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Fronts in high-temperature laminar gas jets
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This paper addresses the slender laminar flow resulting from the discharge of a low-
Mach-number hot gas jet of radius a and moderately large Reynolds number Rj into
a cold atmosphere of the same gas. We give the boundary-layer solution for plane and
round jets with very small values of the ambient-to-jet temperature ratio ε accounting
for the temperature dependence of the viscosity and conductivity typical of real gases.
It is seen that the leading-order description of the jet in the limit ε → 0 exhibits a
front-like structure, including a precisely defined separating boundary at which heat
conduction and viscous shear stresses vanish in the first approximation, so that the
temperature and axial velocity remain unperturbed outside the jet. Separate analyses
are given for the jet discharging into a stagnant atmosphere, when the jet boundary
is a conductive front, and for the jet discharging into a coflowing stream, when the
jet boundary appears as a contact surface. We provide in particular the numerical
description of the jet development region corresponding to axial distances of order
Rja for buoyant and non-buoyant jets, as well as the self-similar solutions that emerge
both in the near field and in the far field. In all cases considered, comparisons with
numerical integrations of the boundary-layer problem for moderately small values of
ε indicate that these front descriptions give excellent predictions for the temperature
and velocity fields in the near-axis region.

1. Introduction
This paper investigates the discharge of a gas jet at temperature Tj into an

atmosphere of the same gas at temperature To � Tj . When the Reynolds number
Rj = ρjUja/µj , based on the density and viscosity of the jet, ρj and µj , the jet velocity
Uj , and the characteristic transverse dimension a (the initial radius for the round jet
and the initial half-width for the planar jet), is moderately large the resulting steady
flow remains slender and stable. The solution can be described in the boundary-layer
approximation with small relative errors of order R−2

j .
Much of the early work on non-isothermal laminar gas jets is reviewed in Pai

(1954). Sufficiently far downstream, the temperature approaches the ambient value,
and the solution for the velocity reduces to the well-known self-similar descriptions
developed by Schlichting (1933) for the round jet and by Bickley (1937) for the plane
jet, while the constant-density solution for the temperature field is due to Yih (1950).
The higher-order perturbations to the velocity and temperature fields, associated
with small density differences, were calculated by Crane & Pack (1957) with the
assumption of unity Prandtl number, Pr = 1, to facilitate the description of the viscous
dissipation effects, which become significant in jets with Mach numbers of order unity.
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A similarly perturbed far-field solution was used in the stability analysis of a plane
jet of Kennedy & Chen (1998).

The solution that appears in the presence of coflow with Pr = 1 was investigated
by Pai (1949) for the plane jet and by Pai (1952) for the round jet. His work includes
analytical results for small temperature and velocity differences between the jet and the
coflow, together with sample numerical integrations of the boundary-layer equations
for relative temperature differences (Tj − To)/To of order unity. Relevant more recent
work on the far-field description of a plane jet includes Bansal & Tack (1978), who
developed the similarity solutions for two particular cases: jets with Pr = 1 and jets in
which the viscosity and heat conductivity are linearly proportional to the temperature.

The self-similar solution associated with a point source of momentum and energy
in a gas with vanishing ambient temperature and constant heat conductivity and
viscosity was analysed by Bobnev (1982), who later extended his analysis to gases
with temperature-dependent transport properties (Bobnev 1985, 1986). Our work
also considers jets with temperatures much larger than the ambient, i.e. values of
ε = To/Tj � 1. Viscous dissipation is not included in the analysis, a simplification
that applies when the jet Mach number is sufficiently small. The paper starts by
formulating the boundary-layer description of the jet development region of plane
and round vertical jets with temperature-dependent heat conductivity and viscosity,
including the leading-order front description emerging in the limit ε → 0. The jet
discharging into a stagnant ambient will be treated first, followed by the jet discharging
into a coflow stream. The development considers buoyant and non-buoyant jets, with
particular attention given to the distinguished far-field solutions that appear in both
cases.

