation ¢o,(71), resulting from Eq. (50), is
single-valued only for 8>>1. For B<1, ¢w(71) has
two branches; the lower branch is not a good
approximation to the solution of Eq. (38), unless
I — B 1s moderately small, because the values of ¢o
are not large enough to make the asymptotic
treatment applicable.

If (1 —pB) is small, the ignition time, 771, and the
flame location at that time, £; = Bé.;, are given by

&r = 2B/(1—-B)

(50)

in = 2e72/(1 —B)2, (51)

corresponding to the value ¢c; = 2/(1 - B) of ¢
that makes =1 the maximum in Eq. (50).

For smaller values of B, r11(8) must be obtained
from the numerical solution of Eq. (38). A good
analytical correlation of these numerical results is

given by
1 = 2e7 32— B)/[(1 - B)? (32)

It is easy to obtain a second approximation for
the value of 71 and =1 for large values of ¢. In
Eq. (44) the first term in brackets is expanded for
large $« and the resulting equation is manipulated
sOo as to obtain an equation similar to (47). The
second approximation to the value of r; is:

]
] = ﬁ¢w2 exp[(8— 1)(#« + po)]

y [l-—— :OO 3(1;:)170]

~where pg, as a function of B, is given by Eq. (49).

Equation (53) can be used to obtain a second
approximation to the value of 771, for small values
of (1—pB). The resulting expression is Eq. (52),
which turns out to be a good correlation of the
numerical results. (For example, for B =0,
Eq. (52) gives 751 = 0.541 while the numerical
results give r;1 = 0.547).

The relation (52) gives explicitly the ignition
time, for 8>1 and b = 1, in terms of the physical
and chemical parameters of the system, if Eqgs. (13),
(35) and (37) are taken into account. Because for
B—1, £1s large, £~2/(1 —B), in the reaction region,
the »1 appearing in Eq. (37) for 71, should be
redefined by replacing B; in Eq. (35) by B1(1 — B)/2.

It should be noticed that the ignition time does
not depend on the transport coefficients. It depends
only on the initial thermodynamic state of the
reactants and the chemical kinetic parameters of
the reaction.

It is clear that the analysis may be used to predict
the ignition time when a premixed reacting mixture
1s suddenly put in contact with a hot inert gas, or
the ignition delay length of a premixed reactant
stream flowing parallel to a hot inert stream. With
minor modifications this analysis may also be used
to predict the ignition time in a wide variety of
problems. Some examples are, the ignition of
monopropellant and bipropellant droplets, and gas
phase ignition of a solid propellant in contact with
a hot gas.
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[V THE PREMIXED FLAME STAGE

We have found in the previous section that, if
B<1, due to the large sensitivity of the reaction
rate with temperature, the chemical heat release
causes the temperature to rise precipitously at a
certain ignition time, at a certain place somewhere
in the mixing layer. It is clear that the local rise in
temperature must cease when one of the reactants
is completely consumed at the ignition spot; there,
the final temperature will be given by Eq. (15) with
y1 = 0 or by Eq. (16) with ys = 0, depending on
which of the reactants is in defect.

These facts were well demonstrated for small
values of 1 —8; for which it was found that, well
before ignition occurred, a thin reaction layer, or
flame, was separating a region of frozen flow from
a region of near-equilibrium flow. The reaction
was found to move in time toward regions of
increasing initial fuel concentration and thereby
of increasing final equilibrium temperature; for
this reason the flame propagation velocity keeps
increasing with time.

The heat released at the reaction layer 1s con-
ducted both to the frozen region, ahead of the layer,
and to the near-equilibrium region, behind.
Because during most of the ignition stage the
thickness of the near-equilibrium region is small
compared with the thickness of the, inert, unsteady
transport layer, the heat loss toward this layer from
the reaction layer was neglected, resulting in the
boundary condition ¢,(o0) = O for Eq. (38). As a
consequence of this approximation the propagation
velocity of the reaction layer became infinite at
Ty — TJI1.

