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Free and forced convection around line sources
of heat and heated cylinders in porous media
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28040 Madrid, Spain

2 Instituto Tecnológico de Veracruz, Dep. de Metal Mecánica, 91868 Veracruz, Mexico

(Received 19 April 1999 and in revised form 6 March 2000)

An analysis is presented for the steady, two-dimensional, free convection around line
sources of heat and heated cylinders in unbounded saturated porous media. It is
extended to account also for the effects of forced convection. The study is based on
the Boussinesq equations, with the velocities calculated using Darcy’s law.

The analysis begins with the non-dimensional formulation and numerical solution
of the problem of pure free convection around a line source of heat. When this
analysis is extended to include the effects of forced convection, two parameters
appear in the non-dimensional formulation: the non-dimensional value, V∞, of the
free-stream velocity and its angle γ of inclination with respect to the vertical. We
first describe the asymptotic form of the solution for large and small values of the
distance to the source. The far-field description, which is also applicable to the flow
around heated cylinders, is needed to facilitate the numerical solution of the problem.
It includes a thermal wake, aligned with the free stream, and an outer irrotational
flow with a sink and a vortex at the line source. The temperature distribution near
the source involves a constant A0(V∞, γ), to be calculated with the numerical solution
of the complete problem, which is used in the evaluation of the heat transfer from
heated cylinders when the Rayleigh and Péclet numbers are small compared with
unity. In this case we find an inner region where heat conduction is dominant, and
an outer region where the cylinder appears as a line source of heat. The asymptotic
analysis is complemented with the numerical solution of the general problem for
circular cylinders with a wide range of Rayleigh numbers and some representative
values of V∞ and γ. We give correlations for the Nusselt number in the limiting cases
of pure free convection and pure forced convection.

1. Introduction
This paper is devoted to the description of the planar and steady flow field around

heated cylinders in unbounded fluid-saturated porous media, under the combined
effects of natural and forced convection. These effects are measured by a Rayleigh
number, Ra, a Péclet number, Pe, and the angle of inclination γ of the free-stream
velocity with the vertical. These are the parameters remaining in the non-dimensional
formulation of the problem, to be solved numerically, after describing, as we shall do
below, the far-field decay of the perturbations to the free stream.
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Veracruz, Mexico. E-mail: vadim@itver.edu.mx

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148652222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


390 V. N. Kurdyumov and A. Liñán

Although the problems of heat transfer from heated bodies in porous media under
either forced or free convection have received adequate attention in the literature – see,
for example the reviews by Gebhart et al. (1988) and Nield & Bejan (1992) – the anal-
yses devoted to mixed convection around heated cylinders are scarce. They consider,
mainly, cases with the flow far from the cylinder parallel to the gravity force. Of this
type are the analyses, for large Rayleigh numbers, of Cheng (1982), Huang et al. (1986),
and also of Badr & Pop (1988), who found a recirculating region near the cylinder,
when the forced flow was downwards, in the direction of gravity. A notable exception
is the work of Vynnycky & Pop (1997), devoted to the combined effects of free con-
vection and oblique forced flow past cylindrical bodies. They consider a non-uniform
surface temperature such that the overall heat lost by the cylinder to the porous
medium is zero. With this choice they minimize the difficulties encountered in the
description of the far field, needed for a coherent numerical solution of the problem.

We shall pay particular attention to the cases of Pe � 1 and Ra � 1, when
the size lh of the heated region surrounding the cylinder is large compared with its
radius a. In the two-dimensional flow that we consider the rate of heat transfer q,
per unit length, from the cylinder to the porous medium cannot be calculated using
the solution of the pure heat conduction problem, because it diverges far from the
cylinder. To calculate q we shall follow the method of matched asymptotic expansions
used by Kaplun & Lagerstrom (1957), for the flow of ordinary fluids around cylinders
at small Reynolds numbers, and by Liñán & Kurdyumov (1998) and Kurdyumov
& Liñán (1999) for the free convection, at low Rayleigh numbers, around heated
cylinders and spheres in fluids. If for Ra � 1 and Pe � 1 we look at the flow field
with the scale lh of the heated region surrounding the cylinder, this appears as a line
source of heat. Therefore, this paper contributes to the literature on the analysis of
the flow field around line sources of heat, in § 2 for pure free convection, and in § 4
with the combined effects of forced flow.

For pure free convection around line sources of heat it is possible, in contrast with
the case of point sources, to obtain scales, lh, vh and Th − T∞, for the size, velocity and
temperature rise in the heated region around the line source. These scales are well
defined by the strength of the heat source, q, and the independent physico-chemical
parameters entering in the flow equations, which become parameter-free when written
in non-dimensional form using those scales. The solution, which is not self-similar,
must be obtained numerically, after describing its asymptotic far- and near-field forms,
for radial distances large and small compared with lh.

The corresponding problem for point sources of heat, which for Darcy’s law has
no characteristic length, was analysed by Bejan (1978). The flow admits a self-
similar description, depending only on one parameter, a Rayleigh number. Bejan
gave asymptotic solutions of the resulting system of ordinary differential equations,
for small and large values of a Rayleigh number, and numerical solutions were
obtained by Hickox & Watts (1980). At low Rayleigh numbers, the temperature field
is determined by heat conduction everywhere; while for large Rayleigh numbers the
heated region becomes a slender plume above the source, where it has its origin.

The existing analyses for line heat sources, see for example Wooding (1963) and
Afzal (1985), correspond in fact to the far-field description; there we find a slender
thermal plume above the source and an outer irrotational flow due to the entrainment
by the plume. They are not valid in the heated region surrounding the source, and
cannot be used to calculate the free convection heat transfer from heated cylinders at
small Rayleigh numbers. The unsteady flow generated by a constant line heat source,
acting only for t > 0, was analysed by Nield & White (1982); see also Nield & Bejan
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(1992, pp. 124–127). The unsteady solution was found as a power series for small
values of a parameter corresponding to the time; however, the steady solution cannot
be found using this power series.

