Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

INRTERACTIONS BETWEEN FARM EFFLUENT APPLICATION METHODS, TILLAGE PRACTICES AND SOIL NUTRIENTS

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN AGRICULTURAL ENGINEERING AT MASSEY UNIVERSITTY, PALMERSTON NORTH,

NEW ZEALAND

HOANG SON 1998

ABSTRACT

Land disposal of liquid effluent has benefits for the environment and is economically viable. Firstly, it can reduce nutrient levels from wastes polluting waterways. Secondly, the land application of effluent has been the most common treatment method because it can provide some necessary nutrients for plant growth. In New Zealand, land application of farm liquid effluent is a common method for disposing agricultural wastes. However, there is little comparative information about nutrient recycling in soils treated with effluent using surface application or subsurface injection.

A field trial was conducted to examine the effect of tillage on the transformation of nutrient added through dairyshed effluent. Liquid effluent was either injected at 10 cm depth or broadcast on the surface at the Massey University long-term tillage experiments which include permanent pasture, and crops sown with no-till and conventional tillage as main treatments. In the first experiment, raw dairyshed liquid effluent was applied in August 1997 at the rate of 120 m³ ha⁻¹ (30 kg N ha⁻¹ equivalent). This was considered as a low rate of application. In the second experiment starting in December 1997, the application was at the rate of 600 m³ ha⁻¹ (150 kg N ha⁻¹). At this rate, although the hydraulic loading was considered as a high rate, the nutrient loading was considered optimum.

Soil samples were collected before application, after one week, one month, and two months of application, at two depths: 0-10 cm and 10-20 cm and the samples were analysed for total N, total P, NO₃⁻, NH₄⁺, exchangeable K, available Olsen-P. Throughout the experiments, interactions between nutrient status, methods of application and different tillage practices were analysed. In the case of injection method, soil samples were taken both in the centre of the injected row and 10cm horizontally away from the centre of row.

iii

At the low rate of application (first experiment), soil nitrogen and phosphorus status did not change significantly for up to two months after application. Soil ammonium concentration reduced immediately after one week then reduced slowly. Nitrate concentration reduced slowly during the first month and significantly reduced during the second month after application. Exchangeable K and Olsen-P were not significantly different among treatments.

At the high rate of application (second experiment), levels of soil nitrogen and phosphorus reduced slightly after two months of application. Nitrate concentration in the soil increased in the first month, but steadily reduced during the second month. On the other hand, ammonium concentration reduced gradually over a period of two months. Ammonium in injected plots was higher than that in the broadcast plots. Pasture retained more ammonium concentration compared with no-till and conventional tillage plots. Moreover, nitrate content in the injection plots was similar to that in the broadcast. This may be related to low rainfall during the experiment period that may have restricted the denitrification and reduced nitrate losses through leaching.

Generally, there was higher content of exchangeable K and available P in soil which resulted from effluent application. Method of effluent application had no effects on K and P concentrations.

Overall, there was an increase in nutrients in soil after application of liquid effluent, especially at the topsoil. There was a greater retention of nutrients in no-till soil than the conventionally tilled soil. Subsoil injection of effluent allowed higher level of nutrient retention than the surface broadcast method. This may be due to reduced nitrogen losses caused by volatilization of ammonium.

ACKNOWLEDGEMENTS

Firstly and most importantly, I would like to express my deep gratitude to my chief supervisor Dr. M. A. Choudhary and co-supervisor Dr. N. S. Bolan for their encouragement, continuing stimulation, enthusiastic supervision and valuable advice during my study.

I'm particularly indebted to Mr. Dexter McGhie, Mr. Leo Bolter, Mr. Gerard Harrigan, and Mr. Russell Watson in the Institute of Technology and Engineering, who helped to conduct field and laboratory experiments and construct research equipment' used in this study. My gratitude also goes to all staff and postgraduates in the Institute for their friendship and useful suggestions.

I would like to thank Bob Toes, Lance Currie, Mrs Glenys Wallace and Mr Mark Osborne in the Institute of Natural Resource, who helped me a lot during field and laboratory experiments.

Special thanks are due to the New Zealand Official Development Assistance (NZODA) Programme, New Zealand Ministry of Foreign Affairs and Trade for offering me a postgraduate scholarship.

