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Radiant Ignition of a Reactive Solid with In-Depth Absorption 
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and 
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San Diego, La Jolla, California 

An asymptotic analysis of the limit of large activation energy is presented for radiant ignition of a 
solid that experiences a one-step Arrhenius reaction in the condensed phase. Both constant and 
time-dependent radiant-energy fluxes arc considered, and the complete range of values is covered for 
the absorption coefficient ji. It is shown that as » increases, the structure of the transition stage, which 
follows the inert heat-conduction stage, passes from a thermal explosion without heat conduction, to a 
single transient heat-conduction zone with distributed chemical heat release, to a two-zone structure 
composed of a reactive-diffusive-absorptive zone near the surface and a transient-diffusive zone in the 
interior. For very high values of u, the reactive-diffusive-absorptive zone further splits into a surface 
absorption zone and an interior reactive-diffusive zone, thereby reproducing results obtained 
previously for ignition by a surface-applied energy flux. The analysis shows that contrary to earlier 
expectation, the nondimensional absorption coefficient must be at least as large as the nondimensional 
activation energy for in-depth absorption to affect the ignition time negligibly. 

1. In t roduct ion 

In a previous paper [1] we have employed 

asymptotic me thods to investigate, in t he limit of 

large activation energy, the ignition of a reactive 

solid by a constant energy flux applied t o its 

surface. It has generally been assumed that dur ing 

radiant ignition of solid propel lants , the absorp­

tion layer is thin enough for the approx ima t ion of 

a surface-applied energy flux to be valid. However , 

a theoretical de te rmina t ion of condi t ions neces­

sary for the neglect o f in-depth absorpt ion has no t 

been repor ted. Our previous finding that a nar row 

layer at the surface is of critical impor tance during 

the transition stage preceding ignition, suggests 

that the tradit ional approximat ion m a y be ques­

t ionable. Therefore we have performed the fur ther 

analyses reported here in . 

Difficulties in es t imat ing the effect of in-depth 

absorption stem from t w o problems that arise in 

defining the absorpt ion coefficient / i . F i r s t , par­

ticularly for polymeric materials in the vicinity of 

absorpt ion bands , n may depend appreciably on 

the frequency of the incident radia t ion . Analyses 

neglecting this wavelength dependence will be 

most nearly applicable ei ther for m o n o c h r o m a t i c 

laser radiation or for arc-image radiation applied to 

materials whose absorptivit ies vary but slightly over 

the energy-containing wavelength region of the 

arc. T h e principal part of the following develop­

ment ignores any wavelength d is t r ibut ion . How­

ever, in the final section we shall show tha t 

concep ts of superpos i t ion enable some conclusions 

to be drawn concerning ignition of materials with 

wavelength-dependent absorbt ivi t ies . 

A second p rob l em tha t is especially severe for 

he te rogeneous mater ials , concerns the conse­

quences of scat ter ing of radiat ion. In a crude 

approx imat ion , o n e may p resume tha t for he te ro­

geneities of sufficiently fine scale, the overall 

effect of scat ter ing is to provide an addi t ional 

diffuse con t r ibu t ion to the reflection coefficient 

and a modif icat ion t o the effective value of p. T h e 

Copyright © 1972 by The Combustion Institute 
Published by American Elsevier Publishing Company, Inc. 



86 

constant n employed herein will be presumed to 
represent an effective overall absorption coeffici­
ent that includes, in an averaged sense, both 
scattering and a frequency distribution. The ac­
curacy of this approximation has not been investi­
gated. 

These complications suggest that only careful 
measurements can produce useable values of A*. 
Measurements have been made for polymers such 
as polystyrene and epoxy by Ohlemilier and 
Summerfield [2], who have seriously questioned 
the neglect of in-depth absorption [3]. 

Their absorbtivities range from 74 cm-1 for pure 
polystyrene to 1200 cm"1 for material containing 
20% carbon black. On the other hand, Evans, 
Beyer, and McCulIey [4] report effective values of 
M from 103 — 10s cm"' for pressed ammonium 
perchlorate powder, and they state that the values 
are higher if small amounts of catalyst are added. 
Certainly transparencies of different materials 
differ greatly. We estimate that in radiant ignition 
experiments effective values of n may range from 
10 cm"1 (e.g., for nonopacified double-base for­
mulations) to 10s cm"1, although these bounds in 
fact may be too narrow. 