The pure free convection flow around heated cylinders in unbounded porous media
is discussed in § 3. For large values of the Rayleigh number, the temperature changes
are confined to a thin boundary layer on the body, which Merkin (1979) analysed for
two-dimensional bodies and axisymmetric bodies of arbitrary shape, and to a slender
plume above. For Ra� 1 the flow structure and the rate of heat loss q is calculated,
in § 3, with the method of matched asymptotic expansions, using the heat source
results of § 2. For values of the Rayleigh number of order unity the free convection
must be described numerically. The free convection around heated cylinders was
calculated with finite difference methods, for Rayleigh numbers up to 400, by Ingham
& Pop (1987). They used the heuristic patching method of Mahony (1957) to obtain a
correlation of the heat transfer for small Rayleigh numbers. Numerical solutions for
the natural convection around heated cylinders, buried in semi-infinite and bounded
porous media, were presented by Farouk & Shayer (1988) and by Himasekhar &
Bau (1988). In § 3, we complement the existing asymptotic analyses for large Rayleigh
numbers, and our asymptotic analysis for small values, with additional numerical
calculations to generate a correlation between the Nusselt and Rayleigh numbers. We
shall also show in § 3.3 how to account for arbitrary, non-vertical, inclinations of the
heated cylinders.

In §§ 4 and 5 we deal with the combined effects of forced and free convection
in the flow around line sources of heat and heated cylinders. Without buoyancy
forces the forced flow in porous media around cylindrical bodies is irrotational and
without circulation. The temperature field associated with this forced flow around a
heated cylinder includes a thermal wake, determined by q and the free-stream velocity
U∞. However, if we retain the effects of the buoyancy forces the flow field changes
drastically. In particular, a circulation is established in the far field, because a jump in
pressure across the wake is required to balance those forces. This circulation involves
a much slower decay of the velocity perturbations than those associated with the
dipole corresponding to the basic irrotational flow around the cylinder.

We analyse, in § 4, the combined forced and free convection in a porous medium
around a horizontal line source of heat, when the velocity U∞ forms an angle γ
with the vertical. The non-dimensional form of the problem, based on the pure free-
convection scales, involves two parameters, γ and the ratio, V∞, of U∞ to the free
convection characteristic velocity vh. Typical cases are described numerically, taking
into account the asymptotic form of the solution for small and large distances from
the line source. For r/lh � 1, the natural convection is dominant, and the solution
has the form of the pure free convection case. The analytical far-field description
includes perturbations of the external flow induced by the buoyancy forces; these
perturbations are stronger in a plume or thermal wake, which is aligned with the
forcing flow, than in the outer isothermal irrotational flow, including a sink and a
vortex at the origin.

The effects of buoyancy on the forced flow around heated cylinders are described in
§ 5. The analysis involves the Rayleigh number, Ra, in addition to the parameters γ and
V∞. We have carried out a numerical analysis of the flow for various representative
values of Ra, V∞ and γ, and we have used again the technique of matched asymptotic
expansions to describe the solution for small values of Ra, with V∞ of order unity.

Wesseling (1975) analysed the corresponding problem of the combined effects of
forced flow and free convection around point and line sources of heat in homogeneous
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fluids. The relative importance of the two effects was measured, as in our analysis,
by the angle of inclination and a parameter, similar to our V∞. He could solve the
problem for the point source for values of V∞ � 1, but he could not find a solution
for the line source. He concluded that, even when V∞ � 1, the perturbations due to
free convection are too strong in the far field to allow for a consistent, steady and
two-dimensional far-field representation, and that the solution of the problem does
not exist for arbitrary angles between the forced flow and gravity. The far field in the
ordinary flow around unheated bodies is well known; see, for example, the description
in Landau & Lifshitz (1987) for three-dimensional bodies in laminar subsonic flow in
terms of their lift and drag. See also the more general far-field description by Chang
(1961) and by Lagerstrom (1996). We have tried, but, like Wesseling, could not find an
equivalent description for the far field in the forced fluid flow around heated cylinders
when the effects of the buoyancy forces are retained, even though we did not encounter
these difficulties, as we shall see below, for the solution of the equivalent problem
in porous media. We agree with Wesseling’s conjecture of non-existence of steady
two-dimensional solutions for the forced ordinary fluid flow around heated cylinders
in the presence of gravity forces, unless gravity is parallel to the free-stream velocity.

2. Free convection due to a line source of heat
2.1. Formulation

Consider the steady free convection flow induced by a horizontal line source of heat,
of intensity q, embedded in an unbounded porous medium of constant permeability
K , with the velocity determined, through the linear Darcy’s law, by the pressure and
buoyancy forces due to the gravity g; the fluid far from the source is stagnant with a
uniform temperature T∞. We shall also assume that the fluid and solid in the porous
medium have locally the same temperature. The density changes of the fluid are
considered to be small enough so that the Boussinesq approximation is applicable.

The velocity v, temperature T and variation of pressure p′ from its hydrostatic
value satisfy, see Gebhart et al. (1988) or Nield & Bejan (1992), the equations

∇ · v = 0, (2.1)

µf

K
v = −∇p′ − gρfβ(T − T∞), (2.2)

v · ∇T = α∆T , (2.3)

where µf is the viscosity, ρf is the density, and β is the coefficient of volumetric
expansion of the fluid; α is the effective thermal diffusivity of the saturated porous
medium. These equations must be solved with the boundary conditions

v → 0, p′K/µf → 0, and T − T∞ → 0 at r →∞. (2.4)

The effect of the line heat source is taken into account by requiring that

lim
r→0

λ

∫ 2π

0

r
∂T

∂r
dϕ = −q, (2.5)

where r is the radial distance to the line source, and λ is the effective thermal
conductivity of the fluid-saturated porous medium.