I am also grateful to the Vietnamese Agricultural Engineering Institute for allowing me the opportunity to avail this scholarship.

Finally, I would like to say special word of thanks to my parents, and my friend, Phuong, who encouraged and supported me throughout my study.

V

INTERACTIONS BETWEEN FARM EFFLUENT APPLICATION METHODS, TILLAGE PRACTICES AND SOIL NUTRIENTS

ABSTRACT	
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiii
Chapter 1 GENERAL INTRODUCTION	1
Chapter 2 LITERATURE REVIEW	5
Introduction	5
2. 1 Waste effluent in New Zealand	6
2. 1. 1 Industrial waste effluent	6
2. 1. 2 Municipal sewage effluent	6
2. 1. 3 Dairyshed effluent	7
2. 2 Farm effluent and its effects on soil and environment	9
2. 2. 1 Physical effects	9
2. 2. 2 Biological effects	10
2. 2. 3 Chemical effects	10
2. 2. 4 Social and health effects	10
2. 3 Effects of effluent application on grassland and fodder crops	11
2. 4 Effluent treatment systems	13

2. 4. 1 Ponds	13
2. 4. 2 Alternative treatment methods	13
2. 4. 3 Sequencing bath reactor	13
2. 4. 4 Land application	14
2. 5 Effluent as a source of fertiliser	14
2. 6 Methods of effluent land application	18
2. 6. 1 Broadcast method	18
2. 6. 1. 1 Benefits of broadcast method	18
2. 6. 1. 2 Spray irrigation	18
2. 6. 1. 3 Vehicle (Muck Tanker) spreading	19
2. 6. 1. 4 Land flooding (overland flow)	19
2. 6. 1. 5 Risks of surface land application	20
2. 6. 2 Subsoil injection	21
2. 6. 2. 1 Benefits of subsoil injection	23
2. 6. 2. 2 Limitations of injection method	25
2. 7 NZ Resource Management Act regulations	26
2. 8 Tillage and effluent effects on nutrient cycling	27
2. 8. 1 Purpose of tillage	27
2. 8. 1. 1 Type of tillage	27
Conventional tillage	27
Conservation tillage.	28

No-tillage (direct drilling)	28
2. 8. 1. 2 Tillage effects on N transformation	30
2. 8. 2 Soil nutrients	31
2. 8. 2. 1 Soil nitrogen	31
2.8.2.2 Ammonium volatilization and nitrate leaching	32
2. 8. 2. 3 Nitrogen recycling.	35
3. 8. 2. 4 Soil phosphorus	36
2.8.2.5 Phosphorus recycling	38
2. 8. 2. 6 Soil potassium	40
2.8.2.7 Potassium recycling	41
2.9 Summary	
Chapter 3 MATERIALS AND METHODS	44
3. 1 Experimental layout	44
3. 2 Description of subsoil injector	44
3. 3 Application of liquid effluent	45
3.3.1 Field preparation for the experiment	45
3.3.2 Collection of liquid effluent	48
3.3.3 Experiment 1 Low rate of application during spring	48
3.3.4 Experiment 2 High rate of effluent application in summer	50
3. 4 Collection of soil samples	51
3. 5 Methods of analysis of soil and effluent	55

3. 5. 1 Total nitrogen and phosphorus measurement	55
3. 5. 2 Ammonium and nitrate measurement	55
3. 5. 3 Available phosphorus measurement	55
3. 5. 4 Exchangeable potassium measurement	56
3. 6 Data analysis	56
Chapter 4 RESULTS AND DISCUSSIONS	57
4. 1 Experiment 1 Low rate of effluent application (in winter)	57
4.1.1 Effects of method of effluent application on soil nutrient contents	57
4.1.1.1 Total nitrogen	58
4. 1. 1. 2 Ammonium	60
4. 1. 1. 3 Nitrate	63
4.1.1.4 Total phosphorus	67
4. 1. 1. 5 Available phosphorus	68
4.1.1.6 Exchangeable potassium	72
4. 1. 2 Effects of land preparation on soil nutrient contents	74
4. 1. 2. 1 Total nitrogen	74
4. 1. 2. 2 Ammonium	76
4. 1. 2. 3 Nitrate	78
4. 1. 2. 4 Total phosphorus.	80
4.1.2.5 Available phosphorus	81
4. 1. 2. 6 Exchangeable potassium	83