In the present work we employ, as closely as 
possible, the methods and notation of Ref. 1. 
Therefore the thermal conductivity X and the 
thermal diffusivity K of the solid are assumed to be 
constant, and the initial temperature To of the 
solid is taken to be uniform. The ratio of ATb to 
the nonreflected portion q of the incident radiant 
energy flux at ignition will be employed as the 
characteristic length in forming the nondimen-
sional spatial variable £ .The quantity (AT©/g)*A 
is the characteristic heat-conduction time that will 
be used to form the nondimensional time variable 
T. Dependent variables are #(£, r) = T/T0, where 
T is the local instantaneous temperature, and 
c(£;, T), the ratio of the product concentration to 
the final product concentration. Nondimensional 
parameters that appeared in the previous paper are 
a Damkohler number A, defined as the ratio of the 
characteristic heat-conduction time to a character­
istic chemical time, the latter being based solely on 
the pre-exponential rate factor; the nondimen­
sional activation energy E' = Ta/T<>, where Ta 

is the activation temperature, the order a of the 
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chemical reaction, and the heat-release parameter 
B = (Tr - ToVT0, where T> is the adiabatic flame 
temperature of the ignition reaction. The addi­
tional nondimensional parameter needed herein is 
the nondimensional absorption coefficient 
a = fiXTo/q-

The range of values of a that is of practical 
interest can be inferred by using the previously 
discussed range of values of /i. Since solids with 
high absorbtivities often also have high thermal 
conductivities (e.g., materials containing high per­
centages of metalic constituents) and those with 
low values of ix tend to have low values of A, the 
range of a exceeds that of n. Employing To = 
300°K, X from 3 x 10"4-3 x 10"2 cal/cm-sec-°K 
and q from 10-100 cal/cm2-sec we find that 
10"2 < a < 104. Since generally 1 « E ' £ 102, 
it is clear that there is reason to study a range of 
values of a that includes the extremes a « 1 and 
a » E ' . This complete range will be covered 
herein. 

In the absence of an analysis such as that 
performed below, sufficient conditions for in-
depth absorption to be negligible cannot be stated. 
For example, Wise, Inami, and McCulIey [5] used 
the condition a2r > 10 as a justification for 
neglecting the influence of in-depth absorption on 
the ignition time. We shall show that a more 
precise condition is a > E'. We shall also derive 
formulas that predict the extent to which the 
ignition time is increased for a < E ' . 

Section 2 briefly formulates the ignition prob­
lem. In Section 3, properties of the inert stage for 
constant flux with in-depth absorption are dis­
cussed. Next, the various regimes of a that arise 
will be indicated. The two major regimes are 
analysed separately in Sections 5 and 6. The 
merging of these two regimes and the limit of 
thermal explosions are discussed in Section 7. 
Effects of time-varying flux, wavelength distribu­
tions and multidimensionality are described in 
Section 8. 

Readers who are interested primarily in final 
results for ignition times under conditions of 
constant radiant flux may turn directly to Eq. 36 
for a > E', to Eq. 51 for a ~ 1, to Eq. 53 for 
)«a « E'or to Eq. 56 for a « 1; alternatively, 
they may consult Fig. 3, which summarizes these 



RA D1ANT IGNITION OF A REACTIVE SOLID 87 

results. Readers who are concerned with variable 
flux will find ignition-time formulas in Eqs. 57 and 
58 and an appropriate plot in Fig. 4. 

2. Formulation 
Appropriate nondimcnsional parameters and vari­
ables have been defined in the introduction. In 
addition to these quantities, we introduce the 
(unction /(r), which is defined as the ratio of the 
Instantaneous incident radiant flux to the incident 
radiant flux at ignition. For clarity of presenta­
tion, we shall assume that I(r) = 1, except in the 
final section, where the effect of an arbitrary flux 
[history is ascertained. Gasification and surface 
regression are neglected throughout. 

The mathematical problem that must be solved 
can be written as 

0ff + facxp(-a£) + A(l -e)"exp 

cT { ±\(l - e)° exp (- E' 

- * ' ) (1) 

(2) 

With the initial conditions 

f ( £ 0 ) = 0 , 0(£O) = 1 (3) 

and the boundary conditions 

f(»,r) -- 0 , 0(OQ,») = 1 (4) 

and 

0f<O,r) = 0 . 

. - • # 

(5) 

En Eq. I the factor e~ , which is equivalent to 
Beer's law, should provide an acceptable descrip­
tion of in-depth absorption of radiation, although 
in no sense is it an exact deduction from the 
relevant equation for transport of radiation. Ac­
cording to Eq. 5, heat loss from the surface is 
neglected; this should be a good approximation for 
solids igniting in gaseous atmospheres of moderate 
or low density. 

3. The Inert Stage 
We parallel our earlier work in seeking the value of 
A that produces thermal runaway at a specified 
time rc, which is selected consistent with the 
requirement that the corresponding increase in 
surface temperature under inert heating, Qc — 1, is 
of order unity. This requirement is imposed to 
assure that there exists an inert heating stage prior 
to the events that lead to ignition and that ignition 
occurs before temperatures are reached that are 
too high for a well-defined ignition event to exist. 
It can be shown that unless 6e - 1 » 1/E', a 
distinct inert stage disappears, causing ignition to 
merge with the phenomenon of adiabatic thermal 
explosion, and unless 0C - 1 « E', chemical 
energy will be released at too low a rate to 
produce significant departures from inert heating. 
In view of these bounds, the fact that E' seldom 
exceeds 102 demonstrates that there is little 
physical interest in considering the order of $c _ 1 
to be other than unity. 