However, when =1 approaches ry;, the propa-
gation velocity becomes so large that heat con-
duction ahead of the flame cannot take place so
rapidly as to make the thickness of the unsteady
transport layer large compared with the thickness
of the near-equilibrium layer. Therefore, the
boundary condition ¢c0) = 0 should no longer
be used. The fact that, for -, close to 711, the un-
steady transport layer is then thin compared with
the mixing layer will be used below in order to
simplify the Eqg. (40), which describes how the
chemical heat relaese is conducted and stored ahead
of the reaction layer.

For B>1 and large 1, we also found a thin reac-
tion region separating a region of equilibrium flow
from a region of frozen flow. In this case, however,
the flame moves in time toward regions of lower
final equilibrium temperature; thereby, its propa-

gation velocity becomes so small that the character-
1stic time for motion of the flame across the mixing
layer 1s large compared with the time necessary for
the heat released at the flame to be conducted
across the mixing layer. In this case the time
derivative in Eq. (40) turns out to be negligible;
and the temperature in the transport layer will be
given by ¢ = (1 —x)dbw, as long as the equilibrium
layer 1s thin compared with the mixing layer.
Because for sufficiently large values of =, this is not
the case, Eq. (38) cannot then be used in the
equilibrium and reaction layers.

Flame Propagation for Ti0—Tao>QYao/Cyp

We shall now analyze the flame propagation
process for B>1 and large values of . Guided by
the results obtained in the previous section, we
anticipate that a thin reaction layer set around
x = xp(7)<x., separates a region of frozen flow
from a region of equilibrium flow, at x< x, (where
x 18 not so close to xp as to be in the reaction region).

In the equilibrium region, according to Egs. (15)
and (16),

T—Tyo = —x(Two—T20— QYao/cp)  (54)
and

y2 =0, y1 = 1-x(1+Y20/Y10) (55)

In the frozen layer, ahead of the reaction zone,
the temperature distribution obeys the heat con-
duction Eq. (18) (without the chemical source term),
with a moving boundary condition, T = Tp(r) at
x = xp(7), originating from the matching con-
ditions with the solution for the reaction layer.
Ty(7) 1s the first approximation for the temperature
in the reaction zone.

Because the changes in temperature and con-
centration across the reaction zone, as well as the
reaction zone thickness, will be found to be small,
of order T,/T, (compared with the transport zone),
in the first approximation we may patch at x = x,(7)
the solution, Eq. (54), for the equilibrium region to
the solution in the transport region.

The movement of the reaction layer is so slow
(that 1s x,(7) and Tp(7) are such slow varying func-
tions of time) that, as indicated above, the time
derivative term in Eq. (18) turns out to be also
negligible. The temperature for x>x, (x not too

close to xp) is then given by the local similarity
solution,

T = Too+ (Tp— Tzo)(l —x)/(l —Xp) (56)



where T is the value of T given by Eq. (54) at x = x,
Tp = Two—xp(Two—T20— Q Yao/cp)  (57)

In order to determine now x5 (7), or T,(7), and the
temperature distribution in the reaction layer, we
pose the inverse problem of calculating the value of
= which causes the temperature to take the value
given by Eq. (54) in the equilibrium region for
x<xp (because there the characteristic chemical
time will be exponentially large for large values of
To/T)p), and the value given by Eq. (56) in the frozen
region for x>x, (where the chemical time will be
exponentially large).

To obtain the temperature distribution in the
reaction layer around x = x, we will follow the
procedure followed in the previous section to
obtain Eq. (47). We shall give the details of the
analysis only for the case b = 1.