The two independent parameters, Kρfβg/µf and α, appearing in the equations, and
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q/λ, appearing in the boundary condition (2.5), define the following scales:

lh =
µfαλ

Kρfgβq
, vh =

Kρfβgq

µfλ
, Th − T∞ =

q

λ
, (2.6)

corresponding to the characteristic values of the size, lh, velocity, vh, and temperature
rise above the ambient in the heated region around the source. These scales can also
be determined by means of order-of-magnitude estimates of the terms appearing in
(2.2)–(2.5). The characteristic temperature rise, Th−T∞ = q/λ, results from the source
condition (2.5); if the first and second terms in equation (2.2) are of the same order,
µfvh/K = gβρf(Th − T∞); and, from the balance of convection and conduction in
(2.3), we obtain lhvh/α = 1, i.e. the Péclet number based on lh and vh is 1.

When the fluid is a gas β = 1/T∞, and for the Boussinesq approximation to be
applicable in the heated region r ∼ lh, (Th−T∞)/T∞ = q/λT∞ must be small compared

with unity. For the Darcy’s law to be applicable ρf
√
Kvh/µf � 1.

Using lh and vh as scales for the spatial coordinates and for the velocity, and
defining θ = (T −T∞)/(Th−T∞) as the non-dimensional temperature rise, the system
of equations (2.1)–(2.3), when written using the cylindrical coordinates r, distance to
the line source, and ϕ, angle with the vertical direction, takes the form

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂ϕ2
=
∂θ

∂r
sinϕ+

1

r

∂θ

∂ϕ
cosϕ, (2.7)

vr
∂θ

∂r
+
vϕ

r

∂θ

∂ϕ
=
∂2θ

∂r2
+

1

r

∂θ

∂r
+

1

r2

∂2θ

∂ϕ2
. (2.8)

The stream function ψ is defined by vr = r−1∂ψ/∂ϕ and vϕ = −∂ψ/∂r.
The equations are to be solved, for r > 0, subject to the condition

lim
r→0

∫ 2π

0

r
∂θ

∂r
dϕ = −1 (2.9)

associated with a unit line source of heat at r = 0. The boundary conditions far from
the source require

θ → 0, v → 0, as r →∞. (2.10)

Although v tends to zero as r → ∞, the decay is not fast enough to prevent the
stream function, ψ, from growing to infinity.

The flow and temperature fields are symmetrical with respect to the vertical plane
containing the source, so that the equations need to be solved only for 0 < ϕ < π
using the following symmetry conditions:

ψ =
∂θ

∂ϕ
= 0 at ϕ = 0 and ϕ = π. (2.11)

No parameter is left in the system (2.7)–(2.10) of equations and boundary conditions
describing the natural convection around a line heat source in a porous medium. The
solution of the problem must be obtained numerically, and for this we need analytical
descriptions for the field far and near the source.

2.2. Asymptotic description for large and small r

The description for large values of r includes a buoyant plume above the source,
where ψ and θ are given by inverse coordinate expansions in r:

ψ = r1/3f0(ζ) + f1(ζ) + · · · , θ = r−1/3g0(ζ) + r−2/3g1(ζ) + · · · , (2.12)
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where ζ = r1/3ϕ, the self-similar variable, is of order unity in the plume, whose
thickness is of order r2/3, while the temperature and vertical velocity in the plume are
of order r−1/3. The first terms correspond to the self-similar solution of the boundary
layer form of the equations, associated with the known constant value of the vertical
convective energy flux.† To determine the unknown functions we substitute the series
(2.12) in the equations (2.7) and (2.8) and equate coefficients of like power of r. The
corresponding equations were obtained by Wooding (1963), for f0 and g0, and by
Afzal (1985), for f1 and g1, and solved using the appropriate matching conditions
with the outer flow, together with the integral conditions∫ ∞

0

f′0g0 dζ =
1

2
,

∫ ∞
0

(f′0g1 + g0f
′
1) dζ = 0, (2.13)

stating that the total convective heat flux in the plume is equal to the strength of the
source.

For large r, outside the thermal plume θ = 0, and the flow, due to entrainment by
the plume, is irrotational, with the stream function satisfying the Laplace equation,
∆ψ = 0. The asymptotic form of the solution matching with the expansion (2.12), for
the plume, is given by

ψ = Ar1/3 sin ((π− ϕ)/3) + B(π− ϕ) + · · · , 0 < ϕ < π, (2.14)

with the constants A and B chosen so that (2.14) matches for ϕ→ 0 with (2.12). The
velocities resulting from (2.14) decrease with r like r−2/3.

The results, obtained by Wooding (1963) and by Afzal (1985), take the form

f0 = f∞ tanh s, (2.15)

g0 = (f2
∞/6)sech2s, (2.16)

f1 = −(2s/
√

3) + (1 + s(exp s) sech2s− sech s)/
√

3, (2.17)

g1 = (
√

3f∞/9)(1− s tanh s)sech2s, (2.18)

where f∞ = (9/2)1/3 and s = f∞ζ/6. Then, A = 361/3/
√

3 and B =
√

3/3π.
The far flow field can be represented, for r � 1 and 0 < ϕ < π, by the composite

expansion

ψc =

{
r1/3f0(ζ) + Ar1/3 sin

(π− ϕ
3

)
−
√

3

2
Ar1/3

}
+

{
f1(ζ)− Bϕ+

A

6
ζ

}
+ · · · (2.19)

based on the plume solution (2.12) and the irrotational flow (2.14). The temperature
field for r � 1 can be represented by the plume expansion (2.12), because θ tends
to zero when ϕ� r−1/3. Notice that no unknown constants are left in the first two
terms of the far-field expansion. If we needed to retain higher-order terms, associated
with the eigenfunctions of the boundary layer form of the equations, the unknown
multiplying constants could only be obtained with the full numerical solution of the
problem.

