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Abstract 

It is widely believed that a large meteorite approximately JO km in diameter 

impacted Earth at the termination of the Cretaceous Period with cosmic velocity, 

vaporising itself, along with a greater mass of the terrestrial target rocks into a cloud of 

hot rock vapour. The vapour cloud condensed into particles of sand to clay size at high 

altitude before returning to Earth to form a worldwide layer marking the 

Cretaceous/Tertiary boundary. Chemical evidence from this boundary layer suggests 

that the impactor was a chondritic meteorite, enriched in the platinum group elements 

compared to the Earth's crust. An enrichment of these elements above their 

background crustal abundances to approximately 0.1 of the chondritic abundance has 

been obsen,ed in a number of Cretaceous/ Tertiary boundary layers worldwide. 

Iridium is the platinum group element traditionally used as an indicator of the 

extraterrestrial component (ETC) in likely impact layers due to its rarity in the Earth's 

crust and low detection limits possible using neutron activation analysis methods. 

Neutron activation analysis is however expensive and requires specialist facilities, this 

thesis proposes that the elements gold and palladium can also be used to indicate the 

ETC in the Cretaceous/ Tertiary bou11da1y lay er. Samples from two Cretaceous/Tertiary 

boundary sites, Woodside Creek and Chancel Quarry, were analysed for gold and 

palladium using graphite furnace atomic absorption spectrometry. A strong correlation 

was found between iridium, gold, and palladium abundances at these sites, with all 

showing enrichment at precisely the Cretaceous:Tertiary boundary in proportion to 

iridium, indicating a commo11 origin for all three elements. Gold showed almost 

precisely the expected 0.1 of its cho11dritic abundance in the clay size fraction at both 

Woodside Creek a11d Chancel Quarry (15 ng "g). Palladium showed exactly 0. 1 of its 

chondritic abundance at the Chancel Quarry boundary with 53 nglg. Gold abundances 

on the boundary at Woodside Creek (55 nglg) and Chancel Quarry {-1-1 nglg) showed 

excellent agreement with published values as did the palladium result for Woodside 

Creek (22 nglg). 
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1.0 Introduction 

1.1 The Cretaceous/Tertiary boundary and impact event theory 

The Cretaceous/Tertiary (KIT) boundary at 65 Ma was the first major boundary 

to be recognised and formed part of the Paleozoic, Mesozoic, and Cenozoic divisions of 

Earth history proposed by Phillips in 1841 (Ryder, 1996). The connection between an 

extraterrestrial influence and divisions in Earth history was first noted by Harold Urey in 

1973 when he suggested cometary impacts could have been responsible for some of the 

geological boundaries (Urey, 1973). Prior to this McLaren had proposed in 1970 a 

palaeontologic argument for mass extinction by meteorite impact in the late Devonian 

period (McLaren, 1970). The meteorite impact theory resurfaced when Napier and 

Clube (1979) mentioned a personal communication from the Alvarez group about an 

iridium abundance peak that jumped to twenty times the background level at the KIT 

boundary. Napier and Clube ( 1979) favoured an interstellar source for the impactor 

while Alvarez et al. ( 1980) and Davis et al. ( 1984) argued for a solar system source 

based on isotope quotients of platinum group elements. 

Literature published on the origin of the KIT boundary layer has been reviewed 

by Glen (1994) with the vast majority of papers in support of an impact origin since the 

benchmark paper by Alvarez et al.(1980) . Although the KIT boundary layer is 

characterised by mass extinctions (Ryder, 1996), this is not direct evidence of an impact 

event. Biological extinctions are temporal to the KIT boundary but of themselves do not 

prove an impact event occurred there. In this chapter I will outline some of the key 

evidence presented in support of the impact theory, particularly the chemical evidence 

obtained from platinum group element determinations of the boundary layer. I hope to 

show in this thesis that gold and palladium abundances correlate extremely well with 

iridium abundances (the traditional indicator of meteoritic material). Gold and palladium 

can be used to indicate meteoritic material at two established New Zealand KIT 

boundary sites, a result entirely consistent with the meteorite impact theory. 
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1.1.1 Iridium abundance peak at the Kif boundary 

Alvarez's research in the Umbrian Apennines of Northern Italy had shown that an 

abrupt change from the foraminiferal genus Globotruncana (upper Cretaceous) to 

Globigerina eugubina (lower Tertiary) occurred in limestone rocks of Jurassic to 

Oligocene age. Coincident with this foraminiferal change was an increase in the iridium 

abundance from the background of 0.3 ng/g to a peak of 9.1 ng/g precisely on the KIT 

boundary, followed by a decrease to pre-boundary abundances (Alvarez et al. 1980). 