We should write Eq. (14) in terms of the depend-
ent variable y = y20 YooTy/cpTp?, or equivalently,

y = —To(T—Tp)/Tp?—(x—xp)
X (T10—T20— Q Yoo/cp)Ta/Tp?  (38)

and the independent variable

£ = —po+(Q YeoTa/cpTp?)(x— xp)/(1—xp) (59)

which are chosen, together with po, so that for large
values of 7,/Tp, we obtain Eqgs. (47) and (48) to
determine the first approximation for y({). The

resulting value for m in Eq. (47) is negative, and
given by,

m = (1—B)(1—xp) (60)
The translation pg in Eq. (59) is given by the relation

SWTy;_Lp(l—x’p)z( Cprz )3(T1())3+a'

——— e it

exp(—27p2) Q Yoo Ty Ty
[ Ty Tu ] (6])
X exXp — — +mpo| =
TlO Tp
where
Vip = 1 — .X‘p(l + v Yzo/ YlO) (62)
and
1 —erfnp = 2xp (63)

We should notice that Eq. (47), which describes
the reaction zone structure, represents a balance
between the chemical production term and con-
duction, or diffusion, normal to the flame. When
calculating the reaction term, a constant value is
taken for the oxidizer concentration yip in the
reaction layer, and the Arrhenius exponent is
linearized around the value T3, of T.

The stretching factor in {, which results in the
expression (60) for m, was chosen so as to obtain
the boundary condition y, = 1 for {->o0 from the
matching conditions with the outer solution
Eq. (56). From these conditions we also obtain,

(y— 0w = po (64)

which when substituted in Eq. (61) yields, if Eq.
(49b) is taken into account, an approximate relation
giving 7 in terms of T}, with relative errors of order
Ty/Ta.

When T, approaches T,, the resulting value of
7 tends to infinity, because y1,—0. However, the
preceding analysis is then no longer applicable,
and should be replaced by an analysis in which
both y; and ys should be considered small, of the
order T./T,, in the reaction zone. For these large
values of time, the region x<<x, is in equilibrium
(with y2 = 0), while the region x>x. is in near-
equilibrium (with y1<€1). The detailed analysis of
this stage, which corresponds to a diffusion con-
trolled mode of combustion will be given in
Section V.

Flame Propagation for T10— T20<<QY20/Cp

If B<1, the thin reaction zone, that sets the flow in
near-equilibrium, once it has been established at
71 close to 771, moves across the mixing layer in an
interval of time which is very short compared with
the ignition time.

Because of this fast motion of the reaction layer, .
the heat released by the chemical reaction will only -
reach a transport layer, which is thick compared
with the reaction layer but thin compared with the
mixing layer at the time of ignition. The transport
layer precedes the reaction layer in its motion
across the mixing layer. Ahead of the transport
layer the temperature and concentration take the
frozen flow values, Eq. (10), if we neglect terms of
order T10/T, due to the effect of the chemical reac-
tion during the ignition stage. -

The reaction layer together with the transport
layer form a thin transition layer, through which
the temperature and concentrations jump from its
frozen flow values just ahead to values very close to
equilibrium just behind. This transition layer is a
classical deflagration. An analysis of the defla-
gration propagation for large activation energies
was carried out by Zeldovich and Frank-Kamenet-
sky (1938). Later, this analysis was refined and
carried out to higher orders, by means of singular
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perturbation methods, by Jain and Kumar (1969)
and Bush and Fendell (1970).

If the activation energy is sufficiently large, the
. chemical reaction takes place only in a thin reaction
zone, which we may then place around a certain
xp(r), where the temperature is very close to the
equilibrium value 7, at x = x,.

The reaction layer leaves behind a region in
near-equilibrium, where Eqgs. (54) and (55) will
hold in the first approximation, if xp<<x.. The
_ reaction layer, after crossing the surface x = x,,
leaves behind, in addition to the region, x<<x,,
where as before y2 = 0 1n the first approximation,
a second region, Xxp>XxX>X, Wwhere ys # (0 but
y1 = 0. These two regions are separated by a thin
reaction zone, around x = Xx,, which is a typical
thin diffusion flame to be analyzed in Section V.