2. Formulation
In formulating the problem in dimensionless form, we use as scales those corres-

ponding to the jet development region. Thus, the temperature, density, and viscosity,
T , ρ and µ, are scaled with their initial values at the jet exit, while the streamwise and
transverse coordinates x and r are scaled with Rj a and a, respectively, and the axial
and radial velocity components u and v are scaled with Uj and µj/(aρj ), leading to
a formulation independent of the Reynolds number. The problem reduces to that of
integrating

∂

∂x
(ρu) +

1

ri

∂

∂r
(ρriv) = 0, (2.1)
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with boundary conditions for x > 0

r = 0 :
∂u

∂r
= v =

∂T

∂r
= 0, (2.4)

r → ∞ : u − uc = T − ε = 0, (2.5)

and with initial conditions at x = 0

0 � r � 1 : u − 1 = T − 1 = 0,

r > 1 : u − uc = T − ε = 0.

}
(2.6)
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The index i takes the value i = 0 for the planar configuration and i = 1 for the round
jet. Here, Pr represents the Prandtl number, assumed to be constant in the analysis,
uc is the ratio of the coflow velocity to the jet velocity and the dimensionless gravity,
G = (gRj a)/(εU 2

j ), is the inverse squared of the relevant Froude number.
The continuity, momentum and energy conservation equations need to be

supplemented with the equation of state written in the near-isobaric approximation,
ρT = 1, and with the presumed power-law dependence µ = T σ for the temperature
variation of the viscosity and heat conductivity, where the exponent, typically ranging
from σ = 0.5 to σ = 0.75 for non-ionized gases, will be taken equal to σ = 0.70 in
the computations below. Note that the solution satisfies the integral conservation law∫ ∞

0

2ir iρu(T − ε) dr = 1 − ε, (2.7)

obtained by radial integration of (2.3) written in conservative form.
We are concerned here with hot jets, corresponding to small values of the parameter

ε. We shall analyse first the case uc = 0, corresponding to a hot jet discharging into
a stagnant cold atmosphere. Although the Prandtl number is less than unity for
most gases (e.g. the computations below are for Pr = 0.70, corresponding to air), to
understand the nature of the front solution that develops it is instructive to consider
briefly the case Pr = 1. For a non-buoyant jet, one can easily verify that with ε = 0
the solution for the velocity reduces to u = T and v = 0, whereas the temperature is
calculated by integration of the nonlinear heat conduction problem

∂T

∂x
=

1

ri

∂

∂ri

(
riT σ ∂T

∂r

)
(2.8)

with initial condition at x = 0 given by T =1 for 0 < r < 1 and T =0 for r > 1 and with
boundary conditions for x > 0 given by ∂T /∂r = 0 at r = 0 and T = 0 as r → ∞. If
the coordinate x represent a dimensionless time, then it is clear from the above that the
development of the non-buoyant jet as x increases corresponds to the time evolution of
the temperature field in a heated solid with temperature-dependent conductivity and
a vanishing outer temperature. The problem was originally considered by Zeldovich
& Kompaneetz (1950), who gave in particular the long-time asymptotic behaviour for
x � 1. They found that, because of its temperature dependence, the heat conductivity
vanishes as T → 0 and heating can only reach a finite distance, thereby yielding a
precisely defined boundary r = rf (x) for the resulting hot spot, outside which the
temperature remains unperturbed, i.e. T = 0 for r � rf .