4.1.3 Summary	84	
4. 2 Experiment 2 High rate of effluent application (in summer)		
4. 2. 1 Placement method effects on nutrient content	86	
4. 2. 1. 1 Total nitrogen	86	
4. 2. 1. 2 Ammonium	88	
4. 2. 1. 3 Nitrate	91	
4. 2. 1. 4 Total phosphorus	94	
4. 2. 1. 5 Available phosphorus	96	
4. 2. 1. 6 Exchangeable K	99	
4. 2. 2 Effects of land preparation on soil nutrient content		
4, 2, 2, 1 Total Nitrogen	101	
4. 2. 2. 2 Ammonium	102	
4. 2. 2. 3 Nitrate .	104	
4. 2. 2. 4 Total phosphorus	107	
4. 2. 2. 5 Available phosphorus	108	
4. 2. 2. 6 Exchangeable potassium	110	
4. 2. 3 Summary	111	
Chapter 5 CONCLUSIONS AND RECOMMENDATIONS		
5.1 Specific conclusions	114	
5. 2 Recommendations for future work	114	
REFERENCES	5-137	

LIST OF TABLES

Table 2.1	Composition of sludge or effluent from a few selected waste	
	source in New Zealand	7
Table 2.2	Estimated volume of waste produced on New Zealand farm	8
Table 2.3	Estimation of annual effluent production on an average	
	sized of dairy farm in New Zealand	9
Table 2.4	Dry matter and nutrient contents of farmyard manure and	10
	slurry in the UK and USA	16
Table 2.5	Maize dry matter yield (tonnes ha ⁻¹) as affected by two	
	tillage treatments	29
Table 2.6	Tillage system effects on residue cover, soil erosion, P and	12.72
	K losses with fall-applied P and K in the USA	41
Table 3.1	Nutrient content in liquid effluent at two times of application	48
Table 4.1	Effects of tillage systems and time lapse after effluent	= 0
	application on total N at two soil depths (g kg ⁻¹ soil)	59
Table 4.2	Effects of method of effluent application on nitrogen	60
Table 4.3	Effects of tillage systems and time lapse after effluent	
	application on ammonium at two soil depths (mg kg ⁻¹ soil)	
Table 4.4	Effects of tillage systems and time lapse after effluent	~ 1
	application on nitrate at two soil depths (mg kg ⁻¹ soil)	64
Table 4.5	Effects of tillage systems and effects of time lapse after	
	effluent application on total phosphorus at two soil depths	
	(g kg ⁻¹ soil)	68
Table 4.6	Effects of methods of effluent application on phosphorus in	
	permanent pasture	68
Table 4.7	Effects of tillage systems and time lapse after effluent	
	application on Olsen P (mg kg ⁻¹ soil) at two soil depths	69

Table 4.8	Effects of tillage systems and time lapse after effluent	
	application on exchangeable K (mg kg ⁻¹ soil) at two soil	
	depths	72
Table 4.9	Tillage effects on total soil nitrogen	75
Table 4.10	Tillage method effects on soil total phosphorus	80
Table 4.11	Effects of tillage systems and effects of time lapse after	
	effluent application on total N at two soil depths (g kg ⁻¹ soil).	87
Table 4.12	Effects of method of effluent application on nitrogen in soil	87
Table 4.13	Effects of tillage systems and time lapse after effluent	
	application on NH_4^+ (mg kg ⁻¹ soil) at two soil depths	88
Table 4.14	Effects of tillage systems and time lapse after effluent	
	application on nitrate (mg kg ⁻¹ soil) at two soil depths	92
Table 4.15	Effects of tillage systems and effects of time lapse after	
	effluent application on total phosphorus (g kg ⁻¹ soil) at two	
	soil depths	95
Table 4.15	Effects of method of effluent application on total	
	phosphorus in soil (g kg ⁻¹ soil)	96
Table 4.17	Effects of tillage systems and time lapse after effluent	
	application on Olsen P (mg kg ⁻¹) at two soil depths	97
Table 4.18	Effects of tillage systems and time lapse after effluent	
	application on exchangeable K (mg kg ⁻¹ soil) at two soil	
	depths	98
Table 4.19	Tillage method effects on total nitrogen	102
Table 4.20	Tillage method effects on total phosphorus	107

