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Abstract 

MADS-box transcription factors (TF) are a family of evolutionary conserved genes 

found across various eukaryotic species. Characterized by the conserved DNA binding 

MADS-box domain, MADS-box TF has been shown to play various roles in 

developmental processes. MADS-box genes can be based on MADS-box structural 

motifs divided into type I and type II lineages. In plants very limited functional 

characterization have been achieved with type l genes MADS-box genes. 

In this project we attempted to functionally characterize 2 closely related members of the 

type I lineage MADS-box genes AGL40 and AGL62 and give further support to the 

hypothesis that plant type l MADS-box genes are also crucial to normal plant 

development. Based on our expression domain characterization assay using AGL62: 

GUS fusion construct, we have shown expression of AGL62 in various tissues but 

especially strong in developing seeds, pollen and seedling roots and shoots. The web 

based microarray data suggesting that AGL62 may have a function in seed, pollen and 

seedling development backed up this result. 

Interestingly when we carried out PCR based genotyping with segregating population of 

heterozygous AGL62 T-DNA insertion lines (ag/62/ +) to identify the homozygous T­

ONA insertion lines we detected no homozygous T-D A insertion line indicating loss­

of-function of AGL62 may be lethal to plant. 

With reference to the AGL62 expression in pollen, seed and seedling root and shoot, we 

carried out phenotypic assay on each of these tissues in ag/62/ + background to 

investigate whether there was any phenotypic defect observed. Significant reduction in 

number of seeds was observed in ag/62/+ indicating possible role of AGL62 in seed 

development. Our microscopic observation of seeds from ag/62/+ plants showed 

defective embryos and confirmed that AGL62 plays a role in seed development. 

Our data on AGL62 is the first report that confirms AGL62's involvement in plant 

development and can be a ground work for further works on functional characterization 

of other members of plant type I MADS-box genes. 
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Chapter 1 Introduction 



1.1 MADS-box genes 

MADS-box genes are an evolutionary conserved gene family found in a range of 

organisms from yeast to humans to plants and have a role in regulation of various 

developments (Baum, 1998; Vergara-Silva et al. , 2000; Kofuji et al. , 2003). MADS-box 

genes code for transcription factors (TF) and named so after an acronym from 

MIN/CHROMOSOME MAINTENANCE 1 (MCMI), ,1GAMOUS (AG) , DEFICIENS 

(DEF) and SERUM RESPONSE FACTOR (SRF) which are the first genes identified in 

the family (De Bodt et al. , 2003b; De Bodt et al. , 2003a) . Changes in expression pattern 

of TF genes usually result in changes of expression pattern of downstream genes and may 

cause global gene switch in some cases. MADS-box genes are shown to have important 

roles in terms of evolution of body plans as well as various other developmental 

processes (Becker and Theissen, 2003). 

MADS-box genes can be divided into 2 types - type I and type II - based on their 

structural motifs of the conserved DNA binding MADS-box domain (Figure 1. 1 ). The 

conserved MADS-domain characteristic of MADS-box genes is known to bind DNA via 

the CarG box sequence (CC(A/T)6GG) (Johansen et al. , 2002 ; De Bodt et al. , 2003b ). In 

type II, the approximately 58 amino acid long MADS-box domains have a structural 

motif similar to that of MEF2-like genes in animals (Figure 1. 1 ). In plants, type II 

MADS-box genes have been extensively studied which showed they play various 

important roles in plant development (De Bodt et al. , 2003a). Type I MADS-box genes 

have the SRF-like MADS-box domain at their N-terminus (Figure 1.1). In plants, little is 

known about the role type I MADS-box genes play in development compared to well 

studied type 11 lineage (De Bodt et al. , 2003a). Both type I and II MADS-box genes are 

present in fungal, animal and plant kingdom and phylogenetic analysis of MADS-box 

genes in all the 3 kingdoms showed that MADS-box genes were already present in last 

common ancestor of animal, fungal and plant species (Martinez-Casti lla and Alvarez­

