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The quasi-cylindrical description of submerged laminar swirling jets
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The quasi-cylindrical approximation is used to describe numerically the structure of a submerged
swirling jet for subcritical values of the swirl rati®<S;. The emerging flow structure is affected

by the swirling motion, which enhances the entrainment rate of the jet and induces an adverse
pressure gradient that reduces its momentum flux. The effect is more pronounced as the swirl ratio
S is increased, yielding for sufficiently large values $fa jet with an annular structure. The
integration describes the smooth transition towards the far-field self-similar solution for all values of
S smaller than a critical valu8=S;, at which the numerical integration fails to converge at a given
downstream location. The comparisons with previous experimental results confirm the
correspondence between the onset of vortex breakdown and the failure of the quasi-cylindrical
approximation. ©2004 American Institute of Physic§DOI: 10.1063/1.1645850

This Brief Communication investigates the submergedorder® For swirl ratios below a critical value of order unity,
swirling jet that forms when an incompressible fluid of den-the jet remains slender, and can be therefore described with
sity p and kinematic viscosity discharges with both for- relative errors of ordeer’2 with the boundary-layer, or
ward and swirling motion through a circular orifice of radius quasi-cylindrical(QC) approximatior!. The resulting set of
a into a stagnant region of the same fluid, a flow configuraparabolic equations is integrated numerically by marching
tion recently studied experimentally by Billaet al' The  downstream from the orifice, providing a description for the
initial fluxes of momentumJ and angular momenturb of  jet development region independentRyf. A smooth transi-
the jet can be used to define the swirl rafleL/(Ja) and  tion towards the far-field solution is observed only for swirl
the jet Reynolds numbeR;=[J/(7p)]¥%v as the main pa- ratios below a critical valueS=S;, for which the emer-
rameters characterizing the flow structure. The descriptiogence of appreciable axial gradients precludes the conver-
below corresponds to moderately large valuesRof for  gence of the numerical scheme at a given downstream loca-
which the laminar jet remains steady, and to value$ aff tion. According to Half this failure of the QC
order unity, a distinguished regime that allows us to exploreapproximation corresponds to the onset of vortex break-
the effect of the swirl on the flow structure and the onset ofdown, a point supported by the experimental observations,
vortex breakdowr:® which indicate that the critical conditions for vortex break-

Near the orifice, the jet is separated from the outer stagdown are practically independent B . It should be noted
nant fluid by an annular mixing layer that thickens down-that, although the critical swirl number can be predicted with
stream, so that the effect of viscosity starts reducing signifithe boundary-layer approximation, the description of the
cantly the velocity at the axis at distances of the ordeRjof emerging vortex requires consideration of the full Navier—
times the jet radius. The swirling motion causes the pressurstokes equations, as done in Ref. 8 for the submerged jet.
near the axis to be smaller than the ambient value, which in  To write the conservation equations for continuity and
turn induces an adverse axial pressure gradient that is largggfomentum in the QC approximation it is convenient to in-
at the axis’ For S~0(1), thepressure differences induced troduce as scales for the different variables those correspond-
are of the order of the dynamic pressure, so that the swirlinghg to the development region. Thus, the radial and axial
motion results in a significant flow deceleration in the jetsgordinates measured from the orifice centeand x are
development region, additional to that associated with Visscaled with the radiua and with the characteristic length
cous stresses. The magnitude of the azimuthal flow velocitygj a, respectively, while the characteristic radial and axial
is seen to decay more rapidly that the axial velocity, so thaye|gcitiesy/a and u.=[J/(mp)]*¥a are used to define the
in the far-field self-similar solution that arises at distancesyimensionless velocity componentsandu and the pressure
from the orifice much larger thaR;a the pressure gradient gitference from the ambient value is nondimensionalized
induced no longer affects the forward motion at leadingyith its characteristic valupu? to give the variablep. The
swirling motion is measured by the circulation of the azi-
dElectronic mail: a.revuelta@ciemat.es muthal velocity, which is scaled with its characteristic value
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FIG. 3. The function®(X) and the virtual origirnx, for different values of
the swirl numberS; dashed lines represent the asymptotic valuesfei
(S=0.0 andS=0.6) andx>1.