† There are other terms in the expansions, which are eigenfunction solutions of the boundary
layer approximation of the equations (2.7)–(2.8), not explicitly included in (2.12) because they show
a faster decay to zero with r; see Van Dyke (1975) for a discussion of the expected form of the
coordinate expansions. These asymptotic expansions are often considered in the literature as large
Rayleigh number expansions, because an artificial length L � lh is introduced and r considered
∼ L.
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For small values of r, the temperature and stream function will be described with
coordinate expansions of the form

2πθ = − ln r + A0 + A1r cosϕ+ · · · , (2.20)

ψ =

(
− 1

4π
r ln r + B0r

)
sinϕ+ · · · , (2.21)

where the terms shown in (2.20), which satisfy the condition (2.9), are solutions of
the Laplace equation, or a simplified form of (2.8) when the convective terms are
neglected. The terms appearing in the expansion (2.21) are solutions of (2.7) with
the right-hand side evaluated using (2.20). The first of these terms, also showing a
logarithmic singularity of the velocity at r → 0, is due to the buoyancy force. More
singular solutions have been eliminated from (2.20) and (2.21). The constants that
appear in these expansions must be obtained as part of the numerical solution of the
complete line source problem. The constants A0 and A1 determine, respectively, the
temperature level near the source and a vertical temperature gradient.

2.3. Numerical solution for values of r ∼ 1

Due to the singular character of the solution of the equations (2.7) and (2.8) for
r → 0 and for r →∞, we shall solve numerically these equations in the finite domain
rmin < r < rmax. We can take into account (2.20) and (2.21) to write the boundary
conditions for the temperature and stream function at r → 0 in the form

r
∂θ

∂r
+

1

2π
= r

∂ψ

∂r
− ψ +

r sinϕ

4π
= 0. (2.22)

This weak form of the inner boundary conditions, which we impose at r = rmin � 1,
does not involve the unknown constants appearing in (2.20) and (2.21).

At a finite outer boundary, at r = rmax � 1, two types of boundary conditions have
been used. In the first type the stream function and temperature at r = rmax take
the values given by the composite expansion (2.19) and by (2.12). The second type
of conditions is based on the division, according to (2.19), of the boundary r = rmax
into an inflow interval, ϕ∗ < ϕ < π, where vr is negative, and an outflow interval,
0 < ϕ < ϕ∗, with positive radial velocity. The separation angle, ϕ∗, depends on the
value of rmax. At the inflow boundary we used (2.19) and θ = 0, while at the outflow
boundary we used the following mild boundary conditions:

∂2ψ

∂r2
=
∂θ

∂r
= 0. (2.23)

No significant differences have been observed in the stream function and temperature
distributions, in the main part of computational domain, when using the two types
of boundary conditions, aside from small differences near the outflow boundary.

The governing equations (2.7) and (2.8), written in terms of η = ln r to improve the
accuracy of the numerical solution at small values of r, were solved using a second-
order, three-point, finite-difference approximation for the first and second derivatives.
To obtain the stationary distributions of all variables a pseudo-unsteady form of the
governing equations was used. We consider that the stationary distribution has been

reached when maxi,j |fi,j− f̂i,j | < 10−9, where f and f̂ are the values of the temperature
or the stream function at the current and previous levels. Calculations were carried
out using 101 × 101 and 201 × 201 points to test the grid independence, and with
different values of rmin and rmax to ensure independence from the computational
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Figure 1. Pure free convection around a line source of heat: streamlines (solid lines)
and isotherms (dashed lines).

domain. For values of rmin below 10−2 and rmax above 102 no significant changes in
the temperature distribution and flow fields were observed.

Shown in figure 1, with dashed and solid lines, are the isotherms and streamlines of
the pure free convection due to a horizontal line source of heat. The vertical velocity
and temperature distributions in the centre-plane, y = 0, are shown in figure 2 with
solid and dashed lines; for comparison we also give the results provided by the first
two terms of the far-field expansion. The values of the constants A0 and B0, appearing
in the small-r description (2.20) and (2.21), have been found to be 2.71 and 0.317,
respectively.

3. Free convection heat transfer from heated circular cylinders in porous
media

We shall begin with the analysis, in §§ 3.1 and 3.2, of the free convection around hor-
izontal heated cylinders. It will be extended to inclined, non-vertical, cylinders in § 3.3.

3.1. Formulation and numerical description for Ra ∼ 1

Because the far field is determined by q, the rate of heat transferred per unit length
of the cylinder to the porous medium, in order to facilitate the numerical solution we
shall pose the problem as to find the uniform value Tw of the surface temperature
leading to a given value of q. With the additional conditions (2.4) the system of
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Figure 2. Pure free convection: computed temperature distribution (dashed lines) and vertical
velocity (solid lines) in the vertical plane of the line source. Asymptotic descriptions are also given
(with triangles) for the temperature, θ = 0.4543z−1/3 + 0.3177z−2/3, velocity above the line source,
w = 0.4543z−1/3−0.1589z−2/3 (with circles), and below the source, w = 0.6355(−z)−2/3+0.1838(−z)−1

(with stars).

equations (2.1)–(2.3) must be solved in the domain of the porous medium, outside
the cylinder. The problem, for a circular cylinder of radius a, will be formulated in
non-dimensional form using the scales (2.6). Then, we are left with the system of
equations (2.7)–(2.8), to be solved with the boundary conditions (2.10), at r →∞, and

ψ = 0, θ = θw, at r = ε = a/lh, (3.1)

the cylinder surface. The surface temperature θw , considered uniform, must be deter-
mined as a function of ε, the non-dimensional radius of the cylinder, to ensure that∫ 2π

0

r
∂θ

∂r
dϕ = −1 at r = ε. (3.2)

The Nusselt and Rayleigh numbers, defined by

Nu =
q

2πλ(Tw − T∞)
, Ra =

Kρfβg(Tw − T∞)a

αµf
, (3.3)

can be written in terms of ε, the only parameter left in the problem, as

Nu = 1/2πθw(ε) and Ra = εθw(ε) (3.4)

giving a parametric representation of Nu(Ra).
The numerical technique described in § 2 was used to solve equations (2.7)–(2.8),

in the domain ε < r < rmax, using with the far-field behaviour given by (2.12) and
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(2.19), and the conditions (3.1) and (3.2) at r = ε. The calculated values of the Nusselt
number are shown in figure 4 with circles for a wide range of Ra, down to 10−2.