Buylla, 2004). Animal/Fungal MADS-box genes also have either SRF-like MADS-box 

domain or MEF2-like MADS-box domain respectively and have been reported to play 

important roles in developmental processes (De Bodt et al., 2003a). (Figure l. 1). 
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Type II l 
Animal/fungal 

I C plant 

? plant 
Type I 

SRF Animal/fungal 

58aa 

Figure 1.1 MADS-box genes in fun ga l, animal and plant species . Both type I and type I I lin eages were 
identifi ed in a ll 3 kingdoms. Type I lineages are defin ed by their conserved SRF like MA DS-box DNA 
binding domain w hile type II lineages are defin ed by th eir M EF-2 like MADS-box doma in . All MADS-box 
genes also have less conserved C-term ina l domain . In plants , functi on o f C-terminal domain o f type I 
MA DS-box gen es are yet unid entifi ed and therefore denoted here as? There are ex tra I and K doma ins 
between the MA DS-box domain and C-termi nal doma in in plant type II MA DS-box genes. 

1.2 Arabidopsis thaliana as plant model organism 

Arabidopsis thaliana is a small flowering plant that belongs to a Brassicaceae (mustard) 

family (Figure 1.2), which includes many of the cultivated species such as cabbage. 

Although Arabidopsis has no major agronomic value, it has been used as a plant model 

organism for more than a decade for several reasons. Arabidopsis has a small size and 

relatively short life cycle of approximately 6weeks making it easy for researchers to 

culture large number of them in restricted space (http://www.arabidopsis.org/) . It is 

a lso amenable to transformation by Agrobacterium resulting in production of many 

mutant lines (Clough and Bent, 1998). In 2000, whole Arabidopsis genome has been 

sequenced leading to identification of many new genes (Arabidopsis Genome, 2000). 

Currently, it is thought 125Mb Arabidopsis genome contains approximately 25000 genes, 

of which 5% encodes a transcription factor (TF) (Arabidopsis Genome, 2000). There are 

11 TF fami ly present in Arabidopsis and one of the family MADS-box fami ly is thought 

to be homologous to animal Homeo box genes in terms of their functional roles in 

development (De Bodt et al., 2003a). Since the genome sequencing in 2000, 108 MADS-
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box genes have been identified in Arabidopsis (Martinez-Castilla and Alvarez-Buylla, 

2004). Examples of MADS-box genes include AGAMOUS (AG) and APETALLAJ (AP]) 

which are the floral organ identity genes (Becker and Theissen, 2003). In Arabidopsis, all 

functionally uncharacterized MADS-box genes are named AGAMOUS-LIKE (AGL) X 

after AG-the first plant MADS-box genes to have its function characterized (De Bodt et 

al., 2003a). Since there are much less MADS-box genes present in animal and fungal 

species, much of the information about function of MADS-box genes so far came from 

studies in Arabidopsis (De Bodt et al., 2003a). Coupled with its genome sequence data, 

availability to many mutant lines and amenability to many biochemical and molecular 

biological assays, Arabidopsis thaliana therefore works as an ideal plant organism to be 

studying function of MADS-box genes. 

Figure l .2 Basic body plan of Arabidopsis thaliana. 3 weeks old Arabidopsis Co lumbia Wild Type (WT). 
Arabidopsis plant is a small plant but consists of all major plant organs including root (not shown), rosetta 
leaves (R), stem (S), cauline leaves (C), and inflorescence (I) . 
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1.3 Type II plant MADS-box genes 

Plant type II MADS-box genes have been extensively studied and found to be involved 

in various aspects of plant development. (Johansen et al. , 2002; De Bodt et al. , 2003b). In 

plant type II MADS-box genes, there are additional C-terminal domains including K, l, 

and C- domains following the conserved N-terminal MADS-box domain (fig 1.1). The K 