LIST OF FIGURES

Fig. 2.1	A schematic diagram of the process involved in acidification	
	and nitrate leaching following nitrification of ammonium	
	fertiliser	34
Fig. 2.2	The phosphorus cycle in a grazed pasture system	38
Fig. 3.1	Field experimental layout	44
Fig. 3.2	Massey University designed Inverted-T injector used in the	
	experiments	46
Fig 3.3	Land preparation for the cultivated treatment for the second	
	experiment	47
Fig 3.4	The field application of liquid effluent on the experimental	
	plots	49
Fig. 3.5	Rectangular core used for sampling	51
Fig. 3.6	Field sample collection for soil nutrient measurement	53
Fig. 4.1	Effluent ponding visible on the surface of CT plots after	
	application	57
Fig. 4. 2	Effects of method of effluent application on ammonium in	
	permanent pasture (Vertical bars show LSD at P=0.05)	62
Fig. 4. 3	Effects of method of effluent application on ammonium in	
	no-till (Vertical bars show LSD at P=0.05)	62
Fig. 4.4	Effects of method of effluent application on ammonium in	
	conventional tillage (Vertical bars show LSD at P=0.05)	62
Fig. 4.5	Effects of methods of effluent application on nitrate in	
	permanent pasture (Vertical bars show LSD at P=0.05)	66
Fig. 4.6	Effects of methods of effluent application on nitrate on no-	
	till (Vertical bars show LSD at P=0.05)	66
Fig. 4.7	Effects of method of effluent application on nitrate in	

	conventional tillage (Vertical bars show LSD at P=0.05)	66
Fig. 4.8	Effects of methods of effluent application on Olsen P in	
	permanent pasture (Vertical bars show LSD at P=0.05)	71
Fig. 4.9	Effects of methods of effluent application on Olsen P in no-	
	till (Vertical bars show LSD at P=0.05)	71
Fig. 4.10	Effects of methods of effluent application on Olsen P in	
	conventional tillage (Vertical bars show LSD at P=0.05)	71
Fig. 4.11	Effects of methods of effluent application on exchangeable	
	K in permanent pasture (Vertical bars show LSD at P=0.05)	73
Fig. 4.12	Effects of methods of effluent application on exchangeable	
	K in no-till (Vertical bars show LSD at P=0.05)	73
Fig. 4.13	Effects of methods of effluent application on exchangeable	
	K in conventional tillage (Vertical bars show LSD at P=0.05)	73
Fig. 4.14	Interaction between tillage systems and effluent application	
	by injection method on ammonium (at the centre of the	
	groove). Vertical bars show LSD at P=0.05	77
Fig. 4.15	Interaction between tillage systems and effluent application	
	by injection method on ammonium (10 cm away from the	
	groove). Vertical bars show LSD at P=0.05	77
Fig. 4.16	Interaction between tillage systems and effluent application	
	by broadcast method on ammonium (Vertical bars show	
	LSD at P=0.05)	77
Fig. 4.17	Interaction between tillage systems and effluent application	
	by injection method on nitrate (at the centre of the groove).	
	Vertical bars show LSD at P=0.05	79
Fig. 4.18	Interaction between tillage systems and effluent application	
	by injection method on nitrate content (10 cm away from	
	the groove). Vertical bars show LSD at P=0.05	79