In the inert stage that precedes transition to 
ignition, to lowest order, e = 0 , and 0 = <?,(£ r), 
which for constant flux obeys the equation 

0tT = 0,g(: + a e x p ( - a f ) , (6) 

with the initial and boundary conditions 

0f(£O) -. e,U, T) = 1 , %<0,r) = 0 . (7) 

The solution to the problem defined by Eqs. 6 and 
7 has been given by Boehringer and Spindler [6]; 
it is 

Bi = 1 f« - I f ( a^ ,o 2 r ) , (8) 

where 

fiu, V) s 

2jV-eW(-^\-uerfcl u 

+ 12e" 

4v 

e" erfc (Vu + ~^— 
2 v ^ 

2VU 

+• e~" erfc (Vf -
2 v ^ 

(9) 
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Equations 8 and 9 predict that the peak tem­
perature always occurs at the surface of the solid. 
The expansion about the surface is 

6, * l + 2 \ / ^ V - ( l - g ) ( a - 1 + ttfV2), 

where we have introduced the abbreviation 

g = exp(a2r)erfc(avV), (10) 

since this particular function of a2r appears 
repeatedly. The expansion of the preceding expres­
sion for 0j about rc is 

*i - 0c+agc(r-Tc)-a(l-gc){
2/2, (11) 

where 

6C = l + 2 V r c A - a - 1 ( l - g c ) , (12) 

and where gc denotes the function g evaluated at 
a2r = a2rc. For small values of a2rc, Eq. 12 
reduces to 

dc * l + a r c , (13) 

and for large values of a2rc it becomes 

0 C * 1 + 2 V ^ A - (14) 

Equation 12 shows that if a is of order unity, 
then dc - 1 becomes of order unity for rc of 
order unity. Equation 13 implies that for a « 1, 
Qc — 1 will become of order unity for rc large, of 
order a - 1 ;Eq. 13 is valid in this case because a2rc 

is small, of order a. Equation 14 implies that for 
a » 1, Qc — 1 becomes of order unity for rc of 
order unity; in this case a2re is large, of order a2, 
and so Eq. 14 is valid. Thus, we shall assume that 
rc is of order unity for a > 1 and of order a'1 

for a « 1. From this observation, we can estab­
lish the bounds 

1 « A « a[(l + a) ET1 exp(E') , (15) 

which must be satisfied for the present analysis to 
be valid. The first condition assures that the 
chemical heat-release rate can become large 
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enough compared with the radiant heating rate to 
cause thermal runaway (see Ref. 1), and the 
second that adiabatic thermal explosion with 
negligible preheating, which requires a time 
Ti = ME')" 1 exp(E') . does not precede ignition. 

For small values of a2r , unless a£ is small 
compared with unity, Eqs. 8 and 9 reduce to 

8, a 1 + a r e " ^ ' (16) 

which simply represents absorption with negligible 
heat conduction; there is a layer at the surface in 
which the order £ does not exceed the order of 
Vr , where transient heat conduction is of impor­
tance. For large values of a2t, unless at; is large 
compared with unity, Eqs. 8 and 9 reduce to 

0, a* l + 2\^-{-a-1e-"t, (17) 

which describes absorption and heat conduction 
with a negligible transient term in Eq. (6); for a 
large compared with the thickness a - 1 of the 
absorption layer, e.g., for g of the order of vT, 
transient heat conduction becomes important and 
absorption negligible. Only in this limit of large 
a2r does one retrieve the inert problem of Ref. 1; 
specifically, an expansion in the artificial small 
parameter a - 1 produces an inner problem whose 
solution is 

0, = 0 , ( O , r > - , f - c r 1 ( e - a ^ - i ) 

and an outer problem described by the transient 
heat-conduction equation with initial and | 
boundary conditions 0/ ( £ 0) = #j(oo, r) = 1,1 
dig (0, r) = - 1, the last condition being ob-1 
tained from matching with the first term of the 
inner expansion. 

4. Establishment of a Regimes 
it is clear from the preceding discussion that under! 
the conditions of the problem analyzed in the I 
previous paper, the thickness of the absorptioal 
layer is of order a - 1 . Since the thickness of the! 
reaction layer was found in this case to be of order! 
1/E', it follows that the previous analysis is I 
applicable only if a » E ' . 

When a becomes comparable with E ' , during the] 
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Iran insition stage a surface layer will develop in 
which reaction and heat conduction occur in a 
region whose temperature field is influenced by 
in-depth absorption, and a new analysis will be 
needed. Such an analysis is given in the following 
section. 

Typical values of E' are such that when a 
becomes small compared with E', the next inter­
esting case occurs for a of order unity. In this case 
(Tc is of order unity, and therefore CL2TC is not 
large. It follows that the inert problem of the 
previous paper is not applicable here and Eqs. 
11 and 12 must be considered in their entirety. An 
analysis of the transition stage for this case will be 
given in Section 6, where it will be found that a 
single zone of transient heat conduction and 
distributed chemical reaction develops, instead of 
the two-zone structure obtained in the previous 
paper and in Section S. 

