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Laminar free convection induced by a line heat
source, and heat transfer from wires at small

Grashof numbers
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The buoyancy-induced laminar flow and temperature fields associated with a line
source of heat in an unbounded environment are described by numerically solving
the non-dimensional Boussinesq equations with the appropriate boundary conditions.
The solution is given for values of the Prandtl number, the single parameter, ranging
from zero to infinity. The far-field form of the solution is well known, including a
self-similar thermal plume above the source. The analytical description close to the
source involves constants that must be evaluated with the numerical solution.

These constants are used when calculating the free convection heat transfer from
wires (or cylinders of non-circular shape) at small Grashof numbers. We find two
regions in the flow field: an inner region, scaled with the radius of the wire, where
the effects of convection can be neglected in first approximation, and an outer
region where, also in first approximation, the flow and temperature fields are those
due to a line source of heat. The cases of large and small Prandtl numbers are
considered separately. There is good agreement between the Nusselt numbers given
by the asymptotic analysis and by the numerical analysis, which we carry out for
a wide range of Grashof numbers, extending to very small values the range of
existing numerical results; there is also agreement with the existing correlations of the
experimental results. A correlation expression is proposed for the relation between
the Nusselt and Grashof numbers, based on the asymptotic forms of the relation for
small and large Grashof numbers.

1. Introduction
The study of natural convection induced by heated horizontal circular cylinders in

an infinite fluid space has received much attention in the literature, due to the role
it plays in many engineering and scientific problems. See Gebhart et al. (1988) for
an extensive review of these studies. Most of them correspond to cases with large
Grashof numbers, when heat conduction and viscous forces are confined to thin free
convection boundary layers followed by thin thermal plumes above the cylinders. A
number of studies, beginning with the work of Hermann (1936), have been devoted
to the description of these boundary layers and plumes, based on the boundary layer
approximation of the Boussinesq equations. Numerical investigations, also based on
the Boussinesq equations, have been carried out, for large and moderate Rayleigh
numbers, by, among others, Kuehn & Goldstein (1980), Farouk & Güçeri (1981) and
Saitoh, Sajik & Maruhara (1993). Solutions have been given in the literature for a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148652221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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wide range of Rayleigh numbers, 100 6 Ra 6 107, but not for the cases of small and
extremely small Rayleigh numbers to be considered in this paper.

The plumes generated by free convection above heated cylinders have also been
widely investigated, beginning with the pioneering work of Zeldovich (1937). He was
the first to understand that the flow takes an asymptotic self-similar form far above
the cylinder. The far-field distributions of temperature and velocity are determined
by the heat lost by the cylinder, independently of its size and shape, as a line source
of heat. The equations describing the self-similar flow structure were written later by
Schuh (1948), Yih (1952, 1969), and independently by Mahony (1957). Yih solved
the equations in closed form for two values of the Prandtl number, Pr = 5/9 and
2. Numerical solutions of the self-similar equations were given later by Fujii (1963),
Gebhart, Pera & Schorr (1970) and Fujii, Morioka & Uehara (1973). The first term in
an asymptotic description for Pr � 1 was obtained by Spalding & Cruddace (1961)
and by Kuiken & Rotem (1971), who also analysed the case Pr � 1. It is remarkable
that the analogous asymptotic structure, for Pr � 1, of the plume above a point
source of heat has been given only recently by Vázquez, Pérez & Castellanos (1996).

With the aim of resolving discrepancies between the self-similar predictions and
experiments, higher-order effects, in an expansion for large distances above the line
source, have been studied by Riley (1974) and by Hieber & Nash (1975), who
also looked at the stability of the plume, previously analysed by Haaland & Sparrow
(1974). Higher-order effects for the far-field behaviour of free convection plumes from
line sources on a wall have been considered by Mörwald, Mitsotakis & Schneider
(1986). The structure and stability of the buoyant plumes above heated wires and line
sources of heat in a bounded region has also been numerically analysed by Desrayaud
& Lauriat (1993), Deschamps & Desrayaud (1994) and Lauriat & Desrayaud (1994)
using the Boussinesq equations. Their analysis of free convection from heated wires
was mainly concerned with the description of the instabilities that lead to a meandering
motion of the plume far above the source, which is independent of the details of
the flow near the heat source. They did not cover the low Grashof number cases,
and their line source calculations use a mesh too coarse near the source to give a
description accurate enough for the evaluation of the flow around thin wires and the
Nusselt number dependence on the Grashof number.

A first attempt to analyse the flow structure at low Grashof numbers appears in
Mahony (1957). Understanding that in this case the temperature distribution close
the wire is dominated by heat conduction, he obtained an approximate theoretical
correlation of the Nusselt and Grashof numbers, by joining smoothly, at a point
on the symmetry plane above the cylinder, the temperature of the solution of the
heat conduction equation around the cylinder and the centreplane temperature of
the similarity solution for the plume. Although the two distributions do not match,
this correlation was found to compare well with the experimental results of Collis
& Williams (1954). Nakai & Okazaki (1975) used a patching procedure, similar to
that of Mahony, and obtained a correlation formula by equating the circumferential
average temperature given by heat conduction in a concentric surface around the
cylinder to that in the plume above the cylinder. A numerical analysis based on
an approximate form of the equations, valid only for Gr � 1, was used by Fujii,
Fujii & Matsunaga (1979) to calculate the Nusselt number and to propose a cor-
relation of the experimental results, aiming to cover the range 10−10 < Ra < 107.
An approximate analysis of the free convection heat transfer from thin wires in
porous media has been given by Ingham & Pop (1987), using also the approach of
Mahony.
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In this paper we deal with the pure free convection flow and heat transfer from
horizontal, infinitely long, circular cylinders. We shall be concerned, mainly, with the
cases, which have received less attention in the literature, in which the size lh of the
heated region surrounding the wire is not small compared with its radius a. For
example, for gases, with Pr ∼ 1, these cases correspond to Grashof numbers of order
unity, when lh ∼ a, or small compared with 1, when lh � a. They are encountered at
low pressures or at microgravity conditions.

The analysis will be based on the numerical solution of the Boussinesq equations,
written in non-dimensional form in § 2 after identifying the scales encountered in the
analysis of the cases Gr . 1. For Gr � 1 the flow structure is well represented by
that of a line source of heat, described in § 3 for Pr ∼ 1, in § 4 for Pr � 1, and in
Appendix A for Pr � 1. Section 5 is devoted to the description of the results of the
numerical analysis of the cases Gr ∼ 1 and to the asymptotic analysis of the cases
with Gr � 1. Section 6 will be devoted to the conclusions and generalization of the
results of our asymptotic analysis for a/lh → 0 to deal with non-circular cylinder
shapes and non-Boussinesq effects.

2. Formulation
The free convection problem will be posed in this paper as to find the surface

temperature, Tw , of the wire that results in a given heat loss rate, q, per unit length.
We proceed in this way because, as shown by Zeldovich (1937), q determines the
far-field distributions of velocity and temperature that we need to describe to obtain
the numerical solution. We shall be concerned with the free convection flow induced
by heated horizontal or inclined, infinitely long, wires. For an infinitely long wire the
temperature distribution and, therefore, the heat transfer from the wire are not affected
by the gravity component gl in the direction of the wire. The temperature distribution
and the flow field transverse to the wire axis are two-dimensional, determined by
the corresponding gravity component gn. The velocity field parallel to the wire axis,
induced by the longitudinal buoyancy force proportional to the gravity component
gl , is given by a linear equation, whose numerical solution for a line source of heat is
described in Appendix B.

In our analysis we shall use the Boussinesq approximate form of the conserva-
tion equations, based on the assumption that the density variations, when mea-
sured with the far-field density, are small compared with unity. They are given
by the product, −β(T − T∞), of the volumetric thermal expansion coefficient β
and the temperature variations, and when multiplied by the acceleration due to
gravity g determine the buoyancy force per unit mass. For gases the Boussinesq
approximations are conditioned to the requirement T − T∞ � T∞; then, β = 1/T∞
and the kinematic viscosity, ν, and the thermal diffusivity, α, can be considered as
constant.

The only parameters appearing in the Boussinesq equations are gβ, ν and α, while
two additional parameters enter in the boundary conditions: the ratio q/λ∞ of the
heat source strength and heat conductivity, and the wire radius a (or an equivalent
length scale for cylinders of non-circular shape).