(keratin-like) domain is well conserved between plant type II MADS-box genes and 

consists of approximately 80 amino acids that form a hydrophobic coiled-coil structure 

involved in protein - protein interaction to form dimer or multimer with other TFs (Yang 

et al. , 2003 ; Yang and Jack, 2004) . The I (intervening) domain is less conserved 

compared to MADS or K domain and is involved in specification of protein-protein 

interaction (Yang and Jack, 2004). The least conserved C-terminal domain is thought to 

be involved in Transactivation of target genes similar to other clades of MADS-box 

genes (Yang and Jack, 2004). Because of these MADS-box, I, Kand C domains, plant 

type II MADS-box genes are also known as MIKC type MADS-box genes (Martinez­

Castillo and Alvarez-Buylla, 2004). The I, Kand C domains are only present in plant 

type II MADS-box genes indicating I, Kand C domains have developed specifically in 

plant type II lineages after diversion of type I and type 11 lineages in plants (Figure 1. 1) 

(Martinez-Castilla and Alvarez-Buylla, 2004) . 

1.3.1 Plant type II MADS-box genes and flower development 

Type II MADS-box genes are particularly important in flower development although not 

restricted to it (Irish , 2003) . Currently, there are over 250,000 known angiosperm species 

(flowering plants) present all over the world and the flowers come in a variety of sizes, 

shapes, and colors (Irish, 2003). However, despite these diversities in floral appearance, 

their basic organization remains the same in many flowers (Irish, 2003). Flowers arise 

from a floral meristem that gives rise to 4 floral organs - sepal, petal, stamen (male 

reproductive organ) and carpel (female reproductive organ). These floral organs arise in 

an orderly manner around the floral meristem axis (Lawton-Rauh et al. , 2000). Sepals are 

formed first followed by petals and then stamens then carpels (Lawton-Rauh et al., 2000). 

Analysis of homeotic floral mutants which had floral organ identity miss-specification 

phenotype led to the identification of several type II plant MADS-box genes that are 

classified into 3 subclasses - A, B, and C class genes. AP ET ALA 1 (AP I) represents A 
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class gene, B class genes include PISTILLATA (PI) and APETALA3 (AP3) and 

A GAMOUS (AG) represents C class gene. This in tum led to the formulation of a genetic 

model termed the ABC model that explains how a combination of A, B, and C classes of 

type II MADS-box genes are involved in specification of identity of 4 whorl organs of 

the flower - sepal, petal, stamen, and carpel (Figure 1.3) (Pelaz et al., 2001; Irish, 2003). 

In the ABC model, A class genes alone specify sepals, A and B class genes together 

specify petals, B and C class genes act together to specify stamens and C class genes 

alone specify carpels (fig. 1.3) (Purugganan et al., 1995; Lawton-Rauh et al., 2000; Pelaz 

et al., 200 I). These ABC class genes are mutually exclusive and are restricting expression 

of each other in wild type (WT) to regulate their expression domains (Purugganan et al., 

1995). Therefore, when one class of genes are knocked out in floral homeotic mutants, 

the other class of genes are over-expressed and result in conversion of one organ to 

another (homeotic mutation) (Figure 1.3) . 

B 

WT A B C 
Figure 1.3 ABC floral organ identity model. Photos taken from www.Arabidopsis.org/ In ABe-floral organ identity 
model, A class gene alone specify sepal, A and B class genes together specify petal, B and C class genes specify 
stamen and C class gene alone specify carpel (Top diagram). WT flowers have all 4 floral organs -peta l, sepal, stame 
and carpel (Bottom Figure WT). On the other hand, A c lass mutants lack sepal and petal (Figure A), B c lass mutant 
lack petal and stamen (Figure 8) and C class mutant lacks stamen and carpel (Figure C) 
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1.3.2 Plant type II MADS-box genes outside the flower 

In addition to floral organ identity, type II MADS-box genes have regulatory roles in 

flowering time of plants (Rounsley et al. , 1995). The flowering pathway in plant requires 

quite a complex network of gene interactions. Several plant types 11 MADS-box genes 

have been isolated whose mutations resulted in altered flowering time. These genes 

include SOC (SUPRESSOR OF CONSTANS), AGL24 (AGAMOUS-LIKE 24) and FLC 

(FLOWERING LOCUS C) (Michaels et al. , 2003). Isolation of such genes gave strong 

evidence that type II MADS-box genes are involved in control of flowering time as well. 