The solution with Pr < 1 is qualitatively similar. The exact balance between
transverse heat conduction and shear stresses is no longer present in this case, so
that u �= T and v �= 0. The jet temperature and velocity decrease downstream to adjust
to their boundary values u = T = 0. Correspondingly, the radius rf (x) increases to
satisfy the condition of constant enthalpy flux∫ rf

0

2ir iu dr = 1, (2.9)

obtained at leading order from (2.7) in the limit ε =0 by imposing a vanishing
conductive flux at the boundary. Unlike the case Pr =1, the jet in this case is seen to
entrain outer fluid with a positive rate Φ∞(x) = (−ρriv)r>rf

of order unity to give an

increasing jet mass flux (d/dx)(
∫ rf

0
ρuridr) =Φ∞(x). Note that this entrainment rate,

which is determined below from the leading-order description, corresponds to radial
velocities v ∼ ε for r > rf , whereas v ∼ O(1) inside the jet.
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The presence of the coflow changes the character of the solution. As before, heat
conduction and shear stresses vanish at the jet boundary, although with coflow this
is an effect of the increasing density that occurs even in gases with constant heat
conductivity and viscosity. The velocity and the temperature remain unperturbed
outside, and the jet boundary becomes a fluid surface with u = uc and T =0 separating
the cold coflow from the low-density gas. Inside the jet, heat conduction and shear
stresses progressively adjust the jet temperature and velocity to the boundary values,
as the jet radius evolves to accomodate the axial flux of excess enthalpy (2.9). The
evolution of the jet boundary rf (x), obtained below from the leading-order description,
determines the radial velocity at the bounding fluid surface vf (x) = uc(drf /dx), as well
as the radial velocity outside the jet, v = vf rf /r , which is comparable in magnitude
to that found inside the jet.

Separate sections are devoted below to the two distinct cases identified above. To
account for the front-like character of the solution associated with the limit ε =0, in
integrating (2.1)–(2.3) the boundary conditions (2.5) are replaced with the conditions

T = u − uc = 0 and T σ ∂T

∂r
= T σ ∂u

∂r
= 0 at r = rf . (2.10)

The condition of vanishing heat conduction at r = rf can be replaced in the
integrations with the condition of constant energy flux given in (2.9), which reveals
in particular that accelerating jets, driven by buoyancy or by fast coflow uc > 1, give
drf /dx < 0, while the opposite is found in buoyancy-free jets with uc � 1.

3. Hot jet in a stagnant cold atmosphere
3.1. Near-field solution

For x � 1, mixing is confined to a thin annular mixing layer, not affected by gravity,
that can be described in terms of the similarity coordinate η = (r −1)/

√
x by introduc-

ing the stream function ψ =
√

xF (η) defined such that ρu = Fη and ρv = 1
2
(ηFη − F )/√

x. The problem reduces to that of integrating

[T σ (T Fη)η]η + F (T Fη)η/2 = 0 and (T σTη)η + PrFTη/2 = 0. (3.1)

In the notation employed here, a coordinate is used as subscript to denote
differentiation, e.g. the subscript η in the above equations. The axial velocity and the
temperature remain unperturbed outside the mixing layer. Furthermore, the condition
v = 0 at r =0 requires that v = 0 inside the jet, so that the mixing layer can only entrain
fluid from the ambient, thereby giving T =Fη = 0 at η = ηf and T − 1 = F − η = 0 as
η → −∞ as boundary conditions for (3.1). The above problem was integrated with a
shooting scheme, giving the solution shown in figure 1. The equations were rewritten in
terms of the normalized coordinate η/ηf and the integration was started at η/ηf =1,
with ηf and Ff = F (η = ηf ) entering as parameters in the iterative shooting scheme.
The values obtained, ηf =2.1625 and Ff = 1.5255, determine the initial evolution
of the jet radius rf = 1 + ηf

√
x as well as the initial value of the jet entrainment

Φ∞ = −(riρv)r>rj
= Ff /(2

√
x). These predictions are compared below in figures 2 and

3 with the numerical results at x � 1.

