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The quasi-cylindrical approximation is used to describe numerically the structure of a submerged
swirling jet for subcritical values of the swirl ratioS<Sc . The emerging flow structure is affected
by the swirling motion, which enhances the entrainment rate of the jet and induces an adverse
pressure gradient that reduces its momentum flux. The effect is more pronounced as the swirl ratio
S is increased, yielding for sufficiently large values ofS a jet with an annular structure. The
integration describes the smooth transition towards the far-field self-similar solution for all values of
S smaller than a critical valueS5Sc , at which the numerical integration fails to converge at a given
downstream location. The comparisons with previous experimental results confirm the
correspondence between the onset of vortex breakdown and the failure of the quasi-cylindrical
approximation. ©2004 American Institute of Physics.@DOI: 10.1063/1.1645850#

This Brief Communication investigates the submerged
swirling jet that forms when an incompressible fluid of den-
sity r and kinematic viscosityv discharges with both for-
ward and swirling motion through a circular orifice of radius
a into a stagnant region of the same fluid, a flow configura-
tion recently studied experimentally by Billantet al.1 The
initial fluxes of momentumJ and angular momentumL of
the jet can be used to define the swirl ratioS5L/(Ja) and
the jet Reynolds numberRj5@J/(pr)#1/2/v as the main pa-
rameters characterizing the flow structure. The description
below corresponds to moderately large values ofRj , for
which the laminar jet remains steady, and to values ofS of
order unity, a distinguished regime that allows us to explore
the effect of the swirl on the flow structure and the onset of
vortex breakdown.2–5

Near the orifice, the jet is separated from the outer stag-
nant fluid by an annular mixing layer that thickens down-
stream, so that the effect of viscosity starts reducing signifi-
cantly the velocity at the axis at distances of the order ofRj

times the jet radius. The swirling motion causes the pressure
near the axis to be smaller than the ambient value, which in
turn induces an adverse axial pressure gradient that is largest
at the axis.3 For S;O(1), thepressure differences induced
are of the order of the dynamic pressure, so that the swirling
motion results in a significant flow deceleration in the jet
development region, additional to that associated with vis-
cous stresses. The magnitude of the azimuthal flow velocity
is seen to decay more rapidly that the axial velocity, so that
in the far-field self-similar solution that arises at distances
from the orifice much larger thanRja the pressure gradient
induced no longer affects the forward motion at leading

order.6 For swirl ratios below a critical value of order unity,
the jet remains slender, and can be therefore described with
relative errors of orderRj

22 with the boundary-layer, or
quasi-cylindrical~QC! approximation.7 The resulting set of
parabolic equations is integrated numerically by marching
downstream from the orifice, providing a description for the
jet development region independent ofRj . A smooth transi-
tion towards the far-field solution is observed only for swirl
ratios below a critical value,S5Sc , for which the emer-
gence of appreciable axial gradients precludes the conver-
gence of the numerical scheme at a given downstream loca-
tion. According to Hall,3 this failure of the QC
approximation corresponds to the onset of vortex break-
down, a point supported by the experimental observations,1

which indicate that the critical conditions for vortex break-
down are practically independent ofRj . It should be noted
that, although the critical swirl number can be predicted with
the boundary-layer approximation, the description of the
emerging vortex requires consideration of the full Navier–
Stokes equations, as done in Ref. 8 for the submerged jet.