The importance of type II MADS-box genes in plant development is not restricted to 

floral organ specification (Rounsley et al. , 1995; Alvarez-Buylla, 200 I; Ng and 

Yanofsky, 2001) . As well as there regulatory role in reproductive organ development, 

MADS-box genes play important roles in development of vegetative tissues such as 

roots , stems, and leaves (Alvarez-Buylla, 200 I). Hence, the MADS-box gene family has 

diverse roles throughout plant development. For example, a PCR based cloning approach 

resulted in the identification of AGL/6 (A GA MO US-LIKE 16), AGL1 8 (A GAMOUS­

L1KE 18) , and AGL/9 (AGAMOUS-LIKE/9) and yeast-2-hybrid system identified AGL27 

(A GAMOUS-LIKE 2 7) and AGL3/ (AGAMOUS-LIKE 31) that are closely related to FLC 

(Alvarez-Buylla, 2001) . RT-PCR showed that AGL/6 is highly expressed in rosette 

leaves and moderately expressed in roots and stems (Alvarez-Buylla, 200 I). Further, in 

situ hybridization showed that AGL16 is expressed in guard cells and trichomes in both 

abaxial and adaxial epidermis of rosette leaves (Alvarez-Buylla, 2001). These 

experiments indicated that A GLI 6 may have a role in the regulation of stomata 

development (Alvarez-Buylla, 2001 ). Evolution of stomata was one of a key events 

during the early evolution of land plants which is consistent with the idea that MADS­

box genes played an important role in the evolution of body plans in plants (Baum, 1998; 

Kellogg, 2004). A GL19 is specifically expressed in root and not in any other tissues 

indicating a role of A GL19 in root development (Alvarez-Buylla, 2001 ). Within root, this 

gene is expressed in columella, lateral root cap, and epidermal cells of the meristematic 

regions (Alvarez-Buylla, 2001 ). The root cap plays a central role in perception of 

environmental cues such as gravity and is important for gravitropic responses in plant. 
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AGL27 and AGL31 are similar in sequence and expression pattern to FLC and are 

expressed in most of the plant tissues including root, leaf, stem, flower and in silique 

(Alvarez-Buylla, 2001). Similarity of AGL27 and AGL31 in sequence and expression 

pattern to FLC suggest that theses genes may have redundant activities to each other 

indicating AGL27 and AGL31 may have a function in controlling flowering time as well. 

However, FLC also seems to have at least some independent roles because single fie loss­

of-function mutant shows a clear early flowering phenotype which is not observed in 

ag/27 nor ag/31 single mutants (Michaels et al. , 2003). Other examples of MADS-box 

genes that have function in development of plant outside the flower include 

SHATTERPROOF/ (SHPI) , SHATTERPROOF2 (SHP2), FRUITFUL (FUL) , and 

TRANSPARENT TESTA16 (TT/6) that are involved in seed development (Rounsley et al. , 

1995 ; Alvarez-Buylla, 2001). 

1.3.3 Plant type II MADS-box genes in other plant species 

Completion of genome sequencing in Arabidopsis thaliana in 2000 identified 

approximately 26000 genes in this plant model organism of which just over I 00 of the 

identified genes are MADS-box genes (Kofuji et al. , 2003; Parenicova et al., 2003 ; 

Martinez-Castilla and Alvarez-Buylla, 2004). Because of a high level of conservation in 

the DNA binding MADS-box domain , isolation of MADS-box genes from other distantly 

related plant species such as maize, rice, and orchid plants were possible by using 

degenerate primers that bind to the conserved MADS-box domain at N-terrninal (Mena et 

al., 1995; Becker et al. , 2000; Jia et al. , 2000b). Identification of MADS-box genes in 

these monocot plants indicated that MADS-box genes were already present before the 

divergence of monocots and dicots (Jia et al. , 2000a). Fact that the ABC model of floral 

organ identity is conserved between monocots and dicots supports the above statement 

(Ambrose et al., 2000). In line with the ancestral presence of MADS-box genes in plants, 

MADS-box genes have also been identified in lower plant species such as moss (P. 

patens) , fem, and gymnosperms (G. gnemon) (Winter et al., 1999; Henschel et al., 2002; 

Theissen and Becker, 2004). MADS-box genes are also functional in monocot plant 

development. This is of an agricultural importance as well as the scientific importance 

because important cereals including rice plant belong to the monocot (Jia et al. , 2000b). 