It will be seen in Section 7 that the results of 
Section 6 for large a merge with those of Section 5 
for small a/E'and that the results of Section 6 for 
•mall a describe a thermal explosion without heat 
conduction which occurs in a heated layer of 
thickness a~ 5/ Vv E'. This explosion possesses an 
ignition time that agrees somewhat curiously with 
a result obtained quite easily by using Eq. 1 with 
the heat-conduction term deleted entirely, even 
though the latter analysis would produce Eq. 16 
and thereby ignore the conduction layer that exists 
at the surface for small a during the inert stage. 

From the present discussion it is apparent that 
the results which will be obtained in Sections 5, 6, 
and 7 will cover the complete range of values of a 
that is of physical interest. 

5. Transition Stage for a and 
E' of the Same Order 

When the order of a is the same as that of E' , we 
write a = a i / S 2 , where 5 = ^dj/E', and as­
sume that ai is of order unity. As in our previous 
paper, we expect to find a transition stage in 
which the appropriate time variable is 

cr = (*L\(r-Te)ime)~
1/2

 + b'0, (18) 

the first term of an expansion 

b = 66 + S&'i + 

of the quantity 

12x1/2 
b = In <nTe)

v*rS) Aexpf^. 
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(19) 

(20) 

Since a is large, in these expressions 0C will be 
given by Eq. 14. Thermal runaway occurs at 
a = 66 to all algebraic orders in 8 , and the higher 
coefficients, b\,..., in Eq. 19 must be chosen to 
minimize the severity of the singularity at o - bo-
Such a prescription is quite reasonable on physical 
grounds, since its effect is to extend the validity of 
the expansion procedure to as late a time as 
possible. 

We anticipate a two-zone structure, with the 
thickness of the inner zone, in which absorption, 
heat conduction and chemical heat release occur, 
of order 1/E', and with the thickness of the outer 
zone of transient heat conduction, where the 
chemically liberated heat is distributed, of order 
1/vET. As in our previous paper, both zones are 
thin compared with the width of the inert-stage 
transient heat-conduction region, whose thickness 
is of order unity in f. Thus, we introduce the 
inner spatial variable 

and the outer spatial variable 

(21) 

, \ V 2 

v« E' 

1/2 
r, = (ffre)-l/4/EA f B ( f r ) - W « i \ Xt 

(22) 

Expansions for 0 - 0, will be sought in the 
forms 

0 - 0, = S2vMx>o) + 53i/ti(x,o) + • • • (23) 

and 

where b'Q, which we assume to be of order unity, is 0 - 0t = S2<l>o (TJ, O) + S3$i(ij, a) + (24) 
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for the inner and outer zones, respectively. In the 
inner zone the expansion for ( is 

e = dei(x,o) + S2(2(x,a) + • • • , (25) 

and in the outer zone e will be found to be 
exponentially small. When expanded in powers of 
8. Eqs.8 and 9 give 

d, = 0C + S2[a -b'0 - x-aj1 exp(-a l X ) ] 

+ Ol84) (26) 

in the inner variable and 

6, = dc -inre)
v*8t, + Oi&\ (27) 

in the outer variable. 
Substitution of Eqs. 18-21, 23, 25 and 26 into 

Eqs. 1 and 2 produces the inner equations 

tl/0xx + fylx* = - S(nrc)~
1/Aexp[tf,0 + a - x 

~a\x exp(-aix)] (28) 

up to terms of order 82, and 

(\a = ETI<i77-c)
1/4 exp[i/f0 + a - x 

- a } 1 exp( - a i x) ] (29) 

up to terms of order 5 . From the term of order 
unity in Eq. 28 and the boundary condition for 
^0 implied by Eq. 5, we conclude that i/r0 

depends only on a. Equation 29 and the initial 
condition for< implied by Eq. 3 then yield 

d = B_ 1(ffr c) I / 4exp[-x 

- aT 1 exp( -a 1 x) ] | exp(i/»0 + o)da. (30) 

The terms of order 8 in Eq. 28, along with the 
boundary condition ^ i x (0 , a) = 0 , implied by 
Eq. 5, then yield 

4>ix = - < ^ c ) - ' / 4 e x p ( ^ 0 

+ a) [ exp[-x -aY1exp(-aix)]rfx. (3 1) 

It follows that 

</ru<«.,CT) = - ( ^ c ) - 1 / 4 G e x p ( ^ 0 i a), (32) 

where G is a function of a,, defined by 

G=\ exp[-x - a ! 1 exp(-aix)]dx. (33) 
Jo 

It is easy to show from Eqs. 1, 2, 18-20, 22, 24. 
and 27 that the first term of the outer expansion 
of d obeys the equation of transient heat conduc­
tion. The initial condition obtained from Eq. 3 is 
Q>o(r},-°o) = 0, and the boundary condition im­
plied by Eq. 4 is 1>o(oo,a) = 0.Matching to the 
inner expansion requires «J>o(0, a) = IAO and 

$0T)(0,a) = -Gexpd / ' o+»K 

where use has been made of Eq. (32). The small 
time translation a' - a + InG then produces the 
problem 

$07j(0,ff') = -exp[<I>o<0.a') + o']\ 

(34) 

which has been solved previously in Ref. 1. 
Thermal runaway was found to occur at 
a' = - 0.431 b0. It follows that in the present 
problem 

66 - b o - I n G . (35) 

Equations 19-20 then show that, to lowest order 
in 5 , 

A e x p ( - - ) = (-A (^c)-
1/4G-1exp(60). 