3.2. The development region

To describe the region of jet development corresponding to distances x ∼ O(1), we
integrate (2.1)–(2.3) with ε = 0. The boundary conditions are those given in (2.4)
and (2.10), whereas the solution found at x � 1 is used to evaluate the initial velocity
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Figure 1. The temperature and velocity profiles across the mixing layer at x � 1.

and temperature profiles. To simplify the treatment of the free jet boundary, the
problem was formulated using the normalized coordinate R = r/rf (x) as a replacement
for r . To determine the profiles of temperature and velocity, an implicit marching
procedure (Anderson, Tannehill & Pletcher 1984), third-order accurate in x and
second-order accurate in R, was used to integrate the modified conservation equations
in the fixed domain 0 � R � 1, and the integral condition (2.9) was employed to
update the value of rf (x) = [1/(

∫ 1

0
2iRiu dR)]1/(i+1) at each x. A non-uniform grid

with minimum spacing δx =6 × 10−5 near the entrance and δR = 7 × 10−4 near the
axis was used, and the results were checked to be grid-independent by comparison with
results obtained with finer grids in sample computations. For the buoyancy-free jet,
the accuracy of the final numerical solution was tested by evaluating the integral form
of the momentum equation

∫ 1

0
2iRi(u2/T ) dR = 1, yielding an error of less than 0.1 %.

Profiles of velocity and temperature obtained for the round jet with G =0 and
G = 5 are given in figure 2, including the jet boundary rf (x) obtained as part of the
integration. The front solution is compared with results of integrations of the original
boundary-layer problem (2.1)–(2.6) with two moderately small values of ε = (0.02, 0.1).
Both the shape of the profiles and the peak values of temperature and velocity along
the axis are accurately described for the range of x considered. The comparison of
the peak values T0 = T (r = 0, x) and u0 = u(r =0, x) is given in figure 3, which also
exhibits results for the entrainment rate Φ∞(x) = −(ρriv)r→∞.

3.3. Far-field solution

With G =0, the jet continues growing as x increases, to approach for x � 1 a
self-similar far-field structure with rf � 1, which holds as long as the jet remains
much hotter than the ambient. The solution must satisfy the condition of constant
enthalpy flux, given in (2.9), along with the condition of constant momentum flux∫ rf

0
2ir iρu2 dr = 1, which follows from integrating the conservative form of (2.2) with

G = uc = 0. These two conditions, together with the balance between convective
and molecular transport, determine the order of magnitude of the jet radius rf ∼
O(x1/[2+σ (1+i)]) and of the temperature and velocity u ∼ T ∼ O(x−(1+i)/[2+σ (1+i)]). As
previously mentioned, the solution corresponding to Pr = 1 is that obtained by
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Figure 2. The profiles of velocity u (upper half of the plots) and temperature (T − ε)/(1 − ε)
(lower half of the plots) obtained for Pr = 0.7, σ = 0.7, uc =0 and G =(0, 5) by integration of
(2.1)–(2.3) with ε = 0 (solid line), ε = 0.02 (dotted lines) and ε = 0.1 (dashed lines). The scale for
the velocity and temperature is indicated for the profiles at x = 0.5 on each plot. The profiles
at x = 2.5 are compared with the asymptotic solution for x � 1 (dot-dashed lines). The jet
boundary rf (x) corresponding to the front solution ε = 0 is indicated as a solid line for
completeness, and the asymptotic predictions for x � 1 and for x � 1 are included as dot-
dashed lines.

Zeldovich & Kompaneetz (1950) by integrating the nonlinear heat conduction
equation (2.8) with boundary conditions ∂T /∂r = 0 at r = 0 and T = 0 at r = rf

and subject to the integral constraint
∫ rf

0
2ir iT dr = 1. On the other hand, the far-

field solution for the jet with Pr �= 1 was originally considered by Bobnev (1985,
1986), who reduced the solution to a single second-order nonlinear equation in
terms of the parameter (1 − Pr)/(σPr). The results corresponding to Pr= 0.7 and
σ = 0.7, not considered specifically in previous works, are given below in terms of
the rescaled coordinate ξ = r/x1/[2+σ (1+i)], the temperature θ = x(1+i)/[2+σ (1+i)]T and the
stream function ψ = x(1+i)/[2+σ (1+i)]f (ξ ). Integrating once the resulting equations of
momentum and energy with the boundary conditions f = θξ = (θfξ/ξ

i)ξ = 0 at ξ = 0
reduce (2.2) and (2.3) to

ξ iθσ

(
θfξ

ξ i

)
ξ

+
(1 + i)f

2 + σ (1 + i)