It is important to observe that gβ, α and q/λ∞ define the scales

lh = (gβq/λ∞α
2)−1/3, vh = (αgβq/λ∞)1/3, (Th − T∞) = q/λ∞ (2.1)

which can be used to measure the spatial coordinates x′, velocity v′ and temperature
variations T − T∞, when writing the Boussinesq equations and boundary conditions
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Figure 1. The system of coordinates, the streamlines (dashed lines) and isotherms (solid lines)
around the line source of heat, computed for Pr = 0.72. Gravity acts in the negative x-direction.

in non-dimensional form. These equations, using the cylindrical coordinates r = r′/lh
and the angle ϕ with the vertical direction, defined in figure 1, take the form

ω = −∆ψ, (2.2)

vr
∂ω

∂r
+
vϕ

r

∂ω

∂ϕ
= Pr∆ω −

(
sinϕ

∂θ

∂r
+

cosϕ

r

∂θ

∂ϕ

)
, (2.3)

(
vr
∂θ

∂r
+
vϕ

r

∂θ

∂ϕ

)
= ∆θ, (2.4)

in terms of the non-dimensional temperature rise θ = (T − T∞)/(Th − T∞), stream
function ψ, and vorticity ω. The velocity components, vr = r−1ψϕ, vϕ = −ψr , and θ,
ω and ψ are 2π-periodic functions of ϕ; θ is symmetric and ω and ψ antisymmetric
in ϕ.

For the boundary conditions, we require

θ → 0, v → 0 at r →∞ (2.5)

outside a slender thermal plume above the source, where, as shown in § 3.3, r � 1
and ϕ ∼ r−3/5, vr ∼ r1/5. The conditions at the wire surface, representing non-slip of
the velocity and the given heat output from the wire, take the form

r = a/lh = ε :

∫ 2π

0

r
∂θ

∂r
dϕ = −1, θ = θw, v = 0, (2.6)

where the value θw of the wire surface temperature, assumed to be uniform, is to be
calculated.



Laminar free convection at small Grashof numbers 203

(a) (b)

lh lv lv lh

dt
lh Pr 

–5/6

Figure 2. Sketch of the shape and position of the thermal (solid lines) and viscous (dashed lines)
regions for (a) Pr � 1 and (b) Pr � 1. In both cases lv = Prlh.

The only parameters left in the formulation are the Prandtl number, Pr = ν/α, and
the non-dimensional radius of the wire

ε = a/lh = (a3gβq/λ∞α
2)1/3. (2.7)

Notice that ε3Pr−2 is the Grashof number based on a and the temperature difference
q/λ∞.

The solution of the problem (2.2)–(2.6) must provide the non-dimensional wire
surface temperature rise θw = (Tw − T∞)/(Th − T∞), or equivalently the Nusselt
number

Nu = q/2π(Tw − T∞)λ∞ = 1/2πθw, (2.8)

as a function of ε and Pr.
If we had posed the free convection problem in the traditional way, as to find q in

terms of (Tw−T∞), then the same equations, which include the dimensional parameters
gβ, ν and α, should be solved with boundary conditions where (Tw−T∞) and a appear
as additional parameters. When this problem is written in non-dimensional form, with
a as length scale and (T −T∞) measured with (Tw −T∞), we are left with Pr and the
Grashof number

Gr = gβ(Tw − T∞)a3/ν2, (2.9)

or equivalently the Rayleigh number, Ra = GrPr, as the only two parameters
determining the Nusselt number and the flow structure.

The relation GrPr2 = ε3/2πNu between ε and Gr is not direct, because it involves
the still unknown Nu(ε, P r). However, at least for Pr ∼ 1, when a and lh are the
only length scales in the problem, we may expect ε and Gr to grow simultaneously
from small to large compared with unity. For values of Pr very small or very large
compared with unity, we encounter an additional scale, lv , the size of the region
around the wire where viscous effects are important. It turns out that lv = lhP r (when
lv/a & 1), both for small and large values of Pr, as we shall see in § 5 and in Appendix
A. The structure of the solution will depend not only on ε = a/lh but also on the
ratio ε̂ = a/lv = ε/P r. A sketch of the shape and position of the thermal and viscous
regions, for line heat sources, is given in figure 2 for Pr � 1 and Pr � 1.

The cases ε� 1, corresponding to large Grashof numbers, above the line GrPr2 in
the (Gr, P r)-plane of figure 3, have received much attention in the literature because
they are encountered often in applications. Their analysis, as shown in Leal (1992)
for example, can be carried out using the boundary layer approximation, because the
heated region around the cylinder is a layer of thickness of order a(GrPr2)−1/4 for
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Figure 3. Gr, P r parametric plane: dashed line, computed threshold values of Gr(Pr) for the
appearance of a recirculation bubbles; dotted line, asymptotic threshold values for Pr � 1. The
flow field induced by the hot wire is that of a line source below the line ε = 1. Below the line ε̂ = 1,
vorticity is found below the wire at distances large compared with its radius.

Pr 6 1 and a(GrPr)−1/4 for Pr � 1, small compared with a; the corresponding Nusselt
numbers are then of order (GrPr2)1/4 and (GrPr)1/4, respectively. The description in
§ 5 of the cases with ε ∼ 1 is based on numerical solutions of the complete Boussinesq
equations, which are used to calculate Nu = Nu(ε, P r). The numerical results show a
recirculating region above the wire for values of the Grashof larger than a threshold
value that depends on Pr, shown in figure 3 with a dashed line.

The cases ε = a/lh � 1, corresponding to small Grashof numbers, can be anal-
ysed with the technique of matched asymptotic expansions, as done by Kaplun &
Lagerstrom (1957) for the low-Reynolds-number flow past a cylinder. For ε� 1 and
Pr ∼ 1, we find two distinguished regions in the flow field surrounding the wire. One
is an inner, Stokes-type, region scaled with a, where the temperature and velocity
fields are dominated by heat conduction and viscous forces, with negligible effects
of convection. The outer heated region around the wire has a much larger scale lh,
determined by the balance of conduction with the convective transport resulting from
the flow induced by the buoyancy forces. The full Boussinesq equations (2.2)–(2.4)
must be used to describe the flow and temperature fields in this outer region, which
is the base of the self-similar free convection plume encountered at distances large
compared with lh.

When looking at the flow with the outer scale lh, the hot cylinder appears to act,
in the limit a/lh → 0, as a line source of heat. This is so in the low-Grashof-number
limit, because the arresting effect of the drag of the cylinder on the free convection
flow can be neglected in first approximation. For this reason, we begin with the
description, in the following two Sections, of the steady laminar flow induced by a
horizontal line source of heat of given strength q. In § 5 we show how this analysis
can be used, with the technique of matched asymptotic expansion, to calculate the
Nusselt number in free convection flows induced by heated wires at small Grashof
numbers or, more precisely, for small values of ε. We use the results of the asymptotic
analysis to propose a correlation of the Nusselt numbers provided by our numerical
solution of the problem (2.2)–(2.6) for various finite values of ε and Pr.
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3. Free convection from a line source of heat
3.1. Formulation

We shall describe in this Section the flow and temperature fields generated by gravity
forces when a horizontal source of heat is placed in a fluid, stagnant and with a
temperature T∞ far from the source.

The analysis will be restricted to cases where the expected temperature variations
(T −T∞) are small compared with T∞ in most of the flow field and, thus, we can use
there the Boussinesq form of the conservation equations. Then, as indicated in § 2, the
parameter q/λ∞, characterizing the strength of the heat source, and the dimensional
parameters gβ and α, which appear together with ν = αPr in the equations, define
the characteristic values, lh, vh and Th − T∞, given in (2.1), of the size of the heated
region around the source, and of the velocities and temperature rise in the region.

These scales can also be obtained from three relations derived by equating the
estimates of the order of magnitude of the terms of the conservation equations.
Thus, from the line heat source definition we obtain Th − T∞ = q/λ∞; the balance
of the convective and buoyancy terms in the momentum equation leads to v2

h/lh =
gβ(Th − T∞); and, finally, the balance in the energy equation of convection and
conduction leads to vhlh/α = 1. When these scales are used to formulate the problem
in non-dimensional form we obtain the system (2.2)–(2.4) with the far-field conditions
(2.5).

When analysing the problem of free convection from a line source the conditions
(2.6) are replaced by

lim
r→0

∫ 2π

0

r
∂θ

∂r
dϕ = −1, (3.1)

corresponding to the limit ε → 0 in (2.6), when θw → ∞ and the arresting effect of
the wire disappears so that there is no source of momentum at r = 0. In the resulting
non-dimensional formulation, appropriate for the description of the cases Pr . 1, the
Prandtl number appears as a factor in the term representing the diffusion of vorticity.

Notice that the non-dimensional parameter q/λ∞T∞ must be small compared with
unity for the Boussinesq approximations to apply in the main region, r = r′/lh ∼ 1, of
the flow field. Even if q/λ∞T∞ � 1, as we assume to be the case in this paper, non-
Boussinesq effects associated with the variation of heat conductivity with temperature
must be taken into account for r � 1, close to the line source, as we shall show in §4̇.
Fortunately, they do not affect the description of the region r & 1.

The solution of the problem (2.2)–(2.5) and (3.1), involving Pr as the single param-
eter, can only be obtained numerically after describing with coordinate expansions
the singular form of the solution for small values of r, in § 3.2, and the well-known
far-field form, for r � 1, in §3.3.