3.2. Heat transfer at Ra� 1, and correlation of Nu(Ra) for all values of Ra

We can anticipate from (3.4) that Ra � 1 leads to ε � 1. This implies that the flow
and temperature fields can be divided into two regions with disparate scales lh and a.
In the outer region, scaled with lh, the hot cylinder acts, in a first approximation, as a
pure line source of heat. In the inner region, scaled with a, the effects of convection
are negligible, in a first approximation.

The inner solution for r/ε ∼ 1 is given in dimensionless form for ε � 1 by the
expansions

2πθ = 2πθw − ln (r/ε) + · · · , (3.5)

ψ =

{
Br − 1

4π
r ln r −

(
Bε− 1

4π
ε ln ε

)
ε

r

}
sinϕ+ · · · . (3.6)

The requirement that the distributions (2.20) and (2.21) coincide with (3.5) and (3.6)
in the intermediate region ε� r � 1 leads to B = B0, and the relation

2πθw + ln ε = A0 (3.7)

between the surface temperature of the cylinder and ε. Here B0 = 0.317 and A0 = 2.71,
are taken from the results of § 2.3. Taking into account (3.4), the following relation is
obtained between the Nusselt and Rayleigh numbers:

Nu−1 = A0 − ln(2πNuRa). (3.8)

Based on the asymptotic relation (3.8) for Ra� 1, and our numerical calculations,
we propose a correlation between Ra and Nu for all values of Ra not invalidating
the linear Darcy’s law of the form

Ra =
1

2πNu
exp

(
2.71− 1

Nu

)
F(Nu) (3.9)

with the coefficients in the function F

F = 1 + a1Nu
1/2 + a2Nu

1 + a3Nu
3/2 + a4Nu

2 + a5Nu
3 (3.10)

chosen to ensure that (3.9) coincides with (3.8) for Ra → 0 (when Nu → 0). We
have also taken into account the relation Nu = bRa1/2, with b = 0.3995, obtained
by Merkin (1979) in his analysis of the thermal boundary layer for large Rayleigh
numbers (when Nu � 1); therefore a5 = 2πb−2 exp (−2.71) = 2.592. Finally, the
values of the remaining coefficients in (3.10), a1 = 1.088, a2 = −6.581, a3 = 11.31 and
a4 = −4.866, are chosen so as to correlate the results, shown with circles in figure 3,
of our numerical calculations. The correlation (3.9) is shown in figure 3 with a solid
line; also shown with dashed lines are the asymptotic relation (3.8), for Ra� 1, and
the correlation proposed for Ra� 1 by Ingham & Pop (1987)

Nu = 0.3995Ra1/2 + 0.78− 1.9Ra−1/2. (3.11)

3.3. Free convection around inclined, non-vertical, line sources of heat and cylinders

The effects of the inclination with respect to the horizontal of an infinitely long
line source of heat or hot cylinder can be easily taken into account. We shall use
a coordinate system with x (positive downwards) in the direction of the line source
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Figure 3. Average Nusselt number as a function of the Rayleigh number for pure free convection,
and of the Péclet number for pure forced convection; numerical results are shown with circles and
correlation formulae (3.9) and (5.7) with solid lines. Triangles: asymptotic relations (3.8) and (3.11)
for small and large values of Ra. Stars: asymptotic description (5.6) for small values of Pe. Dashed
line: average Nusselt number in terms of the Rayleigh number for the case of combined convection
with V∞ = 0.1 and γ = π/2.

or the cylinder and two coordinates, y and z (positive upwards), to characterize the
points in planes normal to this direction, chosen so that the components of the gravity
acceleration with respect to this coordinate system are (gl, 0,−gn). Due to the trans-
lation invariance, with respect to the coordinate x, of the equations and boundary
conditions, the temperature and the velocity components are only functions of the
coordinates y and z. Hence, if we replace g by gn in the definition (2.6) of the velocity
and length scales, vh and lh, the temperature, the pressure and the transverse velocity
components u and v are functions only of y and z, given by the previous analysis
for horizontal line sources and hot cylinders. The longitudinal velocity component u,
when also measured with the scale vh, is given by u/θ = −gl/gn = − tanφ, where φ is
the angle of the inclination of the line source or cylinder with respect to the horizontal.
No steady solution exists for vertical cylinders without edges, for which gn = 0.

4. A horizontal line source of heat in a uniform stream
4.1. Formulation and near- and far-field descriptions

Consider a horizontal line source of heat in a porous medium, when far from the
source the fluid has a velocity U∞ and temperature T∞. For the description of the
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Figure 4. System of coordinates and definition of γ for forced and natural convection around a
line source of heat. The computed streamlines and isotherms correspond to the case V∞ = 0.1 and
γ = π/2. ψ is given with solid lines at intervals 4; θ is given with dashed lines at 0.05 intervals
between 0.05 and 0.3.

flow we shall use the coordinate system shown in figure 4. The angle γ characterizes
the direction of the forced convection; when γ = 0 the forced flow is vertical and
upwards.