These iridium levels were compared with those found at another established KIT 

boundary site at Stevns Klint in Denmark where the peak value for iridium was 29 ng/g 

on a whole-rock basis. This was more iridium than could have been removed from a 

column of seawater above the site over the expected time period, assuming typical 

iridium seawater abundances (Alvarez et al. 1980). They proposed a sudden input of a 

large amount of iridium from a cosmic source to account for the observed abundance at 

the KIT boundary. 

1.2 Meteorite impact proposal 

1.2.1 Supernova proposal rejected 

Initially the Alvarez group proposed a supernova explosion to account for the 

excess iridium and other platinum group elements observed at the KIT boundary. 

Supernova are known to produce iridium and other elements heavier than iron in the 'r' 

process of nucleosynthesis (Mason and Moore, 1982). The Alvarez group later decided 

to drop the supernova proposal because no plutonium was detected in the KIT boundary 

sediments, an element expected to be present if a supernova had exploded nearby 

(Alvarez et al. 1980). They then proposed a large chondritic meteorite impact to 

account for the observed iridium peak. Chondritic meteorites are enriched in platinum 

group elements, compared with the Earth's crust (Mason and Moore, 1982) therefore an 

impacting chondritic meteorite should leave evidence of the impact as an enrichment of 

these elements in the geological record. Platinum group elements include Os, Ir, Pt, Ru, 

Rh, and Pd, with Au and Ag often added to the list to form the larger group of noble 

metals (Sienko and Plane, 1961 ). 
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1.2.2 Chondritic meteorite impact proposed for the Kif boundary 

Ganapathy (1980) noted that if a high iridium content is found in the KIT 

boundary layer then you should expect to find high abundances of other siderophiles. 

This was supported by abundance patterns for Ir, Os, Au, Pt, Co, Ni, Pd, Ru~ and Re in 

the Stevns Klint KIT boundary site which showed 0.1 of their chondritic abundances. 

The only exception to this trend was rhenium which is not depleted in the Earth's crust 

probably due to its fractionation in igneous rocks (Kyte, 1988). These siderophiles 

showed abundances in proportion to a chondrite meteorite which suggests that the 

Stevns Klint KIT boundary sediments were enriched in siderophiles in chondritic 

proportions (Ganapathy, 1980). 

1.3 Supporting evidence for the meteorite impact at the KIT boundary 

1.3.1 Physical 

Visible evidence of impacts on Earth are rare due to the Earth's thick atmosphere 

and abundant liquid water shielding the surface from all but the larger impactors (Grieve, 

1994). This helps to explain the vast difference in the apparent cratering rate between 

the Earth and the Moon with the Moon having recorded a virtual photographic record of 

impacts since 3800 Ma. Impact ejecta blankets the Lunar surface, in places between two 

and ten kilometres deep (Grieve, 1994). You would expect a higher number of impact 

craters on Earth than the Moon due to Earth's higher gravity, and this is most likely true 

but for our thick atmosphere and thinner hotter crust which actively recycles and erases 

impact craters (Grieve, 1994). 

-

Ironi~ally it was the Earth's active crust that helped identify the impact crater 

most likely excavated by the KIT boundary meteorite. Hildebrand et al. (1990), in a 

search for the crater, used gravity and magnetic data to isolate the Chicxulub structure in 

the Yucatan Peninsula, Mexico. The impact left a negative gravity anomaly in the crust, 

implying that the crater had filled with less dense sediment following the impact and 

crater excavation. A lQ.0 km diameter crater dimension suggested that Chicxulub fitted 
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the size criteria for the KIT boundary impactor. Subsequent drilling, which dated the 

buried impact melt sheet at 65 Ma, strongly supported Chicxulub as the impact crater of 

the KIT boundary meteorite (Hildebrand et al. 1990). 