3.2. The form of the solution in the Stokes region r � 1

For values of r � 1, the temperature and stream function satisfy the Stokes equations,
obtained from (2.2)–(2.4) by neglecting the convective terms because they involve lower
derivatives. Then, for r � 1, θ, ω and ψ can be described by the expansions

2π θ = − ln r + A0 + A1r cosϕ+ . . . , (3.2)

ω =

{
C1r −

r ln r

4πPr

}
sinϕ+ . . . , (3.3)
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ψ =

{
U0r + r3

(
ln r − 3/4

32πPr
− C1

8

)}
sinϕ+ C2r

2 sin 2ϕ+ . . . , (3.4)

where we have eliminated the solutions of the Stokes equations more singular at
r = 0 than the solution ln r, required by the heat source. The perturbations to the
small-r expansion coming from the local effect of the convective terms are of order
r2 ln r, or higher. They have not been included in (3.2)–(3.4) because they do not play
a significant role in the numerical description for r � 1; this is also the case for the
terms in (3.3) and (3.4) inversely proportional to Pr, representing the effects of the
local buoyancy forces.

The constants appearing in this small-r expansion must be obtained as part of the
numerical solution of the line source problem. A0 determines the temperature level
near the source, A1 measures the vertical temperature gradient, and U0 is the vertical
velocity induced by the buoyancy forces at the line source.

3.3. Asymptotic form of the solution for large r

The asymptotic form of the solution of the system of equations (2.2)–(2.4) for values
of r � 1, and values of ϕ� 1, is given by the well-known self-similar solution

θ = r−3/5G(ξ), ψ = r3/5F(ξ) (3.5)

of the boundary layer form of (2.2)–(2.4), involving the similarity variable ξ = ϕr3/5 =
y/x2/5, of order unity in the thermal plume. For r � 1, outside the plume, θ = ω = 0.

The equations determining F(ξ) and G(ξ), first obtained by Schuh (1948) and Yih
(1952), are

5PrF ′′′ + 3FF ′′ − F ′2 + 5G = 0, (3.6)

5G′ + 3FG = 0, (3.7)

to be solved, for ξ > 0, with the symmetry conditions F = F ′′ = 0 at ξ = 0, and the
boundary conditions F ′ = G = 0 at ξ → ±∞. In addition

∫ ∞
−∞ F

′Gdξ = 1 must be
satisfied to ensure that the vertical convective flux of energy in the plume equals the
heat generated at the source.

In our analysis of the steady laminar flow, we shall use this far-field description of
the plume, even though it may lose stability, as shown by Haaland & Sparrow (1973),
when the Reynolds number, ∼ r3/5, based on the plume thickness is larger than a
critical value, which turns out to be large compared with 1.

The numerical solution of (3.6)–(3.7) determines F(ξ → ∞) = F∞, and thus the
entrainment velocity ve = −(3/5)F∞r

−2/5 by the plume. The function F∞(Pr) has
the asymptotic behaviour F∞ = 1.355Pr2/5 for Pr → ∞, obtained by Spalding &
Cruddace (1961), and F∞(0) = 1.515, as calculated by Kuiken & Rotem (1971). The
expression F∞ = 1.515{1 + (1.355/1.515)5/2Pr}2/5 correlates, with errors lower than
2.5%, the numerical values that we obtained for F∞(Pr).

As indicated before, outside the thermal plume, for large r,

θ = ω = 0, ψ = F∞r
3/5 sin (3(π − ϕ)/5)/ sin (3π/5), (3.8)

which corresponds to the irrotational flow associated with the entrainment velocity
ve, in an unbounded environment of temperature T∞.
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3.4. Numerical solution in the main, Boussinesq, region

From (3.2)–(3.4) it follows that the boundary conditions at r → 0 for a pure line
source of heat can be written in the form

r → 0 : r
∂θ

∂r
+

1

2π
= r

∂ω

∂r
− ω = r

∂ψ

∂r
− ψ = 0. (3.9)

This weak form of the inner boundary conditions was imposed at r = rmin � 1,
after writing the equations in terms of η = ln r in order to improve the accuracy of
the numerical solution at small values of r. The numerical solution was obtained, for
0 6 ϕ 6 π, using two forms of the boundary conditions at a finite outer boundary
r = rmax.

The first one was based on the self-similar solution (3.5) for the plume and on the
irrotational flow (3.8) outside. We consider that ψ, ω and θ are given at the outer
boundary, r = rmax, of the computational domain by the values obtained by adding
the first term of the far-field asymptotic description for the plume (3.5) and for the
outer region (3.8), and subtracting the common part, which is F∞r

3/5 for ψ.
The second form of the boundary conditions was based on the division of the

boundary r = rmax into inflow and outflow regions, with negative and positive
values of the radial velocity, respectively. Using (3.8), we find that the inflow region
corresponds to π/6 < ϕ < π, and that outflow occurs for 0 < ϕ < π/6. At the inflow
boundary we used (3.8), while at the outflow boundary the following mild boundary
conditions were adopted:

∂2ψ

∂r2
=
∂θ

∂r
=
∂ω

∂r
= 0. (3.10)

The vorticity and energy equations were solved numerically, using second-order
three-point approximations for the first and second derivatives. To obtain the station-
ary distributions of all variables a pseudo-unsteady form of the governing equations
was used. The Poisson equation was solved iteratively introducing an artificial time.
To test the grid dependence, calculations were carried out using 71×71, 101×101 and
131× 131 grids; the typical number was 101× 101. We considered that the stationary

distribution had been reached when maxi,j |fi,j − f̂i,j | < 10−9, where f and f̂ are the
values of the temperature or the vorticity at the current and previous time levels,
respectively. The typical value of the outer boundary was rmax = 100.

No significant differences were found for the velocity and temperature distributions
when using the two kinds of boundary conditions, down to values of Pr = 0.01. For
very small Pr (for example, Pr = 0.01), small artificial oscillations appear near the
outflow boundary in the plume when the first kind of boundary condition is used;
these oscillations did not appear in the calculations with the boundary conditions
(3.10). No significant differences in the distributions were found in the rest of the
computational domain. The calculations were carried out with different values of
ηmin = ln rmin, to ensure independence from the computational domain; for values of
rmin below 10−2 the changes in A0 affect only the fourth digit.

Figures 1 and 4 show the isotherms and streamlines for different Prandtl numbers,
using the scales lh, Th − T∞ and vh, defined by (2.1). These figures illustrate the
change in flow structure with increasing values of the Prandtl number; notice the
small changes observed in the isotherms, and the increasing thickness of the viscous
plume.

The vertical velocity distribution in the centreplane of the plume is shown in figure 5
for various values of Pr. Observe how the vertical velocity gradient at the line source
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and far-field asymptotic behaviour above the source for Pr = 0.72 (circles) and Pr = 0 (dashed line),
and for Pr = 0.72 (triangles) below the source; dotted line: the centreplane longitudinal velocity w̃
for Pr = 0.72.

grows toward infinity when Pr → 0. Some additional details of the flow near the
pure line source at Pr � 1 are presented in Appendix A. The dashed line gives, for
Pr = 0, the self-similar asymptotic description of the plume.

Shown in figure 6, with a solid line, is the temperature distribution along the x-axis
for Pr = 0.72. The dashed lines correspond to the asymptotic behaviour, near the
source, given by the first two terms of (3.2), and for x � 1 in the thermal plume,
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Pr 0.01 0.1 0.72 1 10 ∞
U0 1.05 1.04 0.98 0.97 0.93 0.87
A0 0.97 0.97 0.96 0.96 0.95 0.95

Table 1. The velocity and temperature level at the line source of heat

0.5

0.4

0.3

0.2

0.1

0
–10 0 10 20 30

x

h

Figure 6. Computed temperature distribution, for Pr = 0.72 (solid line), at the centreplane, and its
asymptotic behaviour for small and large r (dashed lines).

given by (3.5). One can see in this figure the range where the asymptotic descriptions
apply.

Our primary interest lies in the numerical calculation of the constants A0 and U0.
Table 1 shows the values of A0 and of the velocity U0 at the line source, for various
values of the Prandtl number. We find an unexpected weak dependence on the Prandtl
number of the constant A0, which determines the temperature distribution (3.2) near
the source. A0 changes from 0.97, for small Pr, to 0.948 in the limit Pr →∞; observe
also the moderately small changes of U0 with Pr.

4. Free convection flow, due to a line source of heat, for Pr � 1

4.1. Formulation

At large Prandtl numbers, we encounter three distinguished regions, sketched in
figure 2. A heated region surrounding the line source of size, lh, defined by the
balance of conduction and convection, with the characteristic velocity vh – so that
vhlh/α = 1. This region is the base of the thermal plume, where the temperature
is determined by the balance of heat conduction, transverse to the layer, and the
convective transport of the heat q leaving the source. The thickness, δt, of this
thermal layer will be found to be small compared with the size, lv , of the viscous
region surrounding the line source. In this region the motion, with a characteristic
velocity vv shared with the thermal plume and imposed on the inner heated region (so
that vv = vh), is dragged by the viscous stresses that originate in the thermal plume



210 A. Liñàn and V. N. Kurdyumov

to balance the buoyancy forces. The vorticity associated with these stresses, which is
of the same order vv/lv in the thermal plume and in the outer viscous region, diffuses
outwards and downwards against the generated flow; this is thus governed by the
Navier–Stokes equations with a Reynolds number of vvlv/ν = 1. Then, lv/lh = Pr
because vv = vh and vhlh/α = 1.