(36) 

This expression for A differs from that obtained 
previously only in the presence of the factor G. It 
can be shown that G can be expressed in terms of 
the incomplete Gamma function as 

G = aVria^fiai1 > "I1*. (37) 
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there y* is a single-valued analytic function of 
both of ils arguments. Tables and graphs of T 
aid of y* exist [7]. However, to obtain accurate 
values of G, it is better to perform numerically 
the integration in Eq. 33 than to use the pub-
fished results. We have calculated G as a func­
tion of ai by numerical integration and show 
the results in Fig. 1. Also shown in Fig. 1 is 
A(irre)1/4a~1/ '2oxp(-Ey0c) as a function of 
«l, according to Eq. 36. By using this last 
curve and Eq. 14 for 0C, the nondimensional 
rate constant A can be obtained if a, E' and 
ij are known. 

As ai -»oo, G approaches unity, and wc recover 
the result of our previous paper. An analytical 
expansion for large values of a\, obtained by using 
Eq. 33, is shown in Fig. 1, from which it can be 
seen thai the expansion is quite accurate for 
«i £ 1 . For «i of order unity, G is of order 
unity, and Eqs. 14 and_ 26 show that approxi­
mately drc/r)G - - vWc 0 2 /E 'G, in which all 
factors are of order unity except E', which is 
large. Therefore for a\ of order unity, the ignition 
time depends only weakly on G, and very little 
difference will be found between the ignition time 
obtained from Eq. 36 and that derived in the 
previous paper. On the other hand, for low values 
of «i, we obtain from Eq. 33 

InG ^-ix\X + l n i V a l V 2 + l- , 0<VaT>], 

(38) 

which becomes large in magnitude and thereby 
produces a result which differs appreciably from 
that of our previous work. It can be seen from Fig. 
1 that for «] £ 1, the numerical results agree 
quite well with the asymptotic expression given by 
Eq. 38. As oij becomes small, a tends to become 
of order unity, and the analysis given in the 
following section becomes appropriate. 

6. Transition Stage for a of Order Unity 
To analyze the transition stage for a of order 
unity, we follow a procedure analogous to that of 
the preceding section, except in that we introduce 
only one new spatial variable, since a single zone 
occurs. The appropriate time variable for the 
transition stage becomes 

Fig. 1. G and the nondimensional rate constant for 
ignition, as function of a&?/E', for o of order £'. 

t = j ^ W f r - O + Co, (39) 

where t o , which is of order unity, is the first term 
of the expansion 

c -- c0 + 52Ci + • . . , (40) 

of the quantity 

c = In fa"1 g;1,4 exp(-E'/eVL 0 0 

in which dc is given by Eq. 12. Thermal runaway 
occurs at t = Co to all algebraic orders in S, and 
ci , C2, • • • are to be chosen to minimize the 
order of the singularity at t = CQ- The thickness 
of the zone in which thermal runaway occurs is 
defined byy of order unity, where 
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/E' \ , / 2 
<age>

1/2£- (42) 

From this equation and Eq. 10 it is seen that the 
thickness of the runaway zone in £ is of order 
1/vE? when a is of order unity or larger, and 
larger when a is small. 

An expansion for 6-6, will be sought in the 
form 

d-6, = S2 xo <y. <> + S4X!<y, t) + • • •, (43> 

and for e in the form 

( = S2coi(y,t) + 8Aa>2(y, t) + (44) 

The relevant expansion of 6,, obtained from Eq. 
11, is 

d, = 6C + 82<t -c0- Fy2) + OiS41, (45) 

where 

< l -gc> 

2gc 

(46) 

Substitution of Eqs. 39-45 into Eqs. 1 and 2 
yields, up to terms of order S2, 

and 

Xot-Xoyy = exp<x0 + I - F y 2 ) (47) 

, l 4 = B - 1 e x p ( Y o + I - F y 2 ) . (48) 

The solution to Eq. 48, consistent with the initial 
condition implied by Eq. 3, is 

<oi = B-1 exp(-Fy2) I aip[x0<y,f) + t)dt, 

(49) 

which can be evaluated only after Xo is 
found. Equation 47 for Xo is the heat conduction 
equation with a distributed nonlinear heat source; 
the initial and boundary conditions for this equa­

tion, derived from Eqs. 3-5, are 

Xo(~.<> = X o * * " " * = X0y<°'<) = ° - (50) 

The problems for Xo, given by Eqs. 47 and 50,is 
well set, and there is only one parameter, F, but 
the solution must be obtained numerically. By 
analogy with Eq. 34, it is clear that the solution 
will exhibit thermal runaway, at time / = co, 
which will depend on F and therefore on a re .If 
a2rc is of order unity, then F and c<j will be 
order unity. From Eqs. 40 and 41, the formula f( 
A, to lowest order in S2, becomes 

A exp | \ = age exp(c0), (S1 
. 