To write the conservation equations for continuity and
momentum in the QC approximation it is convenient to in-
troduce as scales for the different variables those correspond-
ing to the development region. Thus, the radial and axial
coordinates measured from the orifice centerr and x are
scaled with the radiusa and with the characteristic length
Rja, respectively, while the characteristic radial and axial
velocitiesv/a anduc5@J/(pr)#1/2/a are used to define the
dimensionless velocity componentsv andu and the pressure
difference from the ambient value is nondimensionalized
with its characteristic valueruc

2 to give the variablep. The
swirling motion is measured by the circulation of the azi-
muthal velocity, which is scaled with its characteristic valuea!Electronic mail: a.revuelta@ciemat.es
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L/(ruca
2/2) to give the dimensionless variableG. The prob-

lem reduces to that of integrating
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for x.0 with the boundary conditions]u/]r 5v5G50 at
r 50 andu5G5p50 asr→`, and with the initial condi-
tions atx50 given byu5ui(r ) andG5G i(r ) for 0<r<1
and u5G50 for r .1. Here,S5L/(Ja) is the swirl ratio
and ui(r ) and G i(r ) are, respectively, the distributions of
axial velocity and circulation at the jet exit. The integrations
shown in Figs. 1–3 correspond in particular to a jet with

uniform axial velocityui51 and with solid body rotation
G i52r 2.

As can be shown by radial integration of combinations
of ~1! and ~4! and of ~1! and ~2!, the solution to the above
problem satisfies the conservation of angular momentum flux
*0

`2ruGdr 51 along with the momentum balance equation
M5*0

`2r (u21p)dr , where the constantM is the so-called
flow force.6 The latter equation describes how the momen-
tum flux, *0

`2ru2dr , which with the scaling selected here
takes the value*0

12rui
2dr 51 at x50, decreases due to the

adverse pressure gradient as the jet develops. In the far-field
region corresponding tox@1 the pressure differences from
the ambient value, given below in~7!, can be neglected in
the momentum balance, so that in this region the rescaled
momentum flux becomes*0

`2ru2dr 5M . The value ofM
511*0

12rpidr ,1 depends on the negative radial pressure
distribution at the jet exit,pi(r )52S2* r

1(G i
2/r 3)dr , a func-

tion of the initial circulationG i(r ) to be computed from~3!,
yielding for instancepi522S2(12r 2) and M512S2 for
initial solid-body rotationG i52r 2. Note that the condition
M.0 imposes the limitation

S,H E
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1
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r
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, ~5!

to the swirl level that enables the establishment of a slender
jet.

The computation of the jet development region corre-
sponding tox;O(1) requires the numerical integration of
~1!–~4!. For x!1 the mixing layer that develops from the
orifice rim admits a self-similar description, which depends
on the values ofui andG i nearr 51. The leading-order so-
lution for the axial and radial velocity is independent of the
swirl and, for ui51, corresponds to the Chapman–Lessen
planar mixing layer,9,10 which can be described by introduc-
ing the stream functionC5x1/2(F0(j)1x1/2F1(j)1¯), to-
gether with the scaled variablej5(r 221)/(2x1/2), which is
written following6 in a form that facilitates the description of
annular mixing layers. If the prime8 denotes differentiation
with respect toj, then the leading-order problem reduces to
that of integratingF0-1F0F09/250 with boundary conditions
F08(2`)215F08(`)50, as corresponds to matching with
the outer velocity profile, andF0(2`)2j50, as corre-
sponds to the condition that, at this order, the mixing layer
entrains fluid only from the outer stagnant side. One can

FIG. 1. Profiles of velocity~upper half! and circulation~lower half! corre-
sponding toS5(0.3,0.6) obtained from numerical integration of the QC
equations~solid lines! and from evaluations of the far-field asymptotic ex-
pressions~dashed lines!.

FIG. 2. Axial velocity profiles forS5(0.3,0.6) and different axial positions
x5(0.0,0.005,0.01,0.015) obtained from numerical integration of the QC
equations~solid lines! and from evaluations of the asymptotic profile atx
!1 ~dashed lines!.