In the thermal plume the transverse variations of the velocity are of order δtvv/lv ,
small compared with the velocity u′0(x

′) in the centreplane of the plume, which by
continuity must be of order vv . When evaluating these changes, we can use the
following simplified form of the momentum equation in the vertical direction:

gβ(T − T∞) + ν
∂2u′

∂y′2
= 0, (4.1)

where we have left out the convective terms and the term associated with the variation
of the pressure from the external hydrostatic pressure. These terms, of order v2

v /lv , are
smaller by the factor δt/lv than the characteristic value, νvv/lvδt, of the viscous term
in (4.1).

In the thermal plume the temperature distribution satisfies, for x′ > 0, the equation

u′0(x
′)
∂T

∂x′
− y′du

′
0

dx′
∂T

∂y′
=

ν

P r

∂T

∂y′2
, (4.2)

where u′0(x
′) is to be determined from the matching conditions with the outer viscous

region. From (4.2) we can derive the relation δ2
t ∼ νlv/vvP r, or δt/lv ∼ Pr−1/2, for the

thickness δt of the thermal plume. Equation (4.2) must be solved with the conditions
T = T∞ at y′ → ±∞, ∂T/∂y′ = 0 at y′ = 0, and

u′0(x
′)

∫ ∞
−∞
ρcp(T − T∞) dy′ = q. (4.3)

Notice that (4.1) and (4.3) lead to the result, obtained by Spalding & Cruddace
(1961), (

∂u′

∂y′

)
= − gβq

2ρcpν

1

u′0(x
′)

(4.4)

for the vorticity, or velocity gradient, at the outer border of the the thermal plume.
By equating the orders of magnitude of the two terms of (4.4), we obtain the relation
v2
v /lv = gβq/ρcpν, which together with the relations vv = vh and lv = lhP r, given

before, leads to

vv = vh = (αgβq/λ∞)1/3, lv/P r = lh = (gβq/λ∞α
2)−1/3, (4.5)

where vh and lh are identical to those obtained before for the case when Pr ∼ 1, given
in (2.1).

When the coordinates are measured with lv and the velocity with vv , the governing
equations for the non-dimensional vorticity and stream function in the outer viscous
region, where T = T∞, take the form

− ω̂ =
∂2ψ̂

∂r̂2
+

1

r̂

∂ψ̂

∂r̂
+

1

r̂2

∂2ψ̂

∂ϕ2
, (4.6)

1

r̂

(
∂ψ̂

∂ϕ

∂ω̂

∂r̂
− ∂ψ̂

∂r̂

∂ω̂

∂ϕ

)
=
∂2ω̂

∂r̂2
+

1

r̂

∂ω̂

∂r̂
+

1

r̂2

∂2ω̂

∂ϕ2
(4.7)

in terms of r̂ = r′/lv = r/P r. These are the Navier–Stokes equations to be solved, in
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the half-space 0 < ϕ 6 π, with the boundary conditions

ψ̂ =
1

r̂

∂ψ̂

∂ϕ
ω̂ − 1

2
= 0 at ϕ = 0, ψ̂ = ω̂ = 0 at ϕ = π, (4.8)

and the condition that the vorticity ω̂ and velocity tend to zero for r̂ →∞, outside a
viscous plume at ϕ� 1. No parameters are left in this problem, in which the flow is
driven by the shear stresses at ϕ = 0. The solution has to be obtained numerically,
after describing the singular structure of the solution for r̂ � 1 and r̂ � 1.

4.2. Asymptotic description of the viscous region for large and small r̂, and numerical
solution of the viscous flow problem

As first shown by Spalding & Cruddace (1961), for values of r̂ � 1 and sufficiently
small ϕ, or, equivalently, for distances above the line source large compared with lv ,

ψ̂ takes the asymptotic self-similar form ψ̂ = r̂3/5f(ξ̂), ξ̂ = ϕr̂3/5 in the viscous layer

bounding the thin thermal plume. Here f(ξ̂) is given by 5f′′′+3ff′′−(f′)2 = 0, with the

conditions f(0) = f′′(0)f′(0) + 1/2 = 0 and f′(ξ̂ →∞) = 0. The numerical calculation
– see also Kuiken & Rotem (1971) – yields f(∞) = 1.355 and f′(0) = 0.9334. Thus, in
the far field, outside the viscous plume, ω̂ = 0 and ψ̂ is given by the irrotational flow
value

ψ̂ = f(∞)r̂3/5 sin (3(π − ϕ)/5)/ sin (3π/5). (4.9)

To obtain the appropriate boundary conditions for r̂ → 0, we shall use the local
Stokes approximation of (4.7), neglecting the convective terms. Taking into account
the boundary conditions (4.8), solutions for the vorticity and stream function can be
sought in the form

ω̂ = D(π − ϕ) + ω′, ψ̂ = U0r̂ sinϕ+ ψ′, (4.10)

where ω′ → 0 and ψ′/r̂ → 0 when r̂ → 0. The linearized form of (4.8) leads, for r̂ → 0,
to the relation D = 1/2πU0. The leading terms of the expansion of ψ̂ for small values
of r are

ψ̂ = (U0r̂ − 2
3
Dr̂2 + . . .) sinϕ+ (− 1

4
Dr̂2 ln r̂ + B2r̂

2 + . . .) sin 2ϕ+ . . . . (4.11)

The constant U0 corresponds to the vertical velocity at r̂ = 0, and D = 1/2πU0

determines the leading term of the vorticity expansion in the vicinity of the source.
Equations (4.6)–(4.7) were solved numerically with the method used for the system

(2.2)–(2.4). Taking into account (4.10) and (4.11), we can derive a mild form of the
inner boundary conditions

r̂
∂ω̂

∂r̂
= r̂

∂ψ̂

∂r̂
− ψ = 0 at r̂ → 0 , (4.12)

while at r̂ = r̂max, we use for ψ̂ a composite expression, based on the self-similar

plume solution r̂3/5f(ξ̂) and (4.9).
It can be observed that no parameter is left in the hydrodynamic system of equations

(4.6)–(4.7) and in the above boundary conditions. The results of the calculations are
presented in figures 7 and 8; the isovorticity lines and the streamlines are shown in
figure 7, and the vertical velocity, u0(x̂), at the centreplane of the plume, ŷ = 0, is
shown in figure 8 with a solid line. At the line source, r̂ = 0, the velocity is U0 = 0.87.
The centreplane velocity approaches for large x̂ the well-known self-similar asymptotic
form f′(0)x̂1/5, which is shown with circles in figure 8 together with the asymptotic
value 0.5706f(∞)(−x̂)−2/5, below the line source, shown with triangles.
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Figure 7. Computed streamlines (dashed lines, ψ̂ at intervals of 1) and isovorticity lines (solid
lines, ω̂ at intervals of 0.05) for Pr = ∞.

4.3. Temperature in the vicinity of the source and in the thermal plume

We can write the energy equation in the region r̂ ∼ 1/Pr near the source as

U0

∂θ

∂x̂
=

1

Pr
∆̂θ, (4.13)

based on the uniform velocity U0 given by (4.11) for r̂ → 0, if terms of order
1/(Pr lnPr) are neglected. The solution of (4.13) with the condition θ → 0 at
r̂P r →∞, and the condition (3.1) at r̂P r → 0 is

2πθ = exp

(
Pr U0x̂

2

)
K0

(
Pr U0r̂

2

)
, (4.14)

where K0 is the modified Bessel function, behaving for r̂P r = r → 0 as

2πθ = ln
(
4/U0

)
− γE − ln r, (4.15)

whereU0 = 0.87 follows from the numerical calculation reported above and γE = 0.577
is Euler’s constant. If we compare (4.15) with (3.2), we find that A0 = ln 4/U0 − γE =
0.948. This value of A0 is very close to the value obtained numerically for Pr = 10
and, surprisingly, also very close to the value of A0 obtained for all the other values
of the Prandtl number.