With the variables measured with the scales (2.6), corresponding to free convection,
the governing equations (2.7)–(2.8) have to be solved with the conditions (2.9), at
r → 0, and

ψ/r → V∞ sin (ϕ− γ) and θ → 0, at r →∞, (4.1)

and the requirement that ψ and θ are 2π-periodic in ϕ; we can choose ψ to be zero
at r = 0. The non-dimensional value, V∞ = U∞/vh, of the uniform velocity of the free
stream and the angle γ are the only parameters remaining in the non-dimensional
formulation of the problem.

For the numerical solution we shall begin with the asymptotic representation of the
solution for r � 1 and r � 1. In the vicinity of the source, for r � 1, heat conduction
and the flow due to free convection are dominant, being responsible for the singular
behaviour of θ and ψ; the leading terms are given by

2πθ = − ln r + A0 + A1r cos(ϕ− γ1) + · · · , (4.2)

ψ =

(
− 1

4π
r ln r

)
sinϕ+ B0r sin(ϕ− γ2) + · · · , (4.3)
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where the constants A0, A1, B0, γ1 and γ2 can only be calculated, as functions of V∞
and γ, with the numerical solution of the problem.

Because in pure free convection in porous media the velocity in the plume decreases
like r−1/3, we can anticipate that the forced convection will dominate the far field;
so that, as seen in figure 4, the plume will be aligned, at r � 1, with the free-stream
velocity, as a thermal wake. In this thermal wake, for large values of r, the longitudinal
velocity is in a first approximation V∞, and the temperature satisfies the equation

V∞
∂θ

∂l
=
∂2θ

∂n2
(4.4)

written with coordinates l and n parallel and normal to the wake, both measured with
lh. The coordinates l and n can be approximated by r and r(ϕ− γ) for large r, where
the solution of (4.4) satisfying the conditions θ = 0 at n→ ±∞ and the condition∫ +∞

−∞
V∞θ dn = 1 (4.5)

of global thermal energy conservation is self-similar, and given by

θ
√
r = G0(ξ) = exp (−V∞ξ2/4)/2

√
V∞π, (4.6)

in terms of the similarity variable ξ = n/
√
l =
√
r(ϕ − γ), of order unity within the

thermal wake, whose thickness grows like
√
r. When writing (4.6), we implicitly assume

that the peak temperature lies at ξ = ξm = 0 even though ξm is not determined in a
first approximation. Although the value of ξm would locate more precisely the thermal
wake position, it does not influence the outer irrotational velocity perturbations.

The momentum equation in the direction of the wake takes the simplified form

u′l = θ cos γ (4.7)

allowing us to calculate the longitudinal component, u′l , of the velocity perturbations.
When writing this equation we have neglected, because it is of higher order, the term
representing the effect of the changes in pressure, p′′, due to the buoyancy forces. Notice
that associated with u′l , there is an outflow in the wake, with a volumetric flux, given by∫ +∞

−∞
u′l dn = cos γ/V∞, (4.8)

which is independent of r. This must be compensated by an outer irrotational flow,
represented by a sink of the same strength at the line source.

The buoyancy forces normal to the wake create a pressure jump in p′′, which can
be calculated using the simplified form

0 = −∂p
′′

∂n
− θ sin γ (4.9)

of the momentum equation normal to the wake.
By integrating (4.9) across the wake we obtain the pressure jump

[p′′] = −
∫ +∞

−∞
θ sin γ dn = − sin γ/V∞, (4.10)

which is independent of r, and leads to an outer irrotational motion

v′r = 0, v′ϕ = − sin γ

2πV∞
1

r
(4.11)

corresponding to a vortex at the origin, with circulation sin γ/V∞.
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The previous results can be summarized now as the first terms of an asymptotic
representation, for large values of r, of the solution of equations (2.7) and (2.8) for θ
and ψ. This is given, within the thermal wake, by

θ = r−1/2G0(ξ) + · · · , ψ = r1/2V∞ξ + D1 ln r + F1(ξ) + C1 + · · · , (4.12)

where F1 = cos γ erf (
√
V∞ξ2/4)/(2πV∞), and ξ = r1/2(ϕ− γ) is of order unity. In the

outer region

θ = 0, ψ = V∞r sin (ϕ− γ) + D1 ln r − B1(ϕ− γ − π) + C1 + · · · (4.13)

with D1 = sin γ/2πV∞ and B1 = cos γ/2πV∞; C1 can only be obtained from the
numerical solution of the complete problem.

Then, the leading terms of the composite expansion, valid for r � 1 and γ − π <
ϕ < γ + π, are

ψc = V∞r sin (ϕ− γ)− cos γ

2V∞

(
ϕ− γ
π
− erf

(√
V∞ξ
2

))
+

sin γ

2πV∞
ln r + C1 (4.14)

for the stream function ψ, and (4.6) for θ.

4.2. Numerical solution for the line heat source problem

In the numerical solution of the problem we shall use the asymptotic representation
of ψ and θ given above. Hence, at r = rmin � 1, we can use the inner boundary
conditions (2.22); and at a finite outer boundary, r = rmax � 1, we shall use (4.12)
and (4.14). We took 10−2 and 500 as typical values of rmin and rmax.

In the vicinity of the line heat source, the velocity of the fluid is dominated by
the buoyancy forces; thus, it is directed upwards and has a logarithmic singularity.
So, for γ close to π, when the forcing flow is downwards, one or two regions of
recirculation appear near the line source for all values of V∞. A recirculation zone
above a cylinder of finite radius was observed by Badr & Pop (1988), who studied
the symmetric cases γ = π and γ = 0. The numerical calculations have indicated that
the size of the recirculation region depends strongly on V∞ and the direction, γ, of
the free-stream velocity. As an illustration of how the flow features depend on γ, we
show in figures 4 and 5(a–d) the streamlines and isotherms, for V∞ = 0.1 and different
values of γ. The streamlines bounding the recirculation regions are shown with thick
lines. One can see the fast disappearance of the recirculation regions when γ deviates
from π. For some values of γ, as in the case γ = 0.85π represented in figure 5(b), only
one recirculation region remains. The upper and lower bounds of the recirculation
region are shown in figure 6, as a function of V∞ for γ = π.