Fig. 4.19	Interaction between tillage systems and effluent application	
	by broadcast method on nitrate content (Vertical bars show	
	LSD at P=0.05)	79
Fig. 4.20	Interactions between the tillage systems and effluent	
	application by injection method on Olsen P (at the centre of	
	the groove). Vertical bars show LSD at P=0.05	82
Fig. 4.21	Interactions between the tillage systems and effluent	
	application by injection method on Olsen P (at 10 cm away	
	from the groove). Vertical bars show LSD at P=0.05	82
Fig. 4.22	Interactions between the tillage systems and effluent	
	application by broadcast method on Olsen P (Vertical bars	
	show LSD at P=0.05)	82
Fig. 4.23	Interactions between tillage systems and effluent	
	application by injection method on exchangeable K content	
	(at the centre of the groove). Vertical bars show LSD at	
	P=0.05	83
Fig. 4.24	Interactions between tillage systems and effluent	
	application by injection method on exchangeable K (10 cm	
	away from the groove). Vertical bars show LSD at P=0.05	84
Fig. 4.25	Interaction between tillage systems and effluent application	
	by broadcast method on exchangeable K (Vertical bars	
	show LSD at P=0.05)	84
Fig. 4.26	Effects of methods of effluent application on ammonium in	
	permanent pasture (Vertical bars show LSD at P=0.05)	90
Fig. 4.27	Effects of methods of effluent application on ammonium in	
	no-till (Vertical bars show LSD at P=0.05)	90
Fig. 4.28	Effects of methods of effluent application on ammonium in	
	conventional tillage (Vertical bars show LSD at P=0.05)	90

Fig. 4.29	Effects of methods of effluent application on nitrate in	
	permanent pasture (Vertical bars show LSD at P=0.05)	93
Fig. 4.30	Effects of method of effluent application on nitrate on no-till	
	(Vertical bars show LSD at P=0.05)	93
Fig. 4.31	Effects of methods of effluent application on nitrate in	
	conventional tillage (Vertical bars show LSD at P=0.05)	93
Fig. 4.32	Effects of methods of effluent application on Olsen P in	
	permanent pasture (Vertical bars show LSD at P=0.05)	98
Fig. 4.33	Effects of methods of effluent application on Olsen P in no-	
	till (Vertical bars show LSD at P=0.05)	98
Fig. 4.34	Effects of methods of effluent application on Olsen P in	
	conventional tillage (Vertical bars show LSD at P=0.05)	98
Fig. 4.35	Effects of methods of effluent application on exchangeable	
	K in permanent pasture (Vertical bars show LSD at P=0.05)	100
Fig. 4.36	Effects of methods of effluent application on exchangeable	
	K in no-till (Vertical bars show LSD at P=0.05)	100
Fig. 4.37	Effects of methods of effluent application on exchangeable	
	K in conventional tillage (Vertical bars show LSD at P=0.05)	100
Fig. 4.38	Interactions between the tillage systems and effluent	
	application by injection method on ammonium (at the centre	
	of the groove). Vertical bars show LSD at P=0.05	103
Fig. 4.39	Interactions between the tillage systems and effluent	
	application by injection method on ammonium (at 10 cm	
	away from the groove). Vertical bars show LSD at P=0.05	104
Fig. 4.40	Interactions between the tillage systems and effluent	
	application by broadcast method on ammonium (Vertical	
	bars show LSD at P=0.05)	104
Fig. 4.41	Interactions between tillage systems and effluent	

	application by injection method on nitrate (at the centre of	
	the groove). Vertical bars show LSD at P=0.05	106
Fig. 4.42	Interaction between tillage systems and effluent application	
	by injection method on nitrate (10cm away from the	
	groove). Vertical bars show LSD at P=0.05	106
Fig. 4.43	Interactions between tillage systems and effluent	
	application by broadcast method on nitrate content (Vertical	
	bars show LSD at P=0.05)	107
Fig. 4.44	Interactions between tillage systems and effluent	
	application by injection method on Olsen P (at the centre of	
	the groove). Vertical bars show LSD at P=0.05	109
Fig. 4.45	Interactions between tillage systems and effluent	
	application by injection method on Olsen P (10 cm away	
	from the groove). Vertical bars show LSD at P=0.05	109
Fig. 4.46	Interaction between tillage systems and effluent application	
	by broadcast method on Olsen P (Vertical bars show LSD	
	at P=0.05)	109
Fig. 4.47	Interactions between tillage systems and effluent	
	application by injection method on exchangeable K (at the	
	centre of the groove). Vertical bars show LSD at P=0.05	110
Fig. 4.48	Interaction between tillage systems and effluent application	
	by injection method on exchangeable K (10 cm away from	
	the groove). Vertical bars show LSD at P=0.05	110
Fig. 4.49	Interactions between tillage systems and effluent	
	application by broadcast method on exchangeable K	
	(Vertical bars show LSD at P=0.05)	111

xvii