The solution of the problem (4.6)–(4.8) provides the dimensionless velocity u0(x̂),
which then can be used to solve the problem (4.2)–(4.3) for the thermal plume.
Equation (4.2), when written in terms of the variables

ψ = ŷu0(x̂), ζ =
1

Pr

∫ x̂

0

u0(z) dz, (4.16)
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Figure 8. Computed vertical velocity (solid line) and temperature (dashed line) at the centreplane
of the plume for Pr = ∞. The asymptotic description is also given for the temperature and velocity
above the source (with dots and circles) and the velocity below the source (with triangles).

takes the form θζ = θψψ . The solution, with the initial condition θ = δ(ψ) at ζ = 0, is

θ =
1

(πζ)1/2
exp (−ψ2/4ζ), (4.17)

and the centreplane temperature θ0(x̂), for x̂ ∼ 1, is given by

θ0(x̂)Pr−1/2 = π1/2

(∫ x̂

0

u0(z) dz

)−1/2

, (4.18)

plotted in figure 8 with a dashed line. This is to be compared with the asymptotic
self-similar value θ0Pr

−1/2 = (5πf′(0)/6)−1/2x̂−3/5 = 0.6397x̂−3/5, shown also with a
dotted line in figure 8, corresponding to a thermal boundary layer of thickness of
order lhP r

1/10(x′/lh)
2/5, which is Pr−1/2 smaller than the thickness of the viscous

plume.

5. Free convection heat transfer from wires at small and finite Grashof
numbers

5.1. Formulation and numerical description for Gr ∼ 1, Pr ∼ 1

We shall describe in this Section the steady laminar free convection flow around hor-
izontal thin wires, posing the problem so as to find the uniform surface temperature,
Tw , of the wire that leads to a given heat flux q per unit length. The analysis will also
be applicable to the description of the flow and heat transfer around inclined wires if
g is replaced by the component gn of g normal to the wire axis.

The problem was formulated in non-dimensional form in § 2 as to find the solution
of (2.2)–(2.6), calculating the wire temperature θw , and therefore the Nusselt number,
Nu = 1/2πθw , as a function of Pr and the non-dimensional value ε = a/lh of the
radius of the wire.
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Figure 9. Average Nusselt number as a function of GrPr2: circles, numerical results; solid line,
correlation formula (5.11); dashed line, asymptotic behaviour for small and large Gr and Pr = 0.72;
dotted line, asymptotic formula (5.20) of large Prandtl and small Peclet, σ, numbers evaluated for
Pr = 7.

For values of ε and Pr of order unity the problem has to be solved numerically.
We use the numerical method described in § 2, ensuring that for large r the solution
follows the asymptotic description given in (3.5) and (3.8), but replacing the conditions
(3.9) by the conditions (2.6) at r = ε.

Calculations were carried out for a wide range of Gr, down to 10−6. The resulting
Nusselt numbers, for Pr = 0.1, 0.72 and 7, are shown in figure 9 with circles, as a
function of Gr Pr2, the appropriate parameter for the description of free convection
flows at low Prandtl numbers. Examples of the form of the isotherms and streamlines
are shown in figure 10 for ε = 1 and two values, 0.05 and 0.72, of Pr. Notice the
recirculating region above the wire for Pr = 0.05.

A recirculating region is encountered, above the wire, for values of the Grashof
number larger than a threshold value, shown in figure 3 with a dashed line, that
depends on Pr. The height of the recirculating bubble, measured with a, and the
angle of separation ϕb are shown in figure 11 for various values of Pr with solid and
dashed lines, respectively. Notice that, at least for small Pr, the height of the bubble
begins growing linearly with Gr, reaches a maximum and then decreases. This is due
to the increasing role, when Gr grows, of the vertical buoyancy forces in the bubble
region, which also cause the threshold value of Gr to grow to very large values when
Pr is rising to values of order unity.

The emergence of the recirculating bubble is not the result of a real bifurcation,
and the effects on the heat transfer are not significant close to the threshold value of
Gr, because the bubble lies in the region where the convective effects are negligible,
if ε . 1. The evolution of the structure of the recirculating bubble with increasing
values of Pr is interesting, but will not be further analysed in this paper, although
we shall give some additional details in Appendix A when looking at the limit
Pr → 0.



Laminar free convection at small Grashof numbers 215

(a) (b)
2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

–2.0

2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

–2.0
0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

y y

x

Figure 10. Computed streamlines around the cylinder for ε = 1 (solid lines, ψ at intervals of 0.1
outside the bubble, and 0.0002 inside) and normalized isotherms, θ̃ = θ/θw , (dashed lines, θ̃ at
intervals of 0.1): (a) Pr = 0.72, θw = 0.279, (b) Pr = 0.05, θw = 0.247.
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Figure 11. Computed height, hb/a (dashed lines), and the separation angle, φb (solid lines), of the
recirculating bubble; (a) Pr = 0.3, (b) Pr = 0.2, (c) Pr = 0.1, (d) Pr = 0.05, (e) Pr = 0.01.

5.2. Heat transfer at Gr � 1

For small values of Gr, ε = a/lh � 1. Then, the flow field has two regions with
disparate scales lh and a. When seen with the scale lh, the wire appears as a line
source of heat. In an inner region, scaled with a, the effects of convection are
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negligible, when compared with those of heat conduction and viscous transport of
momentum.

If the local effects of convection are neglected for r/ε ∼ 1, the temperature distri-
bution will be given, for a wire of circular shape with non-dimensional radius ε, by
the expansion

2πθ = 2πθw − ln (r/ε) + εB1{(r/ε)− (ε/r)} cosϕ+ . . . . (5.1)

In (5.1) we have included terms which are also solutions of the Laplace equation,
involving negative powers of r, required to ensure that θ takes a constant value, θw ,
at the wire radius, r = ε. These terms will only produce changes of order ε in the
outer temperature and flow fields. The small local effects of convection will modify
(5.1) with terms of order ε/ ln ε; which, again, do not affect the outer region in first
approximation.

If we anticipate that for δ = −1/ ln ε � 1 we can neglect the effect on the outer
buoyant flow of the momentum sink associated with the drag of the wire, we can
derive the relation

2πθw = Nu−1 = − ln ε+ A0(Pr) (5.2)

obtained from the requirement that the distributions (5.1) and (3.2) coincide in the
intermediate region ε � r � 1. This relation, together with (2.7), determines the
Nusselt number as a function of the Grashof number for small enough values of Gr,
such that the perturbations of order δ left out of the right-hand side of (5.2) can be
neglected.

In order to show this and how to obtain corrections of order δ to this Nusselt
number, we analyse below the structure of the flow for ε � 1, but with ε not so
extremely small as to allow us to neglect the perturbations of order δ � ε. For this
analysis we follow the procedure used by Tamada, Miuri & Miyagi (1983) and by
Kropinski, Ward & Keller (1995), who consider Re� 1 but −1/ lnRe of order unity
in their analysis of the flow around cylinders (of arbitrary shape) at small Reynolds
numbers.

We begin our analysis for small ε, with δ = −1/ ln ε of order unity, by describing
the effect of the wire presence in the inner, r ∼ ε, flow field. This field is given
by an expansion in ε determined in lowest orders by the Stokes equations with the
buoyancy forces evaluated using (5.1). This leads to the following small-r expansion
for the stream function and the vorticity:

ψ =

{
U

(
1 +

1

2 ln ε

)
r + r3

(
ln r − 3/4

32πPr
− C

8

)
+ E1

r ln r

ln ε
+ E2

ε2

r ln ε

}
sinϕ, (5.3)

ω =

{
− r ln r

4πPr
+ Cr − 2E1

r ln ε

}
sinϕ. (5.4)

Two of the four constants appearing in the expansion (5.3) are determined by the
requirement that ψ and ψr must be zero at r = ε. Thus we obtain

E1 = −U + ε2
1 + 8πCPr ln ε− ln2 ε

16πPr(1 + 2 ln ε)
, (5.5)

E2 = −U
2

+ ε2
16πCPr(ln ε− 2 ln2 ε) + (3 ln ε− 6 ln2 ε+ 8 ln3 ε)

128πPr(1 + 2 ln ε)
. (5.6)
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We expect the remaining unknown constants, U and C , to be of order unity, as
they are for a line source of heat. They must be obtained from the requirement
that the inner expansion should match the outer expansion in the intermediate region
ε� r � 1. However, for a pure line source of heat the outer field does not include the
dipole source of vorticity, represented by the last term in (5.4), that we must include
in the inner region, together with the last term of (5.3), to satisfy the boundary
conditions on the wire. Hence, matching of the flow field near the wire and the outer
field due to a pure line source of heat is not possible unless we include the effect
on the outer flow field of the vorticity input from the wire, represented by the last
term in (5.4), of order δ. Then, in order to account for this effect (or, equivalently,
for the effect of the drag force on the wire due to the flow induced by the buoyancy
forces) we must include in the small-r description (3.3), used for the line source of
heat, the dipole term −2E1 sinϕ/r ln ε, and in (3.4) the corresponding term in the ψ
description.

