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ABSTRACT 

Cell growth yield of .Streptococcus bovis and Butyrivibrio were 

detennined in batch cultures where growth 1vas separately limited by 

glucose, CO2 and trypticaseo With~ bovis, glucose l imited growth 

and a Yg of 3906 g /Min the presence of excess CO2 was detennined. 

h bovis grew in the absence of CO2, but the Yg was reduced to 16.5 

g I Mo In the presence of excess CO2, the Yg determined for Butyrivibrio 

was 55 g / M. Butyrivibrio was strictly l imited by CO2 and the Yeo 
2 

was equal to Yg. TI1is led to the suggestion that coz111etabolism allows 

the generation of at least two additional ATP when combined with 

glucose metabolism for both organisms. 

Monad growth constants were determined for both organisms in 

continuous culture under glucose limitation. Ks and 1-< for So bovis 
t max ---

-1 were 0.429 mM / 1 and 2.47 hr , respectively. For Butyrivibrio, Ks and 
-1 !'max were 0.332 mM / 1 and O. 704 hr , respectively. The cell growth 

yields for§.:_ bovis and Butyrivibrio were determined to be 39.6 g / M 
-1 and 69.1 g / M, respectively. At growth rates less than 0.2 hr colony 

fo11ning units and total cell counts of~ bovis decreased, but cell 

yield did not. Colony formD1g units, total counts and cell growth 

yield of Butyrivibrio did not decrease at low growth rates. 

When§.:_ bovis and Butyrivibrio were grown in continuous mixed 

culture, Butyrivibrio dominated at growth rates below 0.5 hr-land 

growth of~ bovis was strongly depressed. That Butyrivibrio dominated 

mixed cultures supports the proposition that an organism deriving more 

ATP per mole of substrate that another will dominate in environments 

comparable with continuous culture. The roles of maintenance energy, 

Ks andf'max and cell yield in competition are considered • 

. ' 
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Inroduction 

The bovine rumen is a semi-continuously fed culture which contains 

a wide variety of protozoa and bacteria. These microorganisms obtain their 

energy and nutrients by fermenting the food eaten by the animal and the 

animal in turn obtains energy by absorbing the end products of the microbial 

fermentation and digests the microorganisms themselves. Volatile fatty 

acids which cannot be metabolized anaerobically in the rumen are absorbed 

by the ruminant and metabolized aerobically to provide energy for the 

synthesis of glucose (Hungate, 1966). The microorganisms are digested in the 

abomasum and duodenum and constitute a major source of protein for the 

animal. 

The stoichiometry of the rumen fermentation has been a topic of interest 

because of its direct implications in the bovine nutrition. ApproxDnately 

75 % of the available carbohydrate is converted to fatty acids, which are 

utilized by the animal (Barcroft, et al, 1944). That microbial protein 

synthesis is capable of supporting ruminant growth has been shown (Loosli, 

et al, 1949; Virtanen, 1966). The actual amount of protein available to the 

cow in the form of microbial cells has been estimated by a number of means 

1. 

but the precise amount remains indefinite, chiefly due to the difficulty of 

separating the microbes from the other rumen contents (Walker & Nader, 1968). 

The 10 g of microbial protein synthesized per 100 g of carbohydrate estimated 

as maximum by Hungate (1966) has been increased by later authors using label 

incorporation (Walker and Nader, 1968; Al-Rabbat et al, 1971; Pilgrim, et al, 

1970) and phospholipid synthesis (Bucholtz & Bergen, 1973). From these 

increases has come the suggestion that the average yield of cell material 

per hexose, and hence the number of ATP derived from each hexose, in the 

rumen should be increased. 

Butyrivibrio fibrisolvens is a rumen organism that ferments carbohydrates to 



CO2, H2, ethanol, and acetic, butyric, fonnic and lactic acids (Hungate, 

1966). It is a common nunen organism which usually occurs in the rumen at 

a concentration of at least 108m1-l (Bryant & Burkey, 1953). The production 

of significant quantities of butyric acid and the numbers present in the 

nrrnen indicate that Buyrivibrio contributes significantly to metabolism 

in the nunen (Bryant & Small, 1956). 

Streptococcus bovis is also a rumen organism, which is not nonnally 

2. 

found in the nuninant diet. Although~. bovis can always be isolated from 

rwnen contents, its numbers seldom exceed 107m1-1 , and its main fennentation 

product is lactate (Hungate, 1966). It has been shown that the lactate pool 

in nnnen contents is nonnally small and turns over slowly (Jayasuriya & 

Hungate, 1959). Consequently, ~.bovis has been considered an organism not 

contributing greatly to ruminant metabolism (Hungate, 1966). However, 

conversion of lactate ·to volatile fatty acids in whole nunen contents has been 

demonstrated (Nakann.1ra & Takahashi, 1971) and lactate may be considered a 

nonnal intennediate in the nunen fennentation. 