Shown in figure 7 are the values of the constant A0, appearing in the near source
description (2.20) for the temperature, as a function of V∞ and various values of
the angle γ. The upper and lower solid curves, which correspond to γ = π and
γ = 0 respectively, bound the curves resulting from the numerical calculations for
intermediate values of γ; as an example, the curve obtained for γ = π/2 is shown with
circles. For large values of V∞ the flow is governed by forced convection everywhere,
and A0 tends to the asymptotic expression, shown in figure 7 with a dashed line,
A0 = ln (4/V∞) − γE , where γE = 0.577 . . . is Euler’s constant. Observe the fast
approach, with increasing values of V∞, to this asymptotic behaviour, and the small
differences when V∞ is of order unity.

The flow field structure for small, non-zero, values of V∞ is, as seen in figure 5(a–d),
fairly complicated and difficult to describe numerically, because we encounter other
scales in addition to lh. Even though we do not attempt to give a detailed description
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Figure 5. Computed flow field around a line source of heat with natural and forced convection
with V∞ = 0.1. The streamlines are shown with solid lines (ψ at intervals 4 outside the recirculation
regions, and 0.5 inside) and the isotherms with dashed lines (θ at intervals 0.05, θmin = 0.05 and
θmax = 0.3): (a) γ = 0.75π, (b) γ = 0.85π, (c) γ = 0.9π and (d) γ = π. The streamlines bounding the
recirculation regions are shown with thick lines.

of the asymptotic structure of the solution for V∞ � 1, we can indicate that for r
(scaled with lh) of order unity free convection dominates, generating a thermal plume
above the source for r � 1. This plume is bent towards the free stream at distances

r ∼ rc = V
−3/2∞ , where the entrainment velocities due to the plume, of order r−2/3,

decrease to values of order V∞. For non-horizontal free streams, the longitudinal
velocity in the plume is, at r ∼ rc, still large compared with V∞, so that the two
velocities are comparable only at distances large compared with rc.

5. The combined free and forced convection around horizontal heated
cylinders in porous media

We shall consider a horizontal heated circular cylinder of radius a embedded in a
porous medium, where, far from the cylinder, the fluid has a temperature T∞ and a
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Figure 6. The upper and lower values of the coordinate z of the recirculation region around a line
source of heat as a function of non-dimensional velocity, for γ = π.

velocity U∞, inclined an angle γ with the vertical. Our purpose is to calculate the rate
q of heat transfer to the porous medium, per unit length of the cylinder, in terms of
its uniform surface temperature Tw .

Because the far field is determined by U∞ and q, independently of the size and
shape of the cylinder, it is convenient to pose, for the moment, the problem as to
calculate Tw as a function of q. Then, we shall again use the scales (2.6) for the
formulation of the problem, as solving the system of equations (2.7)–(2.8) with the
boundary conditions (4.1) at r → ∞, leading to the asymptotic form given by (2.12)
and (2.19). At the circular cylinder surface we use the conditions

θ = θw, ψ = 0,

∫ 2π

0

r
∂θ

∂r
dϕ = −1 at r = ε = a/lh. (5.1)

Here the surface temperature, θw = (Tw−T∞)λ/q, has to be determined as a function
of ε, γ and V∞ = U∞/vh, which are the parameters remaining in the problem.

The Nusselt number, defined in (3.3), is given by Nu = 1/2πθw . The Rayleigh and
the Péclet numbers,

Ra = Kρfgβ(Tw − T∞)a/αµf and Pe = U∞a/α, (5.2)

are given in terms of the above parameters by

Ra/ε = θw = 1/2πNu, Pe/ε = V∞ (5.3)
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Figure 7. Calculated values of A0 for γ = 0 (lower solid line), γ = π (upper solid line) and γ = π/2
(circles) in the forced and natural convection flow around heated line source. Dashed line: the
asymptotic relation A0 = ln (4/V∞)− γE , for V∞ � 1.

so that Nu can also be determined as a function of γ, Ra and Pe. An example of
the form of the isotherms and streamlines is shown in figure 8 for ε = 1, V∞ = 0.1
and γ = π/2. The effects of the circulation produced by the jump in pressure across
the wake appear clearly in this figure and involve a much slower decay of the
velocity perturbations than those associated with the dipole corresponding to the
basic irrotational flow around the cylinder.

For Ra� 1 and V∞ ∼ 1 we can again use, as in § 3, the technique of matched
asymptotic expansions to describe the temperature and flow field around the cylinder.
In the inner region, r ∼ ε, the temperature is given by the heat conduction solution
(3.5) In the outer region θ and ψ are given by the solution of the line source problem,
leading for r → 0 to

2πθ = − ln r + A0(V∞, γ). (5.4)

The matching condition between (3.5) and (5.4) leads again to the relation

1/Nu = − ln(2πNuRa) + A0(V∞, γ), (5.5)

valid for Ra� 1 and Pe� 1. This relation, together with (5.3), allows us to calculate
Nu in terms of Ra, Pe and γ. In (5.5) A0 = 2.71 for V∞ = Pe/2πNuRa = 0, and
A0 = ln(4/V∞)− 0.577 for V∞ � 1, when the heat transfer is dominated by forced
convection. So that, for V∞ � 1 and Pe� 1

1/Nu = − ln(Pe/4)− 0.577 . . . . (5.6)
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Figure 8. Calculated streamlines (solid lines) and isotherms (dashed lines) for the combined natural
and (horizontal) forced flow around a heated cylinder with ε = 1, V∞ = 0.1 and γ = π/2. To be
compared with the case ε = 0 shown in figure 4.