In summary, in order to calculate, up to terms of order ε, the outer temperature
and flow fields due to gravity, associated with a heated thin circular wire, we should
solve the Boussinesq equations (2.2)–(2.4), with the same far-field conditions (3.5) and
(3.8) used for a line source of heat and the following behaviour for ε < r � 1:

2πθ = − ln r + A, (5.7)

ω =

{
− r ln r

4πPr
+ Cr +

2U

r ln ε

}
sinϕ, (5.8)

ψ = Ur

{
1− ln r

ln ε
+

1

2 ln ε

(
1− ε2

r2

)}
sinϕ. (5.9)

The constants A, U and C appearing in these expressions must be calculated as part
of the numerical solution for small or moderately small values of ε. The last term of
(5.9) does not need to be included if the numerical calculations are carried out only
for values of r � ε. However, the terms of order −1/ ln ε should be retained, as if
they were of order unity, unless ε is extremely small; notice that the drag force on the
wire, 4πρνvhU/ ln (1/ε), is small when compared with the vertical momentum flux in
the outer region only due to the moderately small factor δ.

The numerical solution of the system (2.2)–(2.4), with the far-field description of
the solution given in (3.5) and (3.8), and the small-r representation of (5.7)–(5.9), with
the term in ε2 left out of (5.9), should provide us with the temperature and flow field
in the outer region, together with the constants A, C and U. These constants will then
depend on the parameters Pr and δ = −1/ ln ε remaining in the formulation.

For Pr ∼ 1 and small values of δ, we may expect the dependence of A, C and
U on δ to be described by expansions in powers of δ – for example, A(Pr, ε) =
A0 + δA1(Pr) + . . . – beginning with the values A0, C1 and U0 for δ = 0, to ensure
matching, at r ∼ 1, of θ, ω and ψ at r ∼ Pr, with the line source of heat. The effect
of the vorticity source, represented by the last term in (5.8) with U = U0 in a first
approximation, will introduce changes in A and U from A0 and U0 proportional to
δ, for δ � 1, which should be determined by a linear system of equations.

With A thus determined as a function of ln ε and Pr, the relation (5.7), namely

Nu−1 = − 1
3

ln (2πPr2GrNu) + A, (5.10)

would allow us to calculate Nu as a function of Gr and Pr.
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Pr a2 a4 a5 b
0.1 4.495 11.467 7.859 0.460
0.72 18.208 28.813 18.254 0.373
7 60.974 95.631 94.861 0.207

Table 2. The values of coefficients in the fitting formula (5.12).

5.3. Correlation formula for Nu(Gr, P r)

Instead of using this procedure, we shall use the asymptotic form of (5.10) with
A = A0, for GrPr2 → 0, and the results of our numerical calculations, described in
§ 4.1, to obtain directly a correlation formula for the Nusselt number, valid for the
steady laminar free convection flow for all Grashof number. This will be written in
the form

GrPr2 =
1

2πNu
exp

(
3A0 −

3

Nu

)
F(Nu, P r) (5.11)

which coincides with (5.10), for GrPr2 → 0, if F → 1 for Nu→ 0.
For large Grashof numbers, when Nu � 1, F/Nu5 should tend to a constant

a5(Pr), chosen so as to obtain the well-known asymptotic relation, Nu = b (Pr2Gr)1/4,
between Nu and Gr for free convection laminar flow for Gr � 1. The values of b(Pr),
shown in table 2, were obtained from the numerical solution, with a finite difference
method, of the asymptotic boundary layer form of (2.2)–(2.4), given for example in
Leal (1992). For Pr � 1, b→ 0.435Pr−1/4, and if Pr � 1, b→ 0.54.

For F(Nu, P r) we use a polynomial correlation

F = 1 + a2Nu
2 + a4Nu

4 + a5Nu
5, (5.12)

where a5 = 2π exp (3A0)/b
4, and the adjustable parameters a2 and a4, depending on

the Prandtl number, are given in table 2. When (5.11) and (5.12) are used, with the
approximately constant value 0.96 of A0, the resulting Nusselt numbers, shown in
figure 9 with solid lines, correlate, with errors lower than 1%, the values obtained
from our numerical calculations, shown with circles in figure 9, of the free convection
flow around heated wires in a wide range of Grashof numbers. We also show with
dashed lines the asymptotic approximations, for Gr � 1, given by (5.11) with F = 1,
and by Nu = b(Pr2Gr)1/4, for Gr � 1, respectively.

5.4. Free convection heat transfer from thin wires at Pr � 1

We shall describe here the free convection flow around wires of radius a small
compared with lv = lhP r = (gβq/λ∞ν

2Pr)−1/3, the characteristic size of the region
around the wire where we find the vorticity generated by the baroclinic torques in
the thermal plume, but not necessarily small compared with lh. When for ε̂ = a/lv =
ε/P r � 1 we look at the flow with scale lv , the thin wire is seen as a line source of
heat and a line sink of momentum (associated with the drag force on the wire by the
flow generated by the buoyancy forces). Using the arguments of § 5.2, we can estimate
as of order −1/ ln ε̂ the errors introduced in the our analysis of the viscous region
when we neglect the effects of the wire drag. Then, the flow in the outer viscous region
is, in first approximation for −1/ ln ε̂� 1, the one described in § 4, corresponding to
a pure line source of heat. The vertical velocity induced at r̂ � 1 by buoyancy forces
acting on the thermal plume is given by U0 = 0.87, when measured with the scale vh.
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The arresting effect of the wire on this flow can be described using an analysis
similar to that of Kaplun & Lagerstrom (1957) for the flow around cylinders at low
Reynolds numbers, because, if we take into account that vhlv/ν = 1, the effective
Reynolds number, U0vha/ν = U0ε̂, is small compared with unity. The flow field,
at distances from the wire axis small compared with lv , is described by the Stokes
equations, and given by the stream function ψ̂,

ψ̂ ln (1/ε̂)/U0ε̂ = ψ̃ = r̃

{
ln r̃ − 1

2

(
1− 1

r̃2

)}
sinϕ, (5.13)

written in terms of r̃, the radial distance scaled with a. The factor U0ε̂/ ln (1/ε̂) is
chosen to ensure matching, at r̃ε̂ = r̂ ∼ 1, of the velocity U0, given by the outer flow,
to that given by the solution (5.13) of the Stokes equations in the inner region. We
thus may expect errors of order −1/ ln ε̂ in the velocity field given by (5.13), associated
with the errors in the outer flow.

The temperature field is determined by the combined effects of convection, asso-
ciated with the velocity field (5.13), and heat conduction. This leads to the energy
equation

ṽr
∂θ̃

∂r̃
+
ṽϕ

r̃

∂θ̃

∂ϕ
=

1

σ

(
∂2θ̃

∂r̃2
+

1

r̃

∂θ̃

∂r̃
+

1

r̃2

∂2θ̃

∂ϕ2

)
, (5.14)

where θ̃ = θ/θw , ṽr = r̃−1ψ̃ϕ, ṽϕ = −ψ̃r̃ , to be solved, numerically, with the boundary

conditions θ̃ → 0 for r̃ → ∞ and θ̃ = 1 at r̃ = 1. From the solution we calculate the
Nusselt number

Nu = − 1

2π

∫ 2π

0

r̃
∂θ̃

∂r̃

∣∣∣∣
r̃=1

dϕ (5.15)

as a function of the effective Péclet number

σ = U0Prε̂/ ln (1/ε̂) = (U0Prvha/ν)/ ln (ν/vha). (5.16)

Values of σ of order unity correspond to the distinguished regime in which, for
large Prandtl numbers, the size of the heated region around the wire, under forced
flow with the small Reynolds number U0ε̂, is of the order of its radius and, then,
Nu ∼ 1. The Nusselt numbers resulting from our the calculations are shown, with a
solid line, in figure 12; where we also include the asymptotic representations of Nu(σ)
for large and small values of σ to be given below. We should expect errors of order
−1/ ln ε̂ due to the errors in (5.13).

For σ � 1 heat conduction effects are confined to a thin thermal boundary
layer around the wire, which becomes the thermal plume above. The temperature
distribution in the boundary layer can be described by the expansion

θ̃ = θ̃0 + σ−1/3θ̃1 + . . . , (5.17)

where θ̃0 and θ̃1 are functions of the boundary layer variables ϕ and ζ = σ1/3(r̃ − 1),
given by linear equations. These were solved numerically to calculate the Nusselt
number,

Nu = c0σ
1/3 + c1 + . . . , (5.18)

where

c0 = − 1

π

∫ π

0

∂θ̃0

∂ζ
dϕ = 0.579, c1 = − 1

π

∫ π

0

∂θ̃1

∂ζ
dϕ = 0.0917. (5.19)
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Figure 12. Computed average Nusselt number as a function of the effective Péclet number σ
(solid line); dashed lines, two-term asymptotic expansion (5.18) for large σ.

The two-term expansion (5.18), represented in figure 12 with a dashed line, describes
unexpectedly well the numerical results for values of σ > 0.5.