(
θfξ

ξ i

)
= 0 and ξ iθσ θξ +

(1 + i)Prf

2 + σ (1 + i)
θ = 0. (3.2)
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Figure 3. The variation of u0, (T0 − ε)/(1 − ε) and Φ∞ for Pr =0.7, σ = 0.7 and uc = 0 for the
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by integration of (2.1)–(2.3) with ε = 0 (solid lines) and ε = 0.1 (dashed lines). The dot-dashed
lines represent the asymptotic predictions for x � 1.
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Figure 4. The self-similar temperature profile (dashed lines) and velocity profile (solid lines)
obtained with Pr = 0.7 and σ =0.7 for the buoyancy-free jet (a) and for the plume (b).

The integration was started near the jet edge, where θ 	 {[(1 + i)σPrff (ξf − ξ )]/

[(2+σ (1+ i))ξ i
f ]}1/σ and f 	 ff −C(ξf −ξ )[1−(1−σ )Pr]/(σPr). The values of the integra-

tion constants, ξf =(2.856, 2.707), ff =(0.8121, 7.036), and C = (0.2658, 2.614) for
i = (0, 1), were selected in the iterative shooting scheme to satisfy the constraints∫ ξf

0
2if 2

ξ θ/ξ i dξ =
∫ ξf

0
2ifξ θ dξ =1 together with the regularity condition at the axis,

giving the profiles of θ(ξ ) and velocity U (ξ ) = x(1+i)/[2+σ (1+i)]u = θfξ/ξ
i shown in

figure 4(a), where the peak values are θ(0) = (0.623, 0.398) and U (0) = (0.691, 0.467)
for i =(0, 1). The solution provides in particular predictions for the jet entrainment
rate Φ∞ = x[i−1−σ (1+i)]/[2+σ (1+i)](1+i)ff /[2+σ (1+i)] and for the jet boundary evolution
rf = ξf x1/[2+σ (1+i)].

The accuracy of the far-field solution is tested in figure 2, where the profiles of
temperature and velocity at x = 2.5 and the prediction for the jet boundary, rf (x),
are compared with those obtained numerically. Similarly, the asymptotic prediction
for the jet entrainment rate is compared with the numerical results in figure 3, giving
good agreement over the range of x considered.
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For G �=0, the buoyancy force, acting uniformly across the jet, continuously
accelerates the hot gas, so that the solution for the jet in the far field becomes
independent of the initial momentum flux. The balance among acceleration, shear
stresses and buoyancy forces in (2.2) together with the condition of constant
enthalpy flux (2.9) determine the characteristic values of the temperature, velocity
and radius, suggesting the rescaled variables θ̄ = G(1−i)Ax(3+i)AT , f̄ = G(i−1)Ax−(3+i)Aψ ,
and ζ = G(1+σ )AxσAr , where A= [2σ (1 + i) + 3 + i]−1. The problem reduces to that of
integrating

(ζ i θ̄ σ θ̄ζ )ζ + A(3 + i)Pr(f̄ θ̄ )ζ = 0, (3.3)

[ζ i θ̄ σ (θ̄ f̄ ζ /ζ
i)ζ ]ζ + A(3 + i)f̄ (θ̄ f̄ ζ /ζ

i)ζ − Aσ (1 + i)θ̄ f̄ 2
ζ /ζ

i + ζ i = 0, (3.4)

with boundary conditions θ̄ζ =(θ̄ f̄ ζ /ζ
i)ζ = f̄ =0 at ζ = 0 and θ̄ = θ̄ f̄ ζ /ζ