In the transport layer preceding the reaction
layer, where the reaction term turns out to be zero
to all algebraic orders in 7/7,, the temperature 1s
given by the heat conduction equation

oT  exp(—292) ¢2T

; 4t ox?2

.y (65)

which we shall write in terms of the variables = and
{1 = x—xp(7), anticipating that {i/x,<1 in the
transport zone. We thus obtain, for large T,/Tp,
in the first approximation

oT (xir;.2 02T

T

8&1 TEp

where X, = dxp/dr, and E, = 4mxp? exp(2nyp2).
We have not included in Eq. (66) a term (077

d7)g1, because it turns out to be negligible compared

with the two remaining terms in the equation.
Equation (66) has the solution

T = Tho+ (T20— T10)xp+ (xpQ Yoo/Cp)
X exp{— Ep7xp 2Xp(x —xp)} (67)

— 0 (66)

X —
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which for large values of 7Ey(x— xp)xp~2xp tends
toward the frozen flow solution. In addition, for
x = xp, T takes the value T, = Ti9+ xp(Q Yao/cp—
Tio+T2); so that the solution, Eq. (67), for the
transport layer matches with the one correspond-
ing to the reaction layer, in which the deviations in
temperatures from T, are of order 7,/T,. From
Eq. (67) it can be seen that Eprxp~lxp>1 if x—xy
£Xxp in the transport layer.

For the analysis of the reaction zone, we intro-
duce, as we did when analyzing the case 8>>1, the
dependent variable y = yo(7T%/Tp) O Yoo/cpTp, which

is given by Eqg. (58), and the independent variable
{, to be substituted in Eq. (18),

{ = —po+(x—xp)(Ta/Tp)
X (Q Yao/cpTp)(EprXxpixp) (63)

The stretching factor in Eq. (68), and the trans-
lation po are chosen so as to obtain, for b = 1,
Eqgs. (47) and (48), when determining the first
approximation for y in an asymptotic analysis for
large values of 7,/T,. The matching conditions
with the solution, Eq. (67), for the transport layer
yield Eq. (64) and the stretching factor in Eq. (68).
The parameter m appearing in Eq. (47) 1s in this
case a small number given by,

m = (1=B)/(Eprxp~"Xp) (69)

and therefore po = 1.344, as given by Eq. (49a).
Taking into account the definition of pg given above,
we obtain the relation

. C T 2 3 T \ a+3
TXp® = |:2y3_lpEp_1( e ) ( 10)

0YeoTa) \ T,
ENE T
exp - —
Tl() Tp

where a factor exp(1.344m) has not been included
because m<1.

From Eq. (70) we obtain two values for 1/(7)xp
as a function of x,, one positive and the other
negative. These values correspond to deflagrations
moving toward the regions of increasing and
decreasing x, respectively.

The trajectories of the two flames can be obtained
by quadrature, if we add an initial condition

Xp = X at 7 = 73 (71)

If we could, artificially, at a certain r = r; <7y,
raise locally the temperature somewhere in the
mixing layer (x = x;), so that local equilibrium,
with yo = 0, would be very rapidly established there,
x; and =; would then provide the initial condition,
Eq. (71). Two deflagrations, originating at the
surface x = x;, would then move across the mixing
layer to put it in equilibrium. Their trajectories
would be obtained by integrating Eq. (70), if
x;<Xe, by means of a quadrature, with the initial
condition Eq. (71). In performing this quadrature
we may use with advantage the fact that 7,/T) is
large; xp or T, may then be taken as constant in
Eq. (70) except in the exponential, which may be



linearized. The resulting expression for = as a func-
tion of xj is, for x, lower and not too close to xi,

2T5%cp
TaQ Y20(1 “ﬁ)

C T 3 T \ A+3
[2is (g (7)
QYooTy/ \ Ty
T, T,\1-1/2
X exp(——— — —-—)] | (72)

The time required for the deflagration to move
across the region “x,>x; is very short compared
with time required for the motion of the flame
across the region “‘x,<<x;”.

The oxidizer concentration ahead of the defla-
gration, y1p, goes to zero when the flame approaches
the surface x = x., where the reactants are, before
ignition, 1n stoichiomentric proportions. The reac-
tion zone analysis, which led to Eq. (70), must then
be substituted by an analysis in which both y; and
yo are considered small, of order T,/7T,, through the
reaction zone. After crossing the surface x = x,,
the variations of y» across the reaction zone be-
come small compared with its mean value; Eq. (70)
may again be used to calculate the flame propa-
gation velocity with the roles of y; and ys exchanged,
and some minor additional modifications.