Rice ( Oryza saliva) genome sequencing has been completed recently and this enabled the 
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comparative genomics approach to compare MADS-box genes from dicots (Arabidopsis 

thaliana) to that of monocots (Oryza saliva) (Jia et al., 2000b). This resulted in the 

identification of 71 MADS-box genes in Oryza saliva but the actual number of MADS­

box genes in rice is thought to be higher as genome annotation in rice is far from 

completion at this stage (Jia et al., 2000a). Examples of MADS-box genes identified in 

rice plant include FDRMADS6 and FDRMADS7 which showed high homology with AP 1 

of Arabidopsis thaliana and AP 1 orthologues from other plant species (Jia et al., 2000a). 

FDRMADS6 protein showed 62% identity with AP 1 in its first 154 amino acids while 

FDMADS7 protein showed 52% identity with AP I in its first 231 amino acids (Jia et al. , 

2000a). Because FSMADS6 and FSMADS7 have high a level of similarity with AP 1, an A 

c lass MADS-box gene involved in specification of floral organs, they are likely to have a 

function in flower development as well. Expression pattern analysis by RT PCR showed 

FSMADS6 is exclusively expressed in inflorescence and no signal was detected in the 

vegetative tissues including root, leaf or stem (Jia et al. , 2000a). On the other hand, 

FSMADS7 is expressed mainly in inflorescence but weaker expression was also observed 

in root and shoot tissues as well (Jia et al. , 2000a) . Because MADS-box genes tend to be 

expressed in a cell where they function , this result suggested that MADS-box genes may 

have functions outside the flower as well in monocots such as Oryza sativa (Jia et al., 

2000b). 

1.4 Animal/Fungal type I MADS-box genes 

ln plants, only little is accomplished in terms of functional characterization of type I 

MADS-box gene. However, in animal and fungal kingdoms, type I MADS-box have 

been shown to play various important roles in development (Treisman and Ammerer, 

1992). Examples of animal and fungal type I MADS-box genes include SRF and MCMl 

(Treisman and Ammerer, 1992). 

1.4.1 Serum Response Factor 

SERUM RESPONSE FACTOR (SRF), a type l MADS-box genes in mammals, is a 

transcription factor (TF) that regulate cell cycle phase transitions and muscle 

development (Treisman and Ammerer, 1992). SRF is a ubiquitously expressed TF protein 

that consists of 508 amino acids and has a molecular weight of 64Kda (Arsenian et al., 
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1998). It regulates expression of many cellular immediate early genes such as c-fos in 

response to serum growth factor (Treisman, 1992). In response to serum, SRF recognizes 

a specific DNA sequence termed Serum Response Element (SRE) through its interaction 

with AT rich CarG-box sequence (CC(A/T)6GG) present at the DNA element to attach 

itself to the target genes and regulate expression of the targets (Treisman, 1992). SRF 

gene has been cloned and X-ray crystal structure of SRF MADS-box domain bound to 

SRE has been solved (Treisman, 1992; Treisman and Ammerer, 1992). Together, these 

data were used to map DNA binding, dimerization and transactivation domains in SRF. 