i = 0 at ζ = ζf

and subject to the integral constraint
∫ ζf

0
2i θ̄ f̄ ζ dζ = 1. The corresponding profiles

of temperature and velocity Ū = u/(GA(1+σ )(1+i)xσA(1+i)) = θ̄ f̄ ζ /ζ
i are displayed in

figure 4(b). The solution determines in particular the values of the jet boundary
ζf = (1.545, 1.546), maximum velocity Ū (0) = (1.024, 0.8226), maximum temperature
θ̄(0) = (0.5981, 0.3402), and stream function at the boundary f̄ f = (3.3150, 4.028)
for i = (0, 1). The latter can be used to compute the far-field entrainment rate
Φ∞(x) = A(3 + i)f̄ f GA(1−i)xA(3+i)−1, which is compared in figure 3 with results of
numerical integrations. This figure also includes the far-field predictions for the
velocity and temperature along the axis. Furthermore, the asymptotic profiles of
temperature and velocity, plotted in figure 2 at x = 2.5, and the prediction for the jet
boundary rf = ζf G−A(1+σ )x−σA, are practically indistinguishable from the numerical
results with ε = 0.

Note that the front character of the solution is lost when the temperature in
the jet decays to values of the order of the ambient temperature, which occurs at
distances of order x ∼ ε−[2+σ (1+i)]/(1+i) for the buoyancy-free jet and at distances of
order x ∼ G(i−1)/(3+i)ε−1−2σ (i+1)/(3+i) for the plume. The description of this very far
region would necessitate integration of the original equations (2.1)–(2.3) written for
appropriately rescaled variables of order unity. The self-similar solutions identified
above at x � 1 should be used as initial conditions in the integration.

4. Hot jet in cold coflow
In the presence of coflow, the boundary of the jet behaves as a contact surface sep-

arating the low-density gas from the cold coflow, with the radial velocity component
vf (x) at r = rf satisfying vf (x) = uc(drf /dx). As before, one can use the similarity
coordinate η = (r − 1)/

√
x and the stream function ψ =

√
xF (η) to describe the

thin annular mixing layer that forms at x � 1. The problem reduces to that of
integrating (3.1) with boundary conditions F − η = T − 1 = 0 as η → −∞ and
T = T Fη − uc = 0 at η = ηf . The solution for the temperature and axial velocity
is given in figure 1 for uc = (0.5, 1.0, 1.5) in terms of ηf − η. As in the case of the
stagnant atmosphere, the integration determines the value of ηf , yielding for instance
ηf = 0.6231 for uc = 0.5 and ηf = − 0.4435 for uc =1.5. Note that this value gives the
initial evolution of the jet radius rf = 1 + ηf

√
x, which is plotted in figure 5, and its

accompanying radial velocity vf = ηf uc/(2
√

x).
The procedure to integrate (2.1)–(2.3) is analogous to that used in the absence of

coflow. Results of integrations corresponding to a buoyancy-free jet with uc = (0.5, 1.5)
are compared in figure 5 with results of integrations of the boundary-layer problem
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Figure 5. The profiles of velocity difference (u − uc)/(1 − uc) (upper half of the plots) and
temperature difference (T − ε)/(1 − ε) (lower half of the plots) obtained for Pr = 0.7, σ = 0.7,
G = 0 and uc = (0.5, 1.5) by integration of (2.1)–(2.3) with ε = 0 (solid line), ε = 0.02 (dotted
lines) and ε = 0.1 (dashed lines). The scale for the velocity and temperature is indicated for the
profiles at x = 0.5 on the upper side of each plot. The profiles at x = 2.5 are compared with
the asymptotic solution for x � 1 (dot-dashed lines). The jet boundary corresponding to the
front solution ε = 0 is indicated as a solid line for completeness, and the asymptotic predictions
rf = 1 + ηf

√
x for x � 1 and rf = 1/u

1/(1+i)
c for x � 1 are included as dot-dashed lines.