For this one-dimensional analysis to be directly
applicable, the ignition source must also have a
one-dimensional structure; however, the ideas used
here could also be used to analyze the flame propa-
gation process through a one-dimensional mixing
layer, when the ignition source is point-like, as
occurred 1n the experimental work of Liebman
et al. (1970).

When ignition is associated not with an artificial
source of heat but with chemical heat release, the
ignition analysis of Section III, which resulted in
thermal runaway at (xj, r;), provides the initial
condition for Eq. (70) if the difference between the
initial temperatures of oxidizer and fuel is small
(B1~1). Equation (72) shows that the time required
for the flame to move across the mixing layer is
small compared with the ignition time, so that the
factor r appearing in the left hand side of Eqg. (70)
may be written as 7y and consequently 2(y/7—
v/ 11) may be replaced by (7— 17)/A/7r in Eq. (72)
for xp<x;.

The analysis of Section III provides the spon-
taneous ignition time 77, for 1>8~1, as

T = 26"‘2(2 — B)*z(l — Tgo/Tm)‘mz( Ta,/ T10) (73)

A= V/m) =

where

m? = In{(T4/ Tro)(1 — T20/ T10)(1 — B)/4+/ 7} —In

but does not provide, unless 1 —8<1, a similarly
well defined x; to be used with 77 as the initial con-
dition for Eq. (70). This initial condition should
be obtained from an analysis of a transition stage
for = close to 71, in which the time derivative term
left out of Eq. (38) should be retained. The time
involved in this transition stage, and the time
required for the flame to move across the mixing
layer to the region where T 1s again close to 7+, can
be shown, by order of magnitude arguments, to be
small, of order 1/712 compared with the ignition
time 7;.

When 1 —B8<1, Eq. (51) may be used to obtain
the value of xyr to use as the initial condition for
Eq. (70), if the resulting value

xr = 2(1 =By YT10/Ta)(1—T20/T10)~t  (74) -

i1s small compared with one. Otherwise, we may
use Eq. (61) for a more accurate determination of
the ignition time 7; and ignition spot x;. Although
the analysis leading to Eq. (61) was carried out
under the assumption B>1, it is not difficult to
show (by direct substitution, for example) that it
can also be used to calculate the temperature distri-
bution at times 7 of order (1 — 8)~2 prior to ignition,
if 1 —B< 1. The lower branch of the x,(7) relation,
resulting from Eq. (61), gives the position of the
reaction zone up to times very close to the ignition
time. The relation x,(7) given by Eq. (61) may
become single-valued if (1 —8)T,/T10 1s not large
enough; in this case Eq. (61) describes the con-
tinuous transition from frozen flow to equilibrium
flow.

V THE DIFFUSION CONTROLLED
STAGE

When the premixed flame reaches the surface
X = Xe, in the case B>1, or after crossing the sur-
face x = x. in the case <1, a thin reaction region
1s established around x = x,, where the reactants
burn after diffusing through the reaction products
from both sides of the flame. This thin flame
separates two regions which are under near- |
equilibrium conditions; one is without fuel and the
other without oxidizer, in the first approximation.




That is outside of the reaction zone, in first approxi-
mation,

y1 =0 for X > Xe, (75)

y2 =0 for X <Xe; (76)
the concentration of the other reactant and the
temperature are then obtained from Egs. (15) and
(16). Higher order approximations will introduce
corrections of order 7,/T, to these values of y; and

» o, for appropriately large values of .

For the analysis of the reaction zone following
Linan (1973), we introduce the variables I' and Z
~ defined by the relations,

1= (Te/ T))(I' - Z)/A (77)

y2 = (Te/ Ta)(Y10/v Y20 )(I'+Z)/A (78)

where the factor T,/ T, is included so as to make I’
and Z of order unity in the reaction zone. The
parameter A will be chosen below, [Eq. (83)], so

' as to obtain a certain normalized equation and
boundary conditions [Egs. (84) and (87)] when
calculating the first approximation for I'(z) for
large values of T,/ Te.