FIG. 3. The functionF(X) and the virtual originxo for different values of
the swirl numberS; dashed lines represent the asymptotic values forx!1
(S50.0 andS50.6) andx@1.
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easily verify that, for solid body rotation@G i(r→1)52#, the
leading-order terms in the accompanying expansions for the
circulation G52@G0(j)1x1/2G1(j)1¯# and pressurep
5x1/2@P0(j)1x1/2P1(j)1¯# reduce toG05F08 and P0

54S2(F08F012F09).
In the jet core, corresponding to radial distances 1>1

2r @x1/2, the initially uniform velocity profile presents for
x!1 small perturbations of orderx. The perturbed solution
in this inviscid region can be expressed in the form 12u
5p12S2(12r 2)54xv1SJ0(4Sr)/J1(4S) and rv5(2r 2

2G)/(4x)5v1rJ1(4Sr)/J1(4S), with J0 and J1 represent-
ing Bessel functions of the first kind. The unknown valuev1

of the radial velocity asr→1 can be determined from the
analysis of the first-order corrections in the mixing layer,
where the radial velocity and the pressure must match with
the O(x) perturbations in the jet. Thus, integrating
F1-1F0F19/22F08F18/21F09F12(P02jP08)/212F0912jF0-
50, G191F0G18/22F08G1/21F1G0812jG0950 and P18
28S2G0G114jP0850 with boundary conditionsF18(2`)
5F18(`) 5 F1(2`)1v15G18(`) 5G18(2`)22j 5P1(`)
5P1(2`)24Sv1J0(4S)/J1(4S)50 provides for a given
value ofS the first-order correctionsF1 , G1 , andP1 along
with the value of v1 , giving for instance v1

5(0.9790,6.6542) forS5(0.3,0.6).
Note that the asymptotic analysis forx!1 should be

modified when the initial profiles differ from those consid-
ered here. In particular, concerning the validity of the results
obtained forui51 andG i52r 2, the boundary-layer that de-
velops on the duct wall upstream from the orifice necessarily
modifies the character of the mixing layer in the vicinity of
the jet exit, so that the description given above only holds for
axial distances in the range«2!x!1, where«a is the char-
acteristic value of the boundary-layer thickness.

A self-similar solution also exists atx@1,

3u

512M
5

G

16h2 5
1

x1xo

1

~64/31h2!2 , ~6!

in which the axial velocity corresponds to Schlichting
solution11 for the swirl-free jet, while the solution for the
circulation and the accompanying pressure difference from
the ambient

p52
MS2

~x1xo!4

128/3

~64/31h2!3 , ~7!

are due to Go¨rtler12 and Loitsianskii.13 In the above descrip-
tion, h5M1/2r /(x1xo) is the similarity coordinate andxo is
the so-called virtual origin, which is equal for the velocity
and circulation profiles. As explained in Ref. 14, this virtual
origin arises as the first-order correction in the far-field
asymptotic description for large distances. Its computation
requires consideration of the jet development region forx
;O(1), giving a value that depends onS and on the shape
functions ui(r ) and G i(r ). Note that the Schlichting–
Görtler–Loitsianskii asymptotic solution is fundamentally
different from the asymptotic solutions given by Long15 and
Fernández-Feriaet al.16 for jets with outer circulation, in that
the axial and azimuthal motions remain intimately coupled in
the latter solutions.

Results of integrations of~1!–~4! for x;O(1) are
shown in Figs. 1–3. A three-level implicit method with
second-order approximation schemes for spatial derivatives
was used to integrate the parabolic QC equations, with an
iterative process to adjust the values ofp, G, andv at every
axial position. Typical values of the grid spacing aredr
51022 and dx51023, with finer grids being needed for
increasingS. Profiles of u and G at different downstream
locations and for two different values ofS,Sc are plotted in
Fig. 1, where the dashed lines indicate the corresponding
far-field solutions given in~6!. The evolution of the velocity
profiles at small distances from the orifice is displayed in
Fig. 2, where the numerical results are compared with the
asymptotic solution obtained by adding the core velocity
deficit 24xv1SJ0(4Sr)/J1(4S) evaluated forr<1 to the
two-term mixing-layer expansionF081x1/2F18 . Figure 3
shows the entrainment rateF(x)52(rv) r→` for different
values of S, a decreasing function that evolves from the
asymptotic valueF5@x21/2(F02jF08)/21F12jF18/2#j→` ,
corresponding tox!1, to the constant valueF54 corre-
sponding to Schlichting solution11 for x@1. As can be seen,
the presence of swirl modifies significantly the rate at which
the outer fluid is entrained by the jet in the jet development
regionx;O(1), which changes the jet volume flux