in which gc is related to a2rc according to Eq. 10. 
Equation 47 has been integrated numerically by 

a Crank-Nicholson implicit scheme employinj 
quasilinearization of the source term. For large 
negative value off, the solution is 

Xo el/(AF)et 

4VF 

+ e'y erfc 

?y erfc i 
\2\fF 

VrV 

2VF 
- VFy\ 

titi In performing the numerical integration for o 
values of /, the quantities e ' and erf(y) wen 
employed as independent variables, to produot 
convenient step sizes and finite boundary loci-
tions. By completing the numerical integration for 
various values of F, the dependence of cQ on F 
was obtained. Use of this result in conjunctioi 
with Eqs. 10 and 46 provides c0 as a function of 
a2Tc. From this result and Eq. 10, the quantity 
(A/a) exp(-E70 c) can be calculated as a func­
tion oi a2rc by means of Eq. 51. Equation 1? 
shows that a (de - 1) is also a function of a rc 

These various functions are plotted in Fig. 2. 
A graph of rc, as a function of A, for variom 

values of a and E', is shown in Fig. 3. The euro* 
in Fig. 3 labeled log a = <» have been given earlier 
by Bradley [8] and are in agreement with Eq. 36, 
while those labeled log a = - <» are limiting lin* 

file:///2/fF
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Fig. 2. Co. F- g0, nondimensional ignition temperature, 
and nondimensional rate constant, as function of non-

dimensional ignition time, for a of order unity. 

that correspond to the adiabatic thermal-explosion 
time defined after Eq. 15. Figure 2 was used for 
calculating all other curves shown in Fig. 3, except 
those with log a = - 2 and -4 , for which the 
simpler limiting formula given in Eq. 56 was em­
ployed. From Fig. 3 it can be inferred that for 
given values of A and B', the ignition time ob­
tained from Eq. 51 or from Fig. 2 is appreciably 
longer than that corresponding to Eq. 36. This is 
primarily a consequence of the fact that the time 
required to reach any given value of Qc according 
to Eq. 12 is longer than that required according to 
Eq. 14, when a is of order unity or smaller. Since 
the expansion parameter here is S 2 instead of S 
as in the previous work, for typical values of E' we 
expect the error in the value of A given by Eq. 51 
to be less than 5% instead of the 20% error 
expected from Eq. 36. 

7, Limiting Cases 
Further insight into the character of the depen­
dence of ignition time upon a can be gleaned by 
investigating limiting cases of the previous anal­
yses. 

Consider first the form taken by Eq. 47 for large 
values o f ^ From Eqs. 10 and 46 it follows that 

and therefore the coeffi­
cient of - y 2 in the exponential in Eq. 47 becomes 
large. It follows that for y of order unity the 
source term in Eq. 47 is negligible; an inner layer 
develops, where y is of order F"l/2, in which the 
source term must be considered. In this inner 
zone, the time derivative becomes small, and a 
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Fig. 3. Nondimensional ignition time as a function of 
nondimensional rate constant for various values of the 
nondimensional activation energy and absorbtivity. The 

numbers that label the curves are log, „a. 

problem emerges that resembles Eq. 28, with 
the exception that the x dependence inside the 
exponential becomes proportional to - x2 instead 
of - x - a j 1 exp(-ajx). However, in the 
limit ai -» 0 , this last quantity becomes 
—cii1 - a i x 2 / 2 , which, with aj1 absorbed into a 
time translation, is of the same general form as 
-x 2 - The respective length scales for the inner 
zones become the same, both being V202 /aE' in 
the d coordinate. In addition, from Eq. 42 it can 
be seen that the length scale for the outer transient 
heat-conduction zone obtained from Eq. 47 is 
(7rr<.)1/4(f?2/E')1/2, which is in agreement with 
the length scale for the problem defined by Eq. 
34, as can be seen from the definition of T? given 
in Eq. 22. Finally, we note that Eqs. 36 and 51 
become identical in the limits cti_ -> 0, a -» » , both 
reducing to 

= ( 7 r r c ) - ^ 2 ( 2 a V ^ T ] / 2 e x p ( 6 0 ) , (53) 

since the solution to the two-zone problem 
derived from Eq. 47 reveals that co -» bo + 
ln(2aVrc/7r)1/2 in the limit. In Eq. 53, 
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Eq. 14 is to be used for dc. From these observa­
tions, it becomes clear that the results of Section 5 
for small values of aj agree with those of Section 
6 for large values of a and that therefore solutions 
are now available which extend from a of order 
unity to a large compared with E'. 