For small values of σ, the size of the heated region is r̃c � 1. Then, the solution of
(5.14) is well approximated by the solution θ̃ = 1 − Nu ln r̃ of the Laplace equation
for r̃ ∼ 1, but no longer where r̃ becomes of order r̃c, to be determined below, when
convective effects must be taken into account. The value of r̃c depends, for a given ε̂,
on Pr. We shall proceed, as Hieber & Gebhart (1968) did for the forced flow case, by
considering the distinguished regime ε̂� 1 and 1/Pr = ε̂m with 0 < m < 1. Then, it is
easy to see that convective effects balance conduction at distances r̃ ∼ r̃c = 1/ε̂P r � 1,
where the velocity, according to (5.13), is uniform, given by vhU0(1 − m) with errors
of order −1/ ln ε̂. We can describe the temperature distribution using the solution of

the Oseen equation, with the velocity U0vh(1− m), and the condition θ̃ = 1−Nu ln r̃
for small r̃. Then we obtain for the Nusselt number

Nu =

[
− ln (ε̂P r) + 0.948− ln

(
1− lnPr

ln (1/ε̂)

)]−1

, (5.20)

where the constant 0.948 = A0 = ln (4/U0) − γE . This is valid, with errors of order
1/ ln σ−1, for Pr � 1 and ε � 1, and coincides with (5.2) for Pr ∼ 1, when
lnPr � ln (1/ε̂), if we retain the variation of A0 with Pr. Equation (5.20) has been
plotted in figure 9, with a dotted line, for Pr = 7.

6. Conclusions and generalization
The main objective of this paper is the description of the steady laminar free

convection flow and heat transfer from heated wires at small Grashof numbers. The
problem was posed as to find the temperature of the wire Tw leading to a given
heat loss q, per unit time and length of the wire, assumed to be infinitely long. The
Boussinesq form of the equations was used, and when written in non-dimensional
form, using the scales Th − T∞, lh and vh given in (2.1), only two parameters are left
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in the problem: ε = a/lh and Pr. The Nusselt number, Nu = q/2πλ∞(Tw − T∞), is
then a function of ε and Pr.

The buoyancy forces are confined to the heated region around the wire, of size
lh = (λ∞α

2/gβq)1/3 if ε is not large compared with 1, and to the thermal plume above.
The transport of vorticity due to viscous effects is confined to the region around the
wire of size lv = Prlh, if ε̂ = a/lv is not large compared with 1, and to the viscous
plume above. The sketch in figure 2 gives the relative position of these regions for
Pr � 1 and Pr � 1.

When ε and ε̂ = ε/P r are both small compared with 1, the wire appears to act
as a pure line source of heat, when we observe the temperature and flow fields with
the scale lh. These fields are described in terms of the numerical solution of the
non-dimensional Boussinesq equations for the line heat source in § 3, for values of
order unity of the single parameter Pr, in § 4 for Pr � 1 and in Appendix A for
Pr � 1. Two important constants, U0 and A0, of order unity, are encountered in the
description of the velocity and temperature fields near the source; they are given in
table 1 for various values of Pr.

When ε3 = a3gβq/λ∞α
2 � 1, the heat transfer around circular wires is determined

by the relation (5.2), obtained by extending to the wire surface the near-source
distribution of the temperature field around the line heat source. This asymptotic
relation for the inverse of the Nusselt number is valid only for very small values of
the Grashof number, or more precisely for small values of ε, because terms of order
δ = 1/ ln ε−1 have been neglected. Notice that ε3 is the main parameter determining
the Nusselt number for values of the Grashof number such that ε � 1. In the
parameter plane (Gr, P r), shown in figure 3, the line ε = 1 corresponds, roughly, to
the line GrPr2 = 1.

The non-dimensional velocity U0 at the line source, determines, in first approxi-
mation, the flow around the wire. This flow is given by the Stokes equations if the
effective Reynolds number, U0ε̂ = U0ε/P r, based on U0vh and the radius of the wire,
is small compared with unity. This is the case if ε̂ � 1; then we find a drag force,
4πρνvhU0/ ln ε̂−1, on the wire, whose effect on the outer flow appears as a line sink
of momentum, counteracting the momentum generated by the buoyancy forces. If
1/ ln ε̂−1 � 1 the effect of this momentum sink can be neglected when describing the
outer flow.

For Pr � 1 the size, lh, of the heated region around the line source or wire and the
thickness of the thermal plume above are small compared with the size, lv = Prlh, of
the viscous region, where we find the vorticity generated by the buoyancy forces in
the thermal plume. In § 4 we calculated, for ε̂ � 1, the flow velocity, U0vh = 0.87vh,
at the line source and the apparent temperature A0(Th − T0) = 0.95q/λ∞. In § 5
we show how to calculate the flow and temperature fields around the wire in the
distinguished limiting case when the Reynolds number associated with the buoyant
flow is ε̂ = a/lv � 1, but the effective Péclet number σ = U0ε̂P r/ ln ε̂−1 is of order
unity; then, the size of the heated region around the wire is of order a. The dependence
of the Nusselt number on σ is shown in figure 12, where we also plot the values of Nu
given by the two term asymptotic expansion for σ � 1. The analysis of the thermal
boundary layer for large σ fails when ε̂ becomes of order unity because the flow is
no longer given by the Stokes description of (5.13). For larger values of ε̂, the local
buoyancy forces should be included in the description of the thermal boundary layer.

As indicated in Appendix A, for small values of the Prandtl number viscous effects
in the free convection flow around thin wires, or induced by line heat sources, are
confined to a region of size lhP r around the wire, or heat source, and to a thin layer
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above. The structure of the flow around the wire depends on the effective Reynolds
number Re = U0ε/P r = 1.05ε̂, and we may find a recirculation region above the
wire – and for small Pr perhaps also unsteady effects – for values of Re larger than
critical values. The threshold value of ε, and therefore of the Grashof number, for
the appearence above the wire of a recirculating region depends on Pr; it becomes
very large when Pr is of order unity or larger and must be given by RecP r/1.05 when
Pr → 0. Here Rec, approximately 3.15, is the value of the Reynolds number, based
on a, for the appearance of a recirculating region in the wake of a circular cylinder
under a forced flow with constant density. No more details will be given in this paper
of the change in the near-wake flow structure with Pr and Gr, aside from showing
in figure 3, with a dashed line, the threshold values of Gr(Pr) for the appearance of
a recirculating bubble, and giving in figure 11 the size of the bubbles.

Non-Boussinesq effects can be neglected in the outer region if q/λ∞T∞ � 1, so
that the characteristic temperature rise above the ambient, of order q/λ∞ in this
region, is small compared with T∞. Even if this condition is satisfied, we are forced
to account for non-Boussinesq effects in the inner region, when ε � 1, if the value
of the non-dimensional wire temperature rise (Tw − T∞)/T∞, or q/λ∞T∞2πδ, is no
longer small compared with unity. These effects on the inner temperature distribution
can be easily taken into account because this temperature is not affected, in first
approximation, by the convective effects, so that we only need to account for the
variation of the heat conductivity, λ, with the temperature. Thus, in the inner region
we have to solve the heat conduction equation ∇ · (λ∇T ) = 0, which can be written

as the Laplace equation ∆Θ = 0 for the function Θ =
∫ T
T∞

(λ(T ′)/λ∞) dT ′/T∞. This
equation must be solved with the condition Θ = Θw in the cylinder surface and the
far-field condition

(r′Θr′)|r′→∞ = −q/2πλ∞T∞, (6.1)

where r′ is the dimensional radial coordinate. For a circular cylinder of radius a the
inner temperature distribution is then given by

Θ −Θw = −(q/2πλ∞T∞) ln (r′/a), (6.2)

where the factor q/2πλ∞T∞ is assumed to be small compared with 1. The relation
(6.2), giving the temperature distribution for r′/a � lh/a, should match with the
temperature distribution of the outer region given, for r′/lh � 1, by

Θ = (q/2πλ∞T∞)(− ln(r′/lh) + A0), (6.3)

so that we obtain the relation

Θw =

∫ Tw

T∞

{λ(T ′)/λ∞} dT ′/T∞ = (q/2πλ∞T∞){ln(lh/a) + A0(Pr)} (6.4)

to calculate Tw in terms of q. This description of the effects of variable properties
in the temperature field follows the analysis given by Hodnett (1969) for the low-
Reynolds-number forced flow around cylinders, and it can be similarly extended to
describe the effects on the free convection flow field.

The relation (6.4) is valid for a cylinder of non-circular shape if a is replaced by
the effective radius ae, when this turns out to be small compared with lh. In this case,
Θ is also given in the inner region by the Laplace equation, ∆Θ = 0, the condition
Θ = Θw on the cylinder surface, and the far-field condition (6.1). The solution of this
linear problem leads to a distribution of (Θ − Θw)λ∞T∞/q depending only on the
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cylinder shape. For large r′,

Θ −Θw = −(q/2πλ∞T∞) ln(r′/ae), (6.5)

where ae must be obtained as part of the solution. This inner heat conduction problem
can be solved in closed form using the method of conformal transformation for a
variety cylindrical shapes. This is the case for cylinders of elliptical shape, for which
ae = (a1 + a2)/2 in terms of the values a1 and a2 of the semi-axes.
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No PB 94-0400, and by INTA, under Contract No 4070-0036/1996. V.N.K. would
like to express his gratitude to the DGICYT for a postdoctoral fellowship at UP
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Appendix A. The limiting case of Pr → 0

In this Appendix we begin by considering the flow in the vicinity of the line heat
source in the inviscid limit Pr → 0. Later, we shall deal with the description of the
flow field around thin wires when Pr � 1.