For the description of the heat transfer in pure forced convection, we can use for
the velocity field the irrotational flow, without circulation, around the cylinder. The
energy equation can be easily solved numerically to evaluate the Nusselt number as
a function of the Péclet number. We propose a correlation of the numerical results,
accounting for the asymptotic form (5.6) for Pe � 1, and the well known form
Nu = 0.718Pe1/2 for large Péclet numbers. The resulting expression is

Pe/4 = (1 + b1Nu
1/2 + b2Nu+ b3Nu

2) exp (−0.577− 1/Nu), (5.7)

where b3 = 0.863, and the adjustable parameters b1 and b2 are chosen as −0.401
and 0.786, respectively. This correlation is also plotted in figure 3, together with the
asymptotic description (5.6) for Pe� 1. It is interesting that the numerical results for
Nu(Pe) and V∞ = 1 cannot be distinguished in figure 3 from the asymptotic results
corresponding to pure forced convection. Similarly, the numerical results for Nu(Ra)
and V∞ = 0.1 are close to the limiting results for Nu(Ra), corresponding to V∞ = 0,
for moderately small values of Ra.

In figure 9 we sketch, for γ = π/2, in the parameter plane Pe, Ra the lines
corresponding to Nu = 0.3 and 1, which follow the numerical results represented by
circles. The line Nu = 0.3 has also been calculated using the asymptotic relation (5.5)
for small values of Pe and Ra, and it is represented with a dotted line in figure 9.
In the figure we also give the asymptotic values corresponding to the limiting cases
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Figure 9. Sketch, for combined convection in the parameter plane Pe, Ra, of the lines (solid) of
constant Nu = 0.3 and 1, resulting from the calculated values for γ = π/2 shown with circles; the
dotted line and triangles correspond to the asymptotic relation (5.5) for Nu = 0.3. Also shown are
lines of constant V∞ (dashed) and constant ε (dash-dotted).

Ra → 0 and Pe → 0. Also plotted in the figure are lines corresponding to various
constant values of V∞; the values of the Nusselt number can be calculated along these
lines using the definitions (5.3). For more information we also give the lines where ε
is 0.1, 1 and 10.

6. Concluding remarks
We began, in § 2 of this paper, with the numerical solution of the problem of

free convection due to a horizontal line source of heat in an unbounded saturated
porous medium. The description is universal because no parameters are left in the
non-dimensional formulation of the problem, when using the scales defined in (2.6).
When these scales are used in the formulation of the problem of free convection
around circular cylinders only one parameter remains, the non-dimensional cylinder
radius ε = a/lh. The numerical solution of the problem has been carried out for a
wide range of values of ε, thus obtaining a parametric representation of the relation
between the Nusselt and Rayleigh numbers.

For ε � 1 we have used the method of matched asymptotic expansions to obtain
an explicit relation

Ra = (1/2πNu) exp (2.71− 1/Nu) (6.1)

between Ra and Nu valid for Ra� 1. This was used as a basis to obtain a correlation
given by (3.9) and (3.10), for the relation Nu = Nu(Ra).
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A numerical description is also given in § 4 for the flow resulting from the combined
effects of forced and natural convection around a line heat source. The results depend
on the angle γ of inclination with the vertical of the free-stream velocity and on its
value, V∞, measured with the characteristic velocity vh due to pure free convection.
When the forced flow is directed downwards recirculation regions around the line
heat source are observed. The far field includes a thermal wake aligned with the
forced flow, where the velocity and temperature perturbations decay as r−1/2, and an
outer irrotational flow, decreasing as r−1, represented by a sink and a vortex placed
at the line source. This far-field description, due to slow decay with r of the velocity
perturbations, is essential for the numerical analysis of the flow and temperature fields
around the source.

This far-field description, depending on V∞ and γ, is also applicable to the forced
flow around heated cylinders, even though the near-field description to be obtained
numerically depends also on the Rayleigh number. For Ra � 1 the results of the
line source analysis have been used to derive a relation (5.5) for the Nusselt number.
The values of the Nusselt number resulting from our numerical analysis of the flow
around horizontal heated cylinders in porous media can be obtained from figure 9,
where lines of constant Nu, ε and V∞ are shown in the parameter plane Pe, Ra, for
γ = π/2.

Although our numerical calculations have only been carried out for cylinders of
circular shape, the asymptotic analysis for small values of the Rayleigh and Péclet
numbers can be easily extended to deal with other cylinder shapes. This is so because
the outer region is described by the universal line heat source analysis. In the inner
region, where heat conduction is dominant, T is no longer given by (3.5). However,
complex transform methods can be used to calculate, in terms of q, the temperature
distribution, T − Tw , near the cylinder, and the value of the effective radius ae that
appears in the temperature distribution in the intermediate matching region, where
θ is of the form (3.5) with a replaced by ae. For example, for cylinders of elliptical
shape ae = (a+ b)/2, in terms of the semi-axes a and b.

We do not attempt to give here a description of the asymptotic structure of the
flow for large values of Ra and Pe, when V∞ = Pe/Ra is of order unity and γ 6= 0.
In this case, ε � 1 and we might expect the heated region surrounding the cylinder
to become a thin boundary layer. This is so for the case γ = 0, analysed by Cheng
(1982) with the boundary layer approximation. However, when γ 6= 0, the boundary
layer equations, solved with the condition that the outer flow is dominated by the
forced flow, may lead to recirculation and separation and then fail to represent the
flow, as shown clearly by the numerical results of Badr & Pop (1988) for the case
γ = π; large recirculation regions are then encountered around the cylinder. We did
not aim to include in the paper an stability analysis of the flow.

This research has been supported by the Spanish DCICYT, under Contract No
PB94-0400, and by INTA, under Contract No 4070-0036/1996.
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