FIG. 1. Profiles of velocity(upper half and circulation(lower half corre-  Uniform axial velocityu;=1 and with solid body rotation
sponding toS=(0.3,0.6) obtained from numerical integration of the QC Fi=2r2.
equations(solid lineg and from evaluations of the far-field asymptotic ex- As can be shown by radial integration of combinations
pressiongdashed lines .
of (1) and (4) and of (1) and (2), the solution to the above
problem satisfies the conservation of angular momentum flux
L/(pu.a?/2) to give the dimensionless variadle The prob-  [o2rul'dr=1 along with the momentum balance equation
lem reduces to that of integrating M= [52r(u+ p)dr, where the constari is the so-called
flow force® The latter equation describes how the momen-

u, 1) (1) tum flux, Jo2ru?dr, which with the scaling selected here
gx.oroor ’ takes the valug j2rudr=1 atx=0, decreases due to the
ﬁu op 14/ ou adverse pressure gradient as the jet develops. In the far-field
+v— —=— —(r—), (2 region corresponding te>1 the pressure differences from
‘?X aroox rd o the ambient value, given below iY), can be neglected in
ap 2r2 the momentum balance, so that in this region the rescaled
oS (3 momentum flux becomeg;2ru?dr=M. The value ofM
=1+fc1)2rpidr<1 depends on the negative radial pressure
ar ar a1l distribution at the jet exitp;(r)=—S?/}(T'#/r%)dr, a func-
ax LAl @ tion of the initial circulationl";(r) to be computed frong3),

yielding for instancep;=—2S%(1—r?) andM=1—5? for

for x>0 with the boundary conditiongu/or=v=I'=0 at solid-body rotationI’;=2r2. Note that the condition

r=0 andu=I'=p=0 asr—o, and with the initial condi-
tions atx=0 given byu=u;(r) andI'=T';(r) for Osr=<1
andu=T=0 for r>1. Here,S=L/(Ja) is the swirl ratio S<‘ ler

M >0 imposes the limitation
-1/2
; S 2 dr : 5
and u;(r) and I';(r) are, respectively, the distributions of

1
J(Fizlr’3)dr’

;
axial velocity and circulation at the jet exit. The integrations h | level th bles th blish ¢ 2 slend
shown in Figs. 1-3 correspond in particular to a jet W|tht0t e swirl level that enables the establishment of a slender

The computation of the jet development region corre-

' ' _ sponding tox~O(1) requires the numerical integration of
2&_‘ 5=0.3 4 (1)—(4). For x<1 the mixing layer that develops from the
r orifice rim admits a self-similar description, which depends
1 —‘ | on the values ofi; andI’; nearr=1. The leading-order so-
0 W lution for the axial and radial velocity is independent of the

0 0.4 0.8 1.2 swirl and, foru;=1, corresponds to the Chapman—Lessen
, u , planar mixing layeP;'° which can be described by introduc-
2 S=0.6 ing the stream functio® = xY4(F o( &) +xY%F (&) +- - ), to-
r gether with the scaled variable= (r?—1)/(2x*?), which is
1 . written followingf in a form that facilitates the description of
-z ,// annular mixing layers. If the primé denotes differentiation
0 : L with respect to#, then the leading-order problem reduces to
0 0.4 u 0.8 12 that of integratind=g + FoF¢/2=0 with boundary conditions

. . . . . o Fo(—*)—1=F((~)=0, as corresponds to matching with
FIG. 2. Axial velocity profiles forS=(0.3,0.6) and different axial positions the outer velocit rofile, ande ( oc) £=0, as corre-
x=(0.0,0.005,0.01,0.015) obtained from numerical integration of the QC y p 0

equations(solid line9 and from evaluations of the asymptotic profilexat spon(_js to the condition that, at this order, the_ mixing layer
<1 (dashed lines entrains fluid only from the outer stagnant side. One can
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easily verify that, for solid body rotatigd’;(r —1)=2], the Results of integrations of1)—(4) for x~O(1) are
leading-order terms in the accompanying expansions for thehown in Figs. 1-3. A three-level implicit method with
circulation T'=2[G(&) +xY?G,(£)+---] and pressurep second-order approximation schemes for spatial derivatives
=xYIPy(€) +xY?P,(£€)+---] reduce toGy=F, and P,  was used to integrate the parabolic QC equations, with an
=4S%(F(Fo+2Fp). iterative process to adjust the valuespofl’, andv at every