These mapping experiments mapped DNA binding and dimerization domain to the N­

terminal MADS-domain respectively at positions 133 - 222 and 168 - 222 and 

transactivation domain at C-terminal (Wynne and Treisman, 1992). GAL4-SRF 

chimerical transcription factor protein reporter assay experiment surprisingly showed that 

GAL4-full SRF construct could not activate expression of reporter gene (Wynne and 

Treisman, 1992). However, the same experiment showed when SRf is deleted at N­

terminal up to position 203, the construct constitutively activated expression of reporter 

gene even in absence of the serum growth factor (Wynne and Treisman, 1992). This 

indicated presence of repressor domain at the N-tem1inal of SRF which over-lap with the 

MADS-box DNA binding and dimerization domain (Wynne and Treisman, 1992). 

Although MADS domain and repressor domain over-lap, DNA binding and dimerization 

domain were not responsible for the inhibition of SRF activity since mutations that affect 

DNA binding or dimerization did not affect inhibitory activity (Wynne and Treisman, 

1992). Repressor domain function to inhibit SRF dependent transactivation of target 

genes when SRF is not bound to SRE allowing repression of the gene expression when 

transactivation is unnecessary (Davis et al., 2002). This discovery opened a way for 

application of the repressor domain to further study the function of SRF (Davis et al. , 

2002). Deletion of SRF trans-activation domain at C-terminal resulted in expression of 

truncated SRF that is capable of competing with WT SRF for binding to the target DNA 

elements but lacks the ability to upregulate transcription (Davis et al., 2002). Hence the 

truncated SRF functioned as a dominant negative mutant of SRF and was used in many 

studies to show the importance of SRF in various muscle-related gene expression (Davis 

et al., 2002). 
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It has been shown that SRF interacts with various accessory proteins via its MADS 

dimerization domain including homeo domain proteins phox 1/Mhox and Nkx2.5, NF-kB, 

ATF6, myogenic bHLH factors , and HMG-I family of non-histone nuclear proteins 

(Marais et al. , 1992; Marais et al., 1993). In vitro experiment replacing dimerization 

domain of SRF with that of MCM I resulted in a chimerical SRF that can recruit MCM I 

accessory protein STE 12 (Wynne and Treisman, 1992). Depending these accessory 

proteins, SRF can function as both activator or repressor of its target genes (Wynne and 

Treisman, 1992). Extensive studies have been carried out with one interesting accessory 

protein family of SRF called Ets domain accessory family whose members have been 

shown to form ternary complex with SRF at SRE (Marais et al., 1993). Hence they are 

also called ternary complex factors (TCF) (Marais et al., 1993). In SRE region, there is a 

motif called Ets motif (GGA(A/T)) adjacent to the CarG box sequences and Ets domain 

proteins SAP- I and Elk- I have been shown to bind to the DNA through interaction with 

the Ets motif (Marais et al., 1993). SAP- I and Elk-I possess N-terminal Ets domain that 

bind to the Ets motif (Marais et al. , 1993). These proteins also contain conserved 

21 amino acid regions called 8-box domain located 50 residues C-tem1inal to the Ets 

domain and this 8-box domain mediate ternary complex formation with SRF (Marais et 

al. , 1993). There have been reports though, that some SREs do not contain the Ets motifs 

which indicate possibility that different SRF accessory proteins exist such as bHLH, NF­

kB and so on (Marais et al. , 1993). 

Phosphorylation may also play a role in regulating SRF mediated gene expression as 

reported (Marais et al., 1992; Xi and Kersh, 2002). SRF itself is a phospho-protein and 

contains at least 4 phosphorylation sites that are targeted by Casein Kinase II (CKII) 

(Marais et al., 1992). It was shown that SRF have 2 phosphorylated forms - nascent non­

phosphorylated form with molecular weight of 64Kda and fully phosphorylated 67Kda 

form (Marais et al., 1992). Upon phosphorylation, SRF is activated and carries out its 

function of regulating the gene expression (Marais et al., 1992). SRF have been shown to 

act both as activator or repressor of expression depending on its phosphorylation state 

(Marais et al., 1992). However, role of phosphorylation in regulation of SRF-mediated 

transactivation is somewhat obscure because recent research by other groups has shown 

that mutations that disrupt these phosphorylatioin sites did not affect transactivation 

ability of SRF (Iyer et al. , 2003). Though phosphorylation may not directly affect activity 
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of SRF, it may have a role in indirectly regulating SRF-mediated transactivation by 

phosphorylating the accessory proteins of SRF (Bebien et al., 2003). For instance, Ets 

domain family proteins SAP- I and Elk-1 possess MAP kinase target site at their C­

terminal and when phosphorylated at the C-terminal , interaction between these proteins 

and SRF are induced to form a ternary complex which is capable of turning on the 

expression of target genes (Marais et al., 1993). 