Under certain conditions, when the nuninant diet is shifted from low 

to high carbohydrate, the production of lactic acid can increase to such an 

extent that acid indigestion results due to the inability of the digesta to 

metabolize lactic acid as rapidly as it is produced. When this occurs, the 

concentration of S.bovis is found to have increased to the vicinity of 

5 x 109m1-l and is considered one of the most significant contributors to 

acid indigestion. The ability of ~.bovis to generate such high numbers 

appears to be due to its high maxirrn.nn specific growth rate ( a doubling 

time of 20 minutes). 

The fact that S.bovis has a high maxirrn.nn rate of growth and yet 

normally exists in low numbers has been explained in two ways. In animals 

shifted to high grain diets, high concentrations of S~bovis occur for a 

period of time, but in well adapted animals, the numbers are similar to 

those found in animals receiving a low grain diet. This has been 



attributed to the establishment of a new equilibrium population in which 

it is possible that the S. bovis serve as food for an enlarged protozoan 

population. An alternative suggestion for the nonnally low concentration 

of S. bovis has been its poor ability to compete due to its relatively 

inefficient energy yielding metabolism in contrast to other nnnen 

bacteria. 

It has been generally accepted that established pathways of energy 

metabolism generate predictable yields of high energy intennediates, such 

as ATP, and that these are used to synthesize new cell material with 

constant efficiency. This constant, as dete11nined by Bauchop & Elsden 

(1960) is 10.5 g per mole of ATP. This constant has been verified for a 

variety of microorganisms (Forrest & Walker, 1971) and used widely for 

its predictive value. In 1966, Htmgate sugges ted that" ••••• in the 

competition t o achieve maxirrR.rrn growth, selection is against lactic aci d 

and ethanol production. Fonnation of each of these products entails loss 

of available ATP. Conversion of pyruvate to acetyl CoA and the reduction 

of acetyl CoA to ethanol similarly entails loss of a potential ATP. The 

acetyl-CoA can yield an ATP unless it rust be used for hydrogen disposal ••• 

according to this view, the propinionate formed in the rumen represents 

additional synthesis of ATP. This is also true for acetate on the 

hypothesis that pyruvate is split to acetyl CoA. A production of ATP 

in butyrate formation has been surmised, but efforts to demonstrate it 

have been unsuccessful. If there is a selection for maximum biochemical 

work, butyrate should also represent an end product accompanying 

additional energy conservation by the cell. 

According to these views, the carbon dioxide, methane, acetate, 

propionate and butyrate, final products in the nnnen fermentation, are 

formed because pathways leading to them provide the most efficient 

conversion of fermentable substrate into microbial cells." 

3. 



The purpose of the research reported in this thesis was to test the 

proposition that an organism which derives a relatively low yield of 

two ATP per mole of glucose fermented will not be able to compete with 

an organism which can derive additional ATP by metabolism of pyruvate 

to acetate, propionate or butyrate. Two organisms were chosen for the 

experiments,~ bovis, which is a homofermenter and was expected to 

derive only two ATP per mole of glucose (Hungate, 1966) and Butyrivibrio 

fibrisolvens, which produces primarily formic and butyric acid and was 

expected to derive a larger number of ATP per mole of glucose fermented. 

Continuous culture must be used to study competition based on 

substrate utilization because the outcome in batch culture will depend 

simply on the maximum specific growth rate and the duration of the 

lag phase for each organism. The organism with the larger maximum spec­

ific growth rate and shorter lag phase will always dominate if growth 

of both organisms i s l imited by the same subs t rate. Continuous culture 

in a chernostat allows this type of competition to be studied by limit­

ation of the culture to a specific growth rate . Both organisms will have 

the same specific growth rate, and assuming equal affinity for substrate, 

dominance will depend on the efficiency with which the organism 

utilizes the substrate to synthesise new cell material. 

The equations of continuous culture were originally derived by 

Monod (1950) and subsequently by Herbert et al (1956). Equations of 

significance to the work in this thesis are the following: 

A. Dependance of specific growth rate on substrate concentration 

f' = f<maxS I (Ks + S) equation (1) 

fl = specific growth rate 

Pmax = maxi.mum specific growth rate 

Ks= substrate concentration at which 

S = substrate concentration 

= ½ max 

4. 



B. The inverse of equation (1) provides a graphical means of 

determining the constants max and Ks. A plot of equation (2) 

is called a Lineweaver-Burke plot. 

1 / f'- = 1 / )1 max + (Ks I f-i max) 1 / S equation (2) 

C. Molar growth yield 

Yg = x I (Sr - S) equation (3) 

Yg = grams cells produced per mole of substrate consumed 

x = dry weight of cells in grams per liter 

Sr= original or reservoir concentration of substrate 

S = final or growth vessel concentration of substrate 

Variations on these equations (Van Uden, 1969; Powell, 1967) due to 

the inconstancy of Yg and the occurrence of maintenance metabolism will 

be considered in the discussion in regard to the results shown in Section 

III of this thesis. Awareness that these variations can occur led me to 

measure parameters necessary for the determination of viability (total 

and colony forming units (CRJ) cotn1ts) and yield (dry weight) in 

continuous culture experiments. 

s. 