E
0

`

2rudr 5q12E
0

x

F~x!dx, ~8!

whereq5*0
12ruidr is the initial jet volume flux at the orifice

scaled with its characteristic valuepa2uc . Evaluating~8! at
x@1 reveals that the virtual originxo amounts to a correc-
tion of order unity in the far-field volume flux, with the value
of xo5q/81*0

`(F/421)dx accounting for the initial vol-
ume flux and also for the increased entrainment rate taking
place in the jet development region.14 The dependence ofxo

on S is given in Fig. 3 forui51 andG i52r 2.
The adverse pressure gradient induced by the swirl leads

to the formation of an annular jet for sufficiently large values
of S (S*0.5 for ui51 andG i52r 2), with an off-axis veloc-
ity maximum initially located on the inner side of the mixing
layer that develops from the orifice. This annular jet can be
clearly observed in the results of Figs. 1 and 2 forS50.6.
For this swirl level the annular jet is seen to evolve to even-
tually approach the self-similar far-field solution given in~6!.
A smooth transition could not be achieved as the value ofS
was increased to the critical valueS5Sc50.64, connected
with vortex breakdown,3 at which no convergence of the
numerical scheme could be obtained atx.0.025. As in the
calculations reported in Ref. 17, the failure is associated with
large values of the radial velocityv accompanying a rapid
deceleration of the flow along the axis.

The value ofSc , to be determined numerically, depends
on the initial profilesui and G i . Clearly, the limitationM
.0 provides an upper boundary for the value ofSc , which
must therefore satisfy~5!. As explained in Ref. 1, a lower
boundary for Sc follows from the condition that vortex
breakdown is associated with the appearance of a stagnation
point along the axis. If the flow is assumed to be arrested
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inviscidly, then conservation of total head along the axis pro-
vides the expression

Sc.F ~ui~0!2/2!Y E
0

1

~G i
2/r 3!dr G1/2

~9!

involving the initial velocity at the axisui(0) and the initial
distribution of circulation. The expressions~5! and ~9! pro-
vide upper and lower bounds forSc . For instance, for the
initial conditions considered, the critical swirl ratio must be
in the range 1/2,Sc,1, in agreement with the resultSc

50.64 obtained.
Finally, we shall investigate the accuracy with which the

failure of the boundary-layer approximation can be used as a
criterion to determine the swirl ratio at breakdown in the case
of submerged jets. For this purpose, integration of~1!–~4!
was started using as initial profilesui(r ) andG i those mea-
sured experimentally near the injector mouth by Billant
et al.1 In their analysis, the swirl ratioS* was defined as
twice the ratio of the maximum azimuthal velocity to the
maximum axial velocity at the jet exit, so that

S* /S52~G i /r !max/~ui !max. ~10!

The profiles used in the numerical integration correspond to
the near-critical conditions given in Figs. 4 and 24 of Ref. 1
for S* 51.33, which were scaled according to the formula-
tion used here. Integrations were performed for increasing
values ofS. An annular jet was seen to form forS*0.39 and
failure to converge occured forSc50.50. The critical value
at breakdown in the experiments1 was Sc* 51.3– 1.4, with
only small variations in the range of Reynolds numbers in-
vestigated and for the two different injectors used. According
to ~10!, this experimental value corresponds in our formula-
tion to a critical valueSc50.45– 0.48, in close agreement
with the valueSc50.50 computed in the QC approximation.
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