In vivo mechani sm of how SRF activate transcription is yet to be discovered but SRF has 

been reported to interact with general transcription factor TFIIF, homeodomain pH OX I , 

and chromatin remodeling protein CBP (Arsenian et al. , 1998). These 3 proteins could be 

interacting with SRF at SRE in response to serum to up-regulate the express ion of target 

genes (Arsenian et al. , 1998). Alternatively there could be yet unidentified protein factors 

that interact with SRF to induce express ion in response to serum (Xi and Kersh, 2002). 

There are many cases where SRF is shown to play role in developmental processes 

(S imon et al. , 1997; Escalante and Sastre, 1998). For example, mice srf null mutant have 

shown that SRF is required for mesoderm formation in mice embryo and that disruption 

of this gene in mice results in embryonic lethal phenotype or dies wi thin couple days of 

birth due to severe defect in muscle development (Arsenian et a l. , 1998). In 

Dictyosterium, SRFA have been shown to play role in final step of spore differentiation 

and in Drosophila, dSRF plays a role in development of trachea (S imon et al. , 1997 ; 

Escalante and Sastre, 1998) . 

1.4.2 Miniature chromosome 1 

MCM I (Miniature chromosome 1) is a yeast homologue of SRF and has been shown to 

determine mating type differentiation after activation by pheromone induced signal 

transduction pathway (Treisman and Ammerer, 1992). In yeasts, there are 3 cell types -

haploid a, a, and diploid a/a (Treisman and Ammerer, 1992). These cells differ from 

each other in terms of their mating specificity and ability to form spore (Treisman and 

Ammerer, 1992). These differences are due to regulation of cell-type specific gene 

expression by MCMI (Treisman and Ammerer, 1992). In a-cell, MCMl forms a hetero­

tetramer complex with homeodomain protein MAT a-2 (Treisman and Ammerer, 1992). 

MCM1-a2 complex binds 3lbp partially symmetrical conserved DNA sequence located 

upstream of transcriptional start site of a-specific genes and repress their expressions 
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(Treisman and Ammerer, 1992). In contrast, in a-cell, MCM l interacts with a-1 homeo­

domain protein to positively regulate the transcription of a-cell specific genes to promote 

a-cell fate (Treisman and Ammerer, 1992). 

MCM l shares 72% identity with SRF over the conserved MADS-domain but binds 

slightly variant consensus sequence CC(C/T)AA(A/T)NNGG instead of the CarG box 

sequence (Wynne and Treisman, 1992). In addition, accessory proteins of SRF and 

MCMI are quite diverse and some are shown to be specific to MCMl or SRF while some 

other accessory proteins are capable of binding to both MCM I and SRF (Wynne and 

Treisman, 1992). Like SRF, MCM I is also capable of functioning as activator or 

repressor of transcription of target genes depending on the interacting partner such as 

stated in above example of interaction with a I and a2 (Treisman and Am merer, 1992). 

In summary, type I MADS-box genes are playing various functions in wide range of 

developmental processes in animal and fungal kingdom (Treisman and Ammerer, 1992). 

Molecular mechanisms of how type I MADS-box genes are regulating transcription of 

target genes are not yet identified but their accessory proteins have been shown to play 

significant role in the regulation such that types of the interacting partner can signal type 

I MADS-box genes to function either as transctivator or repressor (Treisman and 

Ammerer, 1992). 

1.5 Plant type I MADS-box eenes 

Recently functional characterization have been achieved with 2 members of plant type I 

MADS-box clade supporting the hypothesis that type I MADS-box genes have a 

functional role in plant development (Kohler et al., 2003; Portereiko et al., 2006). These 2 

genes are AGL80 and AGL37 (PHERES]) (Kohler et al., 2003; Portereiko et al., 2006). 