When analyzing the reaction zone we may, In
first approximation, neglect the unsteady term in
Eq. (18) and consider the factor exp(—2n2) as
constant and equal to exp(— 2n.2). This is equival-
ent to setting a balance between the chemical heat
release and conduction normal to the reaction layer.
In addition, the energy conservation equation
may be further simplified, because the devia-
tions, in the reaction zone of the temperature from
the adiabatic flame value 7, will be found to be
small, of order T,2/T, at most. So that Eq. (18)
reduces in the reaction layer in first approximation,
to

22T
- = "‘TKeTlo(Ta,/Te)a+b+1
0x?
To(T—Te)
X P12 Pab ex 79
112 y2? exp T2 (79)
where
TIO a+b+1
T(&
T, T, T
x (-_) exp(—‘i - —“) (80)
Ta TlO Te

When Eq. (79) is written in terms of the variables
I and Z,

I' = A(To/ To)l(ver/ Q Y10)(Te—T)

— {1 -+ (2B— ])(V Yzo/ YIO)} (x-—xe)/2] (8])
and

Z = A(Ty/ Te)(1 4+ v Yoo/ Y10)(Xx — Xx¢)/2. (82)

If we choose

1-b
v 4TK3(CpT10 )( v Yao )

Q Yz Y10
| v Yoo \ 2
9 (1 ; ——2—"-) ] (83)
Y10

we obtain the equation
I'zz = (T-Z)Y(I'+Z)% exp{(I'+g£)/A}, (84)
where
g = {1+(2B—1)vYa/ Y1io}(1 +v Y2/ Yi0)™1 (83)
and
A = AvcypTe/ Q Yro. (86)

The matching conditions between the solution of
Eq. (84) and the first approximation, Eqs. (75) and
(76), for the solution in the outer regions, provide
the boundary conditions for Eq. (84):

'y, = —1 for
FZ = | for

Z— — o0,
Z—> o0 (87)

The function I'(Z, g, A) was obtained by numeri-
cal integration of Eq. (84), for a = b =1, by
Linan (1973). Only one solution exists for g>-1
(or B>1) and all values of A: however, the resulting
values of I' are large for A<1 and, therefore, the
asymptotic analysis leading to Eq. (84) 1s then no
longer valid. For |g|<1, there are two solutions
for all values of A above a minimum value A,.(g)
and no solutions for A<<A,,. Figure 11 shows some
typical results.

The asymptotic value of (I'—Z7), 1s a measure
of the deviation from equilibrium; it tends to zero
for large values of A in one of the solutions, which
is the only one with physical meaning. The fact
that (I'—Z).. is different from zero indicates that
there is leakage of oxidizer through the reaction
zone. Figure (12) shows (I'—Z).. as a function of
A for several values of g.
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FIGURE 11 Internal structure of the reaction zone in the

diffu§ion controlled stage, as resulting from the numerical
solution of Eqgs. (84) and (87) fora = b = 1.

The numerical results for A,(g) may be corre-
lated, with errors of 1 percent, by the expression

Amd = e(1 ~g)
X[1—-(1—-g)+0.26(1 —g2)2+0.055(1 —g)3] (88)

which has the correct asymptotic form for small
values of (1—g).

For large values of A, T'(Z) is given by the sol-
ution of the equation

Izz = (C—Z)T'+Z) (89)
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FIGURE 12 Leakage of oxidizer through the reaction zone
as a function of the non-dimensional time A3, resulting from
the quasi-steady thin diffusion flame analysis.

which was obtained by Lifian (1961) when analyzing
the diffusion flames structure for large reaction
rates, with the boundary conditions Eq. (87).

A thin diffusion flame separating regions where
the reactants do not coexist in first approximation, ,
does not exist for 8<1 if = is lower than a minimum
value, 7,;, given by Egs. (83), (86) and (88). How-
ever the resulting value of 7,, 1s very small compared
with 77 unless 1—B8<1; the corresponding values
of A are for »> 7, very large compared with 1, so
that the reaction zone is extremely thin and its
structure is described by Eq. (89) with the boundary
condition (87).