1.3.2 Mineralogical 

Mineralogical evidence for an impact was also found at the Chicxulub site with 

shocked quartz and petrographic indications that an impact melt sheet and breccia layer 

were present (Hildebrand et al. 1990). Shocked quartz and the high pressure quartz 

polymorph stishovite were also discovered in marine and nonmarine KIT boundary 

sections worldwide, with the size of the shocked quartz particles decreasing away from 

the proposed impact crater (Bohor, 1990). Other supporting evidence for the Chicxulub 

site is that the target rocks included Anhydrite (Calcium Sulphate) which could explain 

added trauma to the Earth's biota as the impact may have sent 600 billion tonnes of 

sulphates into the atmosphere that later condensed into sulphuric acid (Grieve, 1994). 

The presence of nickel-rich spinets at the KIT boundary (Bohor et al. 1986; 

Bohor, 1990; Recchia et al. 1996) coincided exactly with the palaeontologic boundary 

and the highest iridium abundance. These spinets were formed from the condensation of 

the vapour phase of material created by the impact of the KIT meteorite with the Earth. 

No known terrestrial process can account for the specific siderophile abundances and 

oxidation state of these spinels which, due to their non-mobility in the sedimentary 

environment, form an accurate record of the timing of the impact event (Recchia et al. 

1996). 

1.3.3 Chemical 

Chemical evidence for a meteorite impact at the KIT boundary had to wait the 

development of analytical techniques that could determine platinum group elements at 

the part per billion (ppb) level. Gold and palladium are well suited for this level of 

determination precision using graphite furnace atomic absorption spectrometry, a 

technique that does not require the expensive highly specialised equipment required for 

neutron activation analysis. 
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Abundant chemical evidence for the KIT boundary impact exists, characterised by 

an enrichment of siderophile elements in chondritic ratios (Ganapathy, 1980; Kyte et al. 

1996; Kyte et al. 1980; Palme, 1982). Chondritic meteorites represent the solar 

abundance of non-volatile elements (Wasson 1985) as does the whole Earth, this differs 

from the Earth's crust which is generally depleted in the siderophile elements. Impacting 

chondritic bodies therefore leave a siderophile enriched deposit on the Earth's crust with 

the enrichment in proportion to the siderophile chondritic abundance (Ganapathy, 1980). 

Iridium abundances for the KIT boundary layer of between 1 and 100 ng/g Ir have the 

same range of values as known Earth and Lunar impact melts, although lower iridium 

values than chondritic meteorites (Palme, 1982). This strongly supports a chondritic 

source for the KIT boundary impactor based solely on iridium data with other siderophile 

abundances showing a chondritic pattern (Ganapathy, 1980; Palme, 1982). 

This thesis shows that at the two New Zealand KIT boundary sites studied, 

Woodside Creek and Chancet Quarry (refer Fig 1.1 below), gold and palladium are 

enriched in the KIT boundary layer in proportion to their chondritic abundances. There 

are variations on this theme, with the closest chondritic signature in the sand and clay 

size fractions indicating that these sites received direct fallout from the impact event. 

Whole-rock gold and palladium abundances for both Woodside Creek and Chancet 

Quarry show the expected peak at the KIT boundary as consistent with the sudden input 

of material rich in these elements from the meteorite impact. Gold abundances at both 

sites are higher than the 0.1 of the chondritic abundance observed at Stevns Klint 

(Ganapathy, 1980) although palladium at Chancet Quarry shows the expected 0.1 of the 

chondritic value. At Woodside Creek and Chancet Quarry gold and palladium correlate 

very well with iridium indicating that these elements abundances can be used to signal the 

presence of an ETC in the KIT boundary layer. 
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1.4 The sites 

Two previously identified and well described KIT boundary sites were chosen for 

this thesis, they were Woodside Creek and Chancet Quarry, both in the Marlborough 

province of New Zealand. Element abundances for gold had been carried out for 

Woodside Creek (Brooks et al. 1984) and Chancet Quarry (Strong et al. 1987) although 

no palladium results have been published for these sites. Woodside Creek is the original 

Kif boundary site and was sampled at two locations, Woodside Creek West is the 

original location, sampled by Brooks et al. (1984) and shown in Fig 1.2a. Woodside 

Creek East is the mirror image of the original location and is located directly across the 

stream from the original sampling location. 