In the jet core, corresponding to radial distances1l axial position. Typical values of the grid spacing afe
—r>x2 the initially uniform velocity profile presents for =102 and x=10"3, with finer grids being needed for
x<1 small perturbations of order. The perturbed solution increasingS. Profiles ofu and I' at different downstream
in this inviscid region can be expressed in the formud  locations and for two different values 8 S; are plotted in
=p+2S?(1—-r?)=4xv,S}(4Sn/J(4S) and rv=(2r> Fig. 1, where the dashed lines indicate the corresponding
—T)/(4x)=v1r31(4S1)/J,(4S), with J; andJ; represent- far-field solutions given in6). The evolution of the velocity
ing Bessel functions of the first kind. The unknown valye profiles at small distances from the orifice is displayed in
of the radial velocity ag—1 can be determined from the Fig. 2, where the numerical results are compared with the
analysis of the first-order corrections in the mixing layer,asymptotic solution obtained by adding the core velocity
where the radial velocity and the pressure must match witldeficit —4xv,S%(4Sr)/J,(4S) evaluated forr=1 to the
the O(x) perturbations in the jet. Thus, integrating two-term mixing-layer expansiorF[)+x1/2Fi. Figure 3
F1+FoFi2—FiF1/12 +FgF1—(Po— EP() 12+ 2F 5+ 2EF shows the entrainment rate(x)= —(rv),_,.. for different
=0, GJ+F¢Gi2—F(G./2+F,G+2¢(G{=0 and P; values ofS, a decreasing function that evolves from the
—8S°G,G; +4£Py=0 with boundary conditiong;(—=)  asymptotic valueb =[x Y4Fo— £Fp)/2+F,— £F1/2]; ...,
=F1(°) =F (=) +v;=G1(®) =G1(—®)—2& =P4(») corresponding tox<1, to the constant valué&=4 corre-
=P, (—©)—4S0,J9(45)/3,(4S)=0 provides for a given sponding to Schlichting solutidhfor x>1. As can be seen,
value of S the first-order corrections;, G;, andP; along the presence of swirl modifies significantly the rate at which
with the value of v;, giving for instance v, the outer fluid is entrained by the jet in the jet development

=(0.9790,6.6542) fo6=(0.3,0.6). regionx~0(1), which changes the jet volume flux
Note that the asymptotic analysis far<1 should be

modified when the initial profiles differ from those consid- o M

ered here. In particular, concerning the validity of the results fo 2rudr =q+2J'0 O (x)dx, 8

obtained foru;=1 andI';=2r?, the boundary-layer that de-
velops on the duct wall upstream from the orifice necessarily
modifies the character of the mixing layer in the vicinity of Whereq=f$2ruidr is the initial jet volume flux at the orifice
the jet exit, so that the description given above only holds foiscaled with its characteristic valuea®u, . Evaluating(8) at
axial distances in the rang€<x<1, whereea is the char- x>1 reveals that the virtual origir, amounts to a correc-
acteristic value of the boundary-layer thickness. tion of order unity in the far-field volume flux, with the value
A self-similar solution also exists a1, of X,=q/8+ [4(P/4—1)dx accounting for the initial vol-

ume flux and also for the increased entrainment rate taking
(6) place in the jet development regibhThe dependence of,

on Sis given in Fig. 3 foru;=1 andI';=2r?.
The adverse pressure gradient induced by the swirl leads
he formation of an annular jet for sufficiently large values
of S(S=0.5 foru;=1 andl’;=2r?), with an off-axis veloc-
ity maximum initially located on the inner side of the mixing

3u r 1 1
512M  167° x+X, (64/3+ %)%’

in which the axial velocity corresponds to Schlichting ot
solutiort! for the swirl-free jet, while the solution for the
circulation and the accompanying pressure difference fro

the ambient layer that develops from the orifice. This annular jet can be
M S? 128/3 clearly observed in the results of Figs. 1 and 2 $+0.6.
P=~ Xx)® (6413t )% (7)  For this swirl level the annular jet is seen to evolve to even-

tually approach the self-similar far-field solution given(@).
are due to Guler'? and Loitsianskiit® In the above descrip- A smooth transition could not be achieved as the valus of
tion, 7=MY2r/(x+x,) is the similarity coordinate anki, is ~ was increased to the critical val®&=S,=0.64, connected
the so-called virtual origin, which is equal for the velocity with vortex breakdowr, at which no convergence of the
and circulation profiles. As explained in Ref. 14, this virtual numerical scheme could be obtainedxat0.025. As in the
origin arises as the first-order correction in the far-fieldcalculations reported in Ref. 17, the failure is associated with
asymptotic description for large distances. Its computatiofarge values of the radial velocity accompanying a rapid
requires consideration of the jet development regionxfor deceleration of the flow along the axis.
~0O(1), giving a value that depends @and on the shape The value ofS;, to be determined numerically, depends
functions u;(r) and I';(r). Note that the Schlichting— on the initial profilesu; andI';. Clearly, the limitationM
Gortler—Loitsianskii asymptotic solution is fundamentally >0 provides an upper boundary for the valueSpf which
different from the asymptotic solutions given by LdRgnd  must therefore satisfy5). As explained in Ref. 1, a lower
Fernadez-Feriaet al® for jets with outer circulation, in that boundary for S, follows from the condition that vortex
the axial and azimuthal motions remain intimately coupled inbreakdown is associated with the appearance of a stagnation
the latter solutions. point along the axis. If the flow is assumed to be arrested
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