For values of B>1 there 1s not an equivalent
minimum value of A (or 7), below which Eq. (84)
would not have a solution with the boundary con-
ditions, Eq. (87). However if A<1 the resulting
values of (I'—Z ) become so large compared with
1, that this thin flame analysis is no longer valid,
and it should be replaced by the flame propagation
analysis of Section IV.

VI LAMINAR MIXING AND CHEMICAL
REACTION OF TWO PARALLEL
STREAMS

When studying the laminar mixing and simultaneous
chemical reaction between two parallel streams of
fuel and oxidizer, the boundary layer approxi-
mations may be used to simplify the problem, if the
appropriate Peclet number, VL/D, based on the
characteristic extent of the combustion zone in
the streamwise direction is large. As a result of the
neglect of upstream diffusion, under these approxi-
mations, the governing equations become parabolic,
as occurs with the equations describing the evol-
ution of unsteady mixing layers. See Williams
(1965).

Marble and Adamson (1954) used the boundary
layer approximations to analyze the process of
ignition of a reactive stream by a hot parallel
stream of its reaction products. It is clear that this
problem, and the more general problem of chemical
reaction between two parallel streams, admits an
asymptotic treatment for large activation energies,
following the ideas developed in the previous
sections. |

In particular, if both streams have equal initial
velocities V, the equations describing their mixing
and chemical reaction reduce exactly to the equa-
tions for the unsteady mixing layer, with x1/V




replaced by ¢, if the boundary layer assumptions
are applicable. The ignition delay length, x;7, may
then be obtained from the ignition time, f;, as
x1y = Vtr; so that for the boundary layer approxi-
mations to be applicable, the Peclet number
V2t;/ D must be large compared to 1.

The flame propagation analysis for B<1, in
Section IV, cannot be used to describe the defla-
gration waves originating in the ignition point
unless the resulting flame propagation velocity is
very small compared with V; in this case the flame
is tilted downstream so much that only diffusion
normal to the mixing layer is important. When the
flame propagation velocity, corresponding to the
local mixture, turns out to be comparable although
smaller than the flow velocity, the boundary layer
assumptions may still be used to calculate the
ignition delay length. However to calculate the
flame trajectory we can no longer use directly the
analysis of Section 1V because:

a) Diffusion normal to the flow direction shouid
be replaced by diffusion normal to the flame in
both the thin reaction layer and in its preceding
thin transport layer.

b) The chemical heat release causes the density to
decrease and, therefore, the mixture to expand if
the mixing layer is unconfined ; this expansion takes
place. only crosswise to the flow direction if the
boundary layer approximations are used. But, it
i1s clear that the aerodynamic flow field induced by a
premixed flame oblique to the flow direction
includes large velocity perturbations both trans-
verse and longitudinal to the original flow. A
detailed analysis of this problem would, however,
end up in showing that the streamwise extent of the
region where the boundary layer approximations
cannot be used is small, of the order of the thick-
ness of the mixing layer at the ignition point, com-
pared with the extent of the ignition region.

If, somewhere in the mixing region, the flame
propagation velocity is larger than the flow velocity,
the flame would move upstream after ignition, until
it would sit at a distance, 1, from the origin of the
mixing layer such that V1/D~1. The boundary
layer assumptions cannot be used, in this case, to
calculate the ignition length, or study the ignition
region. However, at distances x; downstream such
that Vx;1/D<1 the reaction becomes diffusion con-
trolled, and the boundary layer assumptions
together with the thin flame assumption can be used
to describe this process.

VII CONCLUSIONS AND
GENERALIZATION

We have found that several stages exist in the
evolution of unsteady mixing layer between two
gases undergoing an Arrhenius irreversible reaction
with a large activation energy.

In a first “ignition” stage the chemical heat
release 1s small so that the mixing appears to be
frozen; however, it may cause the reaction rate to
increase by a large factor during the last part of
this stage, and thereby produce a thermal runaway,
characteristic of ignition.