(2.1)–(2.6) with ε = (0.02, 0.1), giving very good agreeement in the range of x

computed.
In the presence of gravity, the continuous acceleration of the hot gas leads to

velocities that become much larger than uc for x � 1, so that the solution for the
jet approaches that described above for the high-temperature plume. The far-field
solution is different for the buoyancy-free jet considered in the figure, where the
velocity differences from the coflow value become increasingly small for x � 1 and,
consequently, the jet radius approaches the constant asymptotic value rf = 1/u1/(i+1)

c ,
a result that follows from (2.9). In this far-field region, the radial velocity is given
by v = Pr−1T σ∂T /∂r , as can be seen from (2.3). Substituting this last result in (2.1)
provides the nonlinear heat equation

uc

∂T

∂x
=

T 2

riPr

∂

∂r

(
T σ−1ri ∂T

∂r

)
. (4.1)

Introducing the similarity variable Θ(R) = (Pr ui−1
c /x)−1/(1+σ )T in terms of the

coordinate R = r/rf reduces (4.1) to (σ + 1)−1 + (Θ/Ri)(RiΘσ−1ΘR)R = 0, subject to
the boundary conditions ΘR(0) = Θ(1) = 0. This canonical problem was encountered
by Kurdyumov, Sánchez & Liñán (2003) when investigating the long-time evolution
of a symmetrical high-temperature hot spot in a gas. The integration for σ =0.7 give
as peak values Θ(0) = 0.4843 for i = 0 and Θ(0) = 0.3450 for i = 1.

It is easy to verify from (2.2) that the accompanying velocity difference is simply

given by u − uc = B(ui−1
c Pr/x)1/(1+σ )Θ1/Pr where the factor B = (

∫ 1

0
2iRiΘ1/Pr−1 dR)−1

was calculated from the integral condition
∫ rf

0
2ir iρu(u − uc) dr =1 − uc, yielding

B = 1.698 for i = 0 and B = 2.2163 for i =1. This far-field solution is tested in figure 5,
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where the axial velocity and temperature profiles obtained numerically at x =2.5 for
ε =0 are compared with the asymptotic predictions, giving excellent agreement.

5. Conclusions
We have used the limit of small ambient-to-jet temperature ratios ε � 1 to describe

the development region of high-temperature laminar gas jets, accounting for the
temperature variation of viscosity and heat conductivity. The front descriptions
appearing at leading order are seen to provide a very accurate representation for
the temperature and velocity in the near-axis region of round and planar jets with
moderately small values of ε. The applicability of these fronts, including their similarity
far-field forms, to turbulent hot jets should be investigated in future work, which
should also address the description of swirling jets, often encountered in applications.
Our work is of interest for stability analyses of hot jets, such as that performed
by Kennedy & Chen (1998), providing the base profiles of temperature and velocity
necessary in the stability development. Furthermore, fronts can also be expected to
appear in vigorously exothermic jet diffusion flames, when the flame is embedded in
an annular front region of very hot gas separating the inner fuel jet from the outer air.
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Kurdyumov, V., Sánchez, A. L. & Liñán, A. 2003 Heat propagation from an external energy
source in a gas. J. Fluid Mech. 491, 379–410.

Pai, S. I. 1949 Two-dimensional jet mixing of a compressible fluid. J. Aeronaut. Sci. 16, 463–469.

Pai, S. I. 1952 Axially symmetrical jet mixing of a compressible fluid. Q. Appl. Maths 10, 141–148.

Pai, S. I. 1954 Fluid Dynamics of Jets. D. Van Nostrand.

Schlichting, H. 1933 Laminare strahlausbreitung. Z. Angev. Math. Mech. 13, 260–263.

Yih, C. S. 1950 Temperature distribution in a steady laminar preheated air jet. J. Appl. Mech. 17,
381–382.

Zeldovich, Ya. B. & Kompaneetz, A. S. 1950 Towards a theory of heat conduction with thermal
conductivity depending on the temperature. Collection of papers dedicated to 70th birthday of
Academician A. F. Ioffe, Izd. Akad. Nauk SSSR, Moscow, pp. 61–71.