Consider next the form taken by Eq. 47 for 
small values of a. Since Eqs. 10 and 46 show that 
F -. <X\ITC/V as a\[7c-*0< and since we have 
seen that <X\/T^->0 as a -»0, it follows that the 
coefficient of - y 2 in the exponential in Eq. 47 
approaches zero as a -»0. Therefore the source 
strength changes negligibly across a layer whose 
thickness (0}/E'ct)1/2 is such that y is of order 
unity. To obtain a region in which the source 
changes appreciably, we must employ a spatial 
variable with the larger characteristic thickness 
W r c ) I / 4 ( 0 2 / E ' ) U1/a. In this variable, the space 
derivative in Eq. 47 is negligible in comparison 
with the time derivative, and we obtain a simple 
thermal explosion with negligible heat conduction, 
viz., XQ[ = exP^Yo + ' ~ Ey ), whose solution 

X o = - i n ( l - e ' - ^ 2 ) , (54) 

first diverges at t = 0 for y = 0. 
Equation 54 satisfies all of the initial and 

boundary conditions given in Eq. 50, as well as Eq. 
47, provided that heat conduction is negligible. It 
implies that in the limit of very low absorbtivity 
CQ = 0. A more formal calculation reveals that 

c0 - 2 F - 2 + i ^ F 2
 + 0 ( F 3 ) (55) 

3 

as F approaches zero. Equation 55 can be used in 
conjunction with Eqs. 10, 46, and 51 to provide 
an expression for ,4 that is valid for small values of 
a. When use is made of Eq. 13 for dc, it is found 
that the limiting form of this expression for very 
small values of a can be reduced to 

rc = [ E 7 1 n U / a ) - l ] / a . (56) 

This same result can be derived by using only Eqs. 
1, 3, and 4, and by neglecting heat conduction 
throughout; such an analysis produces Eq. 16 for 
the inert stage. In physical variables, Eq. 56 corre­

sponds approximately to an ignition time that is 
inversely proportional to the first power, instead 
of the square, of the incident radiant flux. These 
results extend the range of a, for which ignition-
time formulas are available, to values that are small 
compared with unity. 

8. Generalizations and Discussion 
In principle there is no difficulty in extending the 
results to arbitrary histories of radiant flux as a 
function of time, the only restriction being that 
the time rate of change of flux not be exceedingly 
large at the time of ignition. Since the transition 
stage is short compared with the inert stage, 
time-varying flux does not affect the structure of 
the transition stage, provided that in the time 
variable of the transition stage the logarithmic 
derivative of the flux is small. In the appendix, we 
presume that this condition is satisfied and indi­
cate the changes that must be made in the 
preceding analyses to account for arbitrary flux-
time histories. The results demonstrate that the 
only new problem requiring solution is the inert-
heating problem whose solution is expressed by 
Eq. 8. From the new function f(u,v) that 
corresponds to the modified inert-heating prob­
lem, the quantities 0e and d'c = 0tT(0, rc) will 
both be expressible in terms of rc. It can then be 
shown (see Appendix) that the appropriate gener­
alizations of Eqs. 36 and 51, respectively, to 
conditions of arbitrary flux-time history, are 

A exp L &\ = fE^\ G~l exp (b0) (57) 

and 

A exp / - —\ = d'e exp(c0), (58) 

\ee) 
with c 0 in the last expression related to the new/" 
defined in Eq. (A4) by Fig. 2. If gc is interpreted 
as d'c/a and the horizontal scale is interpreted as 
an arbitrary parameter that is not related to a TC, 
then all of the curves in Fig. 2, except for 
a(.9c - 1), remain valid for arbitrary flux-time 
histories. 

Because of its more general applicability, a graph 
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0 .2 .4 6 
(6/a)(0c/a)""2 eip(-E'/flc) 

Fjg. 4. Graph of ignition conditions for in-depth absorp­
tion with an arbitrary flux-time history. 

of d'c/a, as a function of 

<A/a>(0;/«)~ l /2 exp( -E ' /0 c ) , 

for various values of adj/E', as obtained from 
Eqs. 57 and 58, is shown in Fig. 4. To use Fig. 4, 
one must first solve his particular inert heat-
conduction problem to obtain 0C and 0'c as a 
function of rc. 

It is remarkable that only the heat flux at the 
time of ignition (through the nondimensionahza-
tion), the inert surface temperature at the time of 
fcnition, and the inert time rate of increase of the 
surface temperature at the time of ignition affect 
the ignition conditions of any given solid material. 
Many of the details of the history of inert heating 
are unimportant. However, in general, it is not 
possible to eliminate any of the three essential 
variables stated here in terms of other quantities. 
For example, one cannot ignore the inert time rate 
of increase of surface temperature at the time of 
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ignition and consider instead the total amount of 
heat absorbed by the solid up until the time of 
ignition, as some authors have attempted to do 
(see some studies reviewed in Ref. 9). 

If there is a distribution of the absorption 
coefficient over the frequency v of the incident 
radiation, then in a fairly obvious notation the 
radiant heating term in Eq. 1 becomes 

I \\idv exp(-a„£) dv . 
Jo 

This modification will require new solutions to be 
obtained for the inert-heating problem, although 
these solutions can be constructed by superposi-

f™ tion, since with 0, = 1 + j du dv, each 6V sepa-
Jo 

rately satisfies Eq. 6 with 

(M£0) = 0v<».r) = 0^<O;Y) = 0 

The analysis of the transition stage will depend on 
whether the incident radiation corresponds princi­
pally to av = O(E') or to av = 0 (1) . The 
transition stage that develops will be the one that 
produces the shortest ignition time. Since the 
ignition time for a„ = O(E') is appreciably less 
than that for « v = 0 < D, ignition will occur in the 
regime of Section 5, unless only a small fraction of 
the incident energy falls within that regime. A 
generalization of our analysis of Section 5 shows 
that in this case Eq. 57 is again obtained, provided 
that the more general definition 