The character of the ignition stage, and the later
evolution of the flame, depend on the value of the
difference between the initial temperatures of the
reactants, and on whether the final adiabatic flame
temperature 7, 1s larger or less than the maximum
initial temperature, T1o.

A thermal runaway, characterizing an ignition
time, does not exist if 7,— Ty is sufficiently small
or negative. In the other cases an ignition time
may be defined, #1 = t177, where #; is given by
Eq. (13), and 77 is a function of

B = (Trwo— T20)(Ta/T10?)

represented, for a = b = 1, in Figure 7, for 81 not
too large. For Bi1>1, Eq. (73) is an approximate
expression for the ignition time if (1 —B)T,/T1p 1S
large. T

It should be noticed that the ignition time does
not depend on the transport coefficients. It is of the
order of the minimum ignition time that we would
obtain in the mixing layer, when neglecting the
effects of heat conduction and diffusion.

Local chemical equilibrium is established rapidly
as a result of the thermal runaway. Figure 1 shows
schematically the trajectories of the premixed flames
occurring after spontaneous ignition. Figure 3
shows schematically the distributions of temper-
ature in terms of the variable x for different values
of time corresponding to the various regimes. From
these temperature profiles the reactant concentra-
tion profiles could be easily inferred, if Egs. (15)
and (16) are taken into account.

Figure la corresponds to the case 70— 790~
T10%/ T, when two classical deflagrations originate
at the ignition point and move toward the edges of

T In this case the ignition time may also be inferred from
expression (61) in the way described at the end of Section 1V
for B close to one.



the mixing layer where they slow down and thicken
considerably. One of the flames leaves behind a
thin diffusion flame when crossing the surface
X = X, where the reactants were prior to ignition
in stoichiometric proportions.

For large values of T10— T3¢ ignition occurs at the
hotter edge of the mixing layer. If T,>Tj, as
represented 1n Figure 1b, a classical deflagration
will then move rapidly across the mixing layer to
burn completely the reactant locally in defect;
again, after crossing the surface, x = x,, a diffusion
flame will be established there. The deflagration
will slow and its preceding transport layer will
thicken when the flame temperature decreases
below the value 7.

If T.<<Tho, as shown in Figure Ic, a thin flame
originating at the hotter edge will move slowly
across the mixing layer, with a transport layer
ahead, covering the whole mixing layer, where the
temperature and reactants have locally similar
distributions. Upon reaching the surface x = x,,
the motion of the reaction layer ceases, and a thin
diffusion flame is established, where, later, the reac-
tion is diffusion controlled. The same type of
result is obtained for small positive values of
T,—Tio if the activation temperature is not too
large. In these cases the transition from the frozen
flow solution to the equilibrium solution is smooth,
and is described by Eq. (61).

Because of the large number of non-dimensional
parameters involved in this problem, we do not
attempt in this paper a parametric analysis of the
results.

The rapid transition from a nearly frozen form
of mixing to a diffusion controlled mode of com-
bustion, resulting from a local thermal runaway
and a subsequent deflagration wave, will be found
when analyzing a wide variety of problems of
chemical reactions in unpremixed systems. It is
clear that if an overall reaction rate is applicable
and the activation energy is large, the methods and
ideas developed here may be used to calculate the
ignition time and the deflagration wave system
which follows.

Many of these ideas may be used to cover more
complex rate expressions. The extension to cases
with more realistic transport coefficient is easy.

Finally these ideas can be used to simplify the
analysis of turbulent mixing with chemical reactions
in unpremixed systems. Mixing at the molecular
scale must occur before combustion takes place in
turbulent flow. Around each eddy of fuel a layer
will exist, where mixing with the surrounding eddies

of oxidizer takes place at the molecular scale. This
mixing will be enhanced by the stretching of th
mixing layer due to turbulence. However, it appears
very likely that the ignition time for each of these
layers will still be of the order of the one predicted
here for the laminar case. Once ignition occurs, a
deflagration wave will establish a diffusion flame
surrounding each eddy of fuel; the subsequent
turbulent combustion will be diffusion controlled,
as in the analysis by O’Brien (1971) of turbulent
mixing of two rapidly reacting species. |
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