For the line source of heat, the temperature field is given, in first approximation,
for r � 1, by the radially symmetric solution 2πθ = A0− ln r of the Laplace equation.
Then, for Pr = 0 and r � 1 the equation (2.3) of the vorticity is simplified to

vr
∂ω

∂r
+
vϕ

r

∂ω

∂ϕ
=

sinϕ

2πr
. (A 1)

For small r, we shall write the solution of (A 1) and ∆ψ = −ω in the form

ψ = U0r sinϕ+ ψ′, ω = D(π − ϕ) + ω′, (A 2)

where ψ′/r → 0 and ω′ → 0 when r → 0. From the linearized form of (A 1), we
obtain D = 1/2πU0. For r � 1, ω′ and ψ′ are given by the linear system

U0 cosϕ
∂ω′

∂r
−U0 sinϕ

1

r

∂ω′

∂ϕ
= −D

r

∂ψ′

∂r
, (A 3)

∆ψ′ = −D(π − ϕ)− ω′. (A 4)

The leading terms of the expansion for small r of the solution of (A 3)–(A 4) can be
written as

ψ′ = − r2

3πU0

sinϕ+

(
B2r

2 − r2 ln r

8πU0

)
sin 2ϕ+ . . . , (A 5)

ω′ =
r sinϕ

3π2U3
0

ln

(
sinϕ

1− cosϕ

)
+

{
B1r +

(
− 2B2

πU2
0

+
1

8π2U3
0

)
r ln r +

r ln2 r

8π2U3
0

}
sinϕ+ . . . , (A 6)

where the constants U0, B1 and B2 must be obtained as part of the numerical solution
of the general inviscid line heat source problem. Up to the terms retained above,
the vorticity maintains, for x > 0, the constant values ω = 1/2U0 at y = 0+, and
ω = −1/2U0 at y = 0−. Notice that the last term of (A 5) leads to an infinite value
of the vertical velocity gradient at r = 0, in agreement with the large values obtained
numerically for small Pr, shown in figure 5.
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In the inviscid limit, Pr → 0, the vorticity equation (2.3) indicates that these opposite
values will also be constant for all positive values of x ∼ 1 at y = 0+ and y = 0−,
where ∂θ/∂y = 0. Viscous effects will obviously provide, for non-zero values of Pr, a
smooth transition between these values. This result, given by the inviscid analysis, of
constant values ±1/2U0 ≈ 0.48 of the vorticity on the two faces of the centreplane
above the line source, is in contrast with the infinite value that the inviscid self-similar
plume solution gives at y = 0±. As shown by Kuiken & Rotem (1971), the solution
of (3.6) and (3.7) for Pr = 0 leads to a value of the vorticity ω = −0.61r−1/5ξ−1/3 for
ξ � 1. Viscous effects acting on a layer of thickness ξ ∼ Pr1/2 bound the vorticity to
peak values of order r−1/5Pr−1/6. For the transition from the peak initial value of the
vorticity, of order unity, to these values we thus may expect to need a length of order
Pr−5/6 to reach the self-similar viscous structure. However, the entrainment velocity
of the outer irrotational flow comes from the buoyancy forces in the thermal plume,
and it is given well by the asymptotic relation ve = −0.909r−2/5. As a consequence,
the velocity distribution below the source is seen in figure 5 to approach rapidly the
irrotational asymptote u = 0.956(−x)−2/5 for (−x)� 1 and Pr = 0.

In summary, for small Prandtl numbers the line heat source leads to a temperature
field near the source determined by the constant A0 = 0.97 and a flow velocity at the
source U0vh = 1.05vh. When we want to describe the temperature and velocity fields
around thin wires, with ε = a/lh � 1, we can use, as we did in the main text for
Pr ∼ 1, the line heat source solution by extending the validity, if the wire is circular,
of the near-source temperature distribution, 2πθ = A0− ln r, to the wire surface, r = ε,
and thus determine the Nusselt number from the relation Nu−1 = 2πθw = 0.97− ln ε.

The flow field around the wire is determined by the velocity U0vh = 1.05vh, which
we would obtain at the line source of heat, induced by the buoyancy forces acting on
the heated region. The structure of this flow near the wire depends on the effective
Reynolds number, Re = U0ε/P r, based on the velocity U0vh and the wire radius.
When ε̂ = ε/P r is of order unity the flow around the wire should be described using
the constant-density Navier–Stokes equations, without buoyancy forces. In particular,
the vertical force per unit length on the wire is cDaρ(U0vh)

2, where the drag coefficient
is a function of the Reynolds number, of order unity if ε/P r is of order unity or
large. In any case, the effect of the momentum sink represented by this drag on the
buoyancy-induced momentum flux, which is of order ρv2

hlh in the region r ∼ lh around
the wire, can be neglected because a� lh.

It is interesting to observe how the structure of the flow around thin wires at small
Prandtl numbers changes with the value of the Reynolds number, Re = 1.05ε̂, of the
generated forced flow. If Re > 3.14 we find (according to our numerical calculations
for the forced flow around cylinders) a recirculation region above the wire. The
relations Gr = ε3/2πNuPr2 and Nu−1 = 0.97 − ln ε and the condition εc/P r = 2.99
lead to Grc = 4.26Pr(0.97 − ln(2.99Pr)), shown in figure 3 with a dotted line. For
Pr � 1 and values of Re larger than a second critical value, about 20, which cannot
be calculated with our numerical scheme, the flow around the wire may be expected
to become oscillatory, as is the case for forced flow around wires.

Appendix B. Inclined line source
In this Appendix we consider the effects of the inclination with respect to the

horizontal of an infinitely long line source of heat. For the description of the flow
we shall use a coordinate z in the direction of a non-vertical line source and two
coordinates, x and y, to characterize the points in planes normal to the line source,
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Figure 13. Computed isolines of axial velocity w̃ for natural convection around an inclined
infinitely long line source of heat, for Pr = 0.72.

at x = y = 0. The components of the acceleration due to gravity with respect to this
coordinate system are (−gn, 0,−gl).

The translation invariance of the problem with respect to the coordinate z implies
that θ and the velocity components (u, v, w) are functions only of the coordinates x
and y. The temperature and velocity components u and v are given by the analysis
of § 2, with g replaced by gn when determining the velocity and length scales vh and
lh. The velocity component w is given by the non-dimensional equation

vr
∂w

∂r
+
vϕ

r

∂w

∂ϕ
= Pr∆w + θ tanφ. (B 1)

Here vr and vϕ are given by the solution (2.2)–(2.4), and tanφ = gl/gn is determined
by the angle of inclination φ < π/2 of the line source with respect to the horizontal.
Due to the linearity of (B 1), the function w̃ = w/ tanφ is independent of φ.

In the vicinity of the line source, for small values of r, the normalized velocity w̃ is
determined by the Stokes equation, obtained from (B 1) by neglecting the convective
terms. Taking into account (3.2), we can write

w̃ = w̃0 +
r2

8πPr
{ln r − (1 + A0)}+ G1r sinϕ+ G2r

2 sin 2ϕ+ . . . , (B 2)

where the constants appearing in this small-r expansion must be obtained as part of
the numerical solution of (B 1). The constant w̃0 determines the value of the z velocity
component at the line source.

Equation (B 1) was solved numerically, with the method used for the system (2.2)–
(2.4), with the boundary condition

r
∂w̃

∂r
= 0 at r → 0, (B 3)
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Figure 14. Streamlines in the vertical plane for the inclined infinitely long line source,
with Pr = 0.72.

while for r →∞ we require

w̃ = 0 for π/6 < ϕ < π;
∂w̃

∂r
= 0 for 0 < ϕ < π/6. (B 4)

The isolines of w̃ are shown in figure 13 for Pr = 0.72; w̃0 = 0.48. In figure 5
we show, with a dotted line, also for Pr = 0.72, how w̃ varies with x in the vertical
plane of the line source. In the thermal plume, for x � 1, where the effects of the
pressure gradient disappear in first approximation, the functions w̃ and u become
self-similar, and are given by the same equations with the same boundary conditions;
hence, w̃/u → 1 when x → ∞, but the convergence is slow. Below the line source, w̃
decreases rapidly to 0.

The streamlines in the vertical plane of the line source, y = 0, are shown in
figure 14 for Pr = 0.72. Below the heat source the fluid initiates its motion in a
direction perpendicular to the line source, but the flow is gradually deflected towards
the direction of gravity.
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