Chancet Quarry 
Site 

0 2 3 l _ ___, _ __., _ __.__ ..... km 

River 

170'E 

0 200 
~ 

km · 

FIGURE 1.1 LOCATION ?v1AP OF Kif BOUNDARY 
SITES, MARLBOROUGH, NEW ZEALAND 
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1.4 Woodside Creek 

This site is located at the base of a steep ravme adjacent to the stream bed in 

Woodside Creek, Marlborough (refer figure 1.1). The Kif boundary was first described 

by Strong (1977) who defined the boundary palaeontologically and placed it within the 

Mead Hill Formation (refer figure 1.2). It was characterised by the disappearance of 

planktonic but not benthic forarninifer in a likely water depth of between 200 and 600 

metres at the time of deposition. The geochemistry of this site showed an iridium 

anomaly of 28 ng/g (Alvarez et al. 1982) and Brooks et al. (1984) reported a mean 

iridium abundance across the boundary layer of 70 ng/g. Significantly, Brooks et al. 

(1984) found a Ir/ Au quotient of 2.1 which is indicative of a meteoritic source for the 

boundary layer at this site as terrestrial rocks typically have a Ir/ Au quotient of 0.2 

(Palme, 1982). 
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1.4.2 Chancet Quarry 

This site (previously referred to as Flaxboume River) contains the most complete 

biostratigraphic sequence across the Kif boundary so far discovered in New Zealand 

(Strong et al. 1987). The Cretaceous contains abundant planktonic foraminifer, some of 

which survive into the Tertiary, but at reduced numbers and with decreased average size 

of individuals (Strong et al. 1987). The geochemistry of the site reveals a sharp drop in 

the calcium carbonate level from 62 % in the Cretaceous to 26 % in the boundary layer 

(refer figure 1.3). The layer itself contains Ni/Ir and Cr/Ir quotients with ihe same value 

as C 1 Carbonaceous chondrites, implying a meteoritic source for the boundary layer 

(Strong et al. 1987). Gold and palladium abundances for this site are not reported m 

Strong et al. (1987) but these elements being siderophiles should be enriched m 

proportion to iridium in the boundary layer. 
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FIGURE 1.3 STRATIGRAPHIC COLOtnvfN' FOR CHANCET QUARRY Kif 
BOUNDARY SITE (SOURCE STRONG ET AL. 1987) 
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FIGURE 1.2A CLOSE UP OF WOODSIDE CREEK SITE. RUST COLOURED lCM 
TIIlCK BOUNDARY LA YER (ARROWED) IS RESTING ON THICK BEDDED 
CRETACEOUS LIMESTONE. THINNER ALTERNATE GREY/WHITE 
TERTIARY BEDS LIE ABOVE BOUNDARY LA YER. 
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FIGURE 1.3A CLOSE UP OF CHANCET QUARRY SITE. KIT BOUNDARY 
LA YER IS lCM THICK AND CHARCOAL COLOURED (ARROWED) 
RESTING ON CRETACEOUS MARL AND LIMESTONE. THIN 
BEDDED TERTIARY SEDIMENTS LIE ABOVE BOUNDARY LA YER. 
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1.5 Objectives of Thesis 

The primary objectives of this thesis are outlined below: 

• To refine analytical techniques for the determination of gold and palladium at the ng/g 

level in Kff boundary layer samples from Woodside Creek and Chancet Quarry using 

graphite furnace atomic absorption spectrometry. 

• To compare these gold and palladium abundance results with iridium values obtained 

for these two sites and assess their usefulness as indicators of the presence of an ETC 

in the KIT boundary layer material. 

• To mineralogically examine samples taken at intervals across the KIT boundary and 

identify any mineralogical changes across the boundary possibly caused due to the 

impact event 

• To determine gold and palladium abundances in the separate sand, silt, and clay size 

fractions across the KIT boundary and compare with the particle size distribution 

predicted by the impact theory. 