G = 1 e x p r l 
- a7vexp(-a lvx) dv\dx (59) 

is used for G. In the lowest approximation, Eq. 57 
then reveals that the factor G can be ignored, 
provided that only the portion of the incident 
energy flux corresponding to the regime 
av = O(E') is employed in the q that is used to 
form the nondimensional time which appears in A 
and in Q'c. 

file:////idv
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If almost all of the incident flux corresponds to 
av = 0(1), then ignition occurs in the regime of 
Section 6, and it can be shown that Eq. 58 remains 
applicable, with CQ related through Fig. 2 to the 
generalized quantity 

F\-^r~} <60> 

where the integral must exclude those values of v 
for which av is of order E'or larger. After solving 
the inert-heating problem, one should calculate 
two ignition times, corresponding respectively to 
Eqs. 57 and 58 with the generalized definitions of 
F and G, and select the shorter time, to complete 
the computation in the presence of a frequency-
dependent absorbtivity. 

It is of interest to note from the analyses leading 
to Eqs. 57 and 58 that for solids of practical 
dimensions, the results given here are independent 
of the assumption of one-dimensional heat flow. 
The only requirement is that the narrow surface 
layer in which reaction first occurs must be 
approximated well as being one-dimensional. For 
the inert stage, a three-dimensional transient heat-
conduction problem must be solved. From this 
solution, for each point on the solid surface, the 
results given in this section can be applied to 
calculate ignition conditions. The shortest ignition 
time so obtained will represent the ignition time 
for the three-dimensional solid. The degree of 
generality that can be achieved with ease through 
asymptotic methods is impressive. 

These results can be used to suggest an improved 
experimental technique for radiant ignition 
studies. The heat flux at the time of ignition and 
the history of surface temperature at the point of 
ignition are both amenable to measurement. From 
such measurements, 0C and 6'c can be obtained, 
and Fig. 4 can then be used to calculate chemical 
rate constants from a few data points, provided, of 
course, that ignition occurs through a condensed-
phase reaction. 

Appendix: Variable Heat Flux 
To amplify the observations of Section 8 in more 
explicit terms, we first note that one can write 
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KT) = J(a2r), and that this factor will then 
appear in the last term of Eq. 6. It then becomes 
clear that we can write the solution for 6, in the 
form given by Eq. 8, but the function fiu, v) will 
depend on the function J(v) and will no longer be 
given by Eq. 9. It follows that Eqs. 11-14 will no 
longer be valid. However, it will still be possible to 
expand 0/(0, r) about rc, obtaining 

0/(0, r) = 8C +d'cir-Tc), (Al) 

where 0'c = 0/r(O, rc). We shall see that the £ 
dependence of the expansion of 6, about £ = 0, 
needed in the transition-stage analysis, can be 
expressed in terms of 0C and d'c. Therefore 
formulas for ignition conditions can be obtained in 
terms of the two parameters dc and Q'c, which 
then must be expressed in terms of tc from an 
inert-heating analysis to obtain the ignition time. 

Consider first the case analyzed in Section 5. In 
Eq. 18, the factor (ITTC)~1/2 must be replaced by 
d'c, which is assumed to be of order unity. In Eqs. 
20 and 22, (nre)

1/4 is replaced by 0'c~
1/2. Within 

the context of the asymptotic analysis, ignition 
cannot occur with negative values of Q'c\ if, for 
example, the flux is discontinued before ignition 
occurs, so that the surface temperature begins to 
decrease, then ignition never will occur. With x 
and a as independent variables, the time-derivative 
terms in Eq. 1 and in Eq. 6 arc of higher order 
than the space-derivative terms, and to lowest 
order Eq. 6 becomes 

0/*xS"2 = - cnJ exp(-a jx) , (A2) 

whose solution is seen to be given by Eq. 26, when . 
use is made of Eq. (Al) and the definition 
J(a2Tc) = 1. Thus, Eqs. 28-32 still follow, with 
(TTTC)VA replaced by 0'c~

l/2. The problem ex­
pressed by Eq. 34 is again obtained, and the final 
solution, corresponding to Eq. 36, is given in Eq. 
57. 

Consider next the case analyzed in Section 6. 
When the modified form of Eq. 6 is solved for 
0|£f (0, rc), and use is made of Eq. Al, then it is 
found that Eq. 11 becomes 

(0'c - «) f2 

0, = 0C + 0'c(r - TC) + (A3) 

J 
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In Eqs. 39, 41, and 42, we replace age by 0'c, and 
from Eq. A3 we then obtain Eq. 45, with 

F = — • (A4) 

I From Eq. A4 it might appear that a new condition 
for the generalized analysis to be valid is a > B'c , 
but in fact this condition is assured by the 

I inert-heating problem. The remainder of the anal­
ysis of Section 6 proceeds unchanged, and the 
generalization of Eq. 51 becomes Eq. 58. 
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