Both AGL80 and PHERES l were shown to be important for seed development in plants 

(Kohler et al., 2003; Portereiko et al., 2006) . 

1.5.1 AGL80 

In angiosperms (flowering plants) , seed formation initiates with a fusion of male gametes 

and female gametes (Faure et al., 2002). In Arabidopsis, double fertilization takes place 

in which 2 sperm nuclei (n) produced from male gametes fertilizes egg cell (n) and 

central cell (2n) of female gamete to produce diploid embryo (2n) and triploid endosperm 
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(3n) respectively (Faure et al., 2002). Embryo will eventually give rise to mature plant 

while endosperm is responsible for transporting maternally derived nutrient to embryo for 

proper embryo development (Faure et al., 2002). In last decade, number of genes 

involved in female gametophyte development have been isolated including FIE, F/S2 and 

MEA (Luo et al., 2000). 

In ag/80 mutant, endosperm development was absent even when the mutant was 

pollinated with WT pollen suggesting role of AGL80 (AGAMOUS-LIKE 80) in female 

gametophyte development (Portereiko et al., 2006). Consistent with the above statement, 

further phenotypic analysis showed central cell in ag/80 mutant plant had much smaller 

vacuole and nucleolus compared to the WT central cell that is characterized by a large 

vacuole and nucleolus (Portereiko et al., 2006). Further, AGL80::GFP reporter gene 

system showed expression of AGL80::GFP in central cell and in early developmental 

stage endosperm 3 days after pollination (Portereiko et al., 2006). In addition, looking at 

expressions of endosperm expressed genes DME, F!S2 and DD46 in ag/80 mutant back­

ground, it showed expression of DME and DD46 were di srupted in ag/80 back-ground 

while F/S2 expression remained intact. In summary AGL80 is required for expression of 

at least some of the genes essential for endosperm development and knocking out the 

function of AGL80 results in defective endosperm development. 

1.5.2 PHERESJ 

PHERESJ (PHEJ) is another plant type I MADS-box gene whose role has been 

suggested in seed development (Kohler et al., 2003). PHEJ was first identified by 

microarray assay as an up-regulated gene infis class gene mutants indicating PHEJ as a 

down-stream target of FIS protein complex (Kohler et al., 2003). FIS class proteins are a 

group of proteins that interact with each other to form PcG protein complex and repress 

expression of target genes and there have been many reports about the importance of 

epigenetic modification caused by FIS protein complex in seed development (Kohler and 

Makarevich, 2006). In WT, PHEJ is not expressed in central cell before pollination but 

the expression is induced l - 2 days after pollination (DAP) in seeds containing pre­

globular stage embryo (Kohler et al., 2005). Infis class mutants, PHEJ expression is 

observed much earlier, already expressed directly after pollination (0DAP) because 

repression from FIS protein complex is absent in the fis-class mutants (Kohler et al., 
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2005). Subsequent ChIP assay showed FIS class proteins MEA and FIE can bind PHEI 

promoter and confirmed PHEI as direct target of FIS protein Pc-G complex (Kohler et 

al., 2005). When PHEI expression was down-regulated in mea mutant back-ground, seed 

abortion phenotype of mea mutant was rescued confirming role PHEl plays in seed 

development (Kohler et al., 2005). 

Examples of AGL80 and PHEI further supports the hypothesis that plant type I MADS­

box genes do play a role in development. Interestingly both AGL80 and PHEI belong to 

same sub-clade of type I MADS-box clade (Parenicova et al., 2003) and since both of 

them have function in seed development, research is underway to study the role of other 

members within this subclade in seed development (Portereiko et al., 2006). 

1.6 Seed development 

In their life cycles, plants alternate a haploid (n) gametophytic phase and diploid (2n) 

sporophytic phase (Berger, 2003). In Arabidopsis thaliana, sporophytic phase consists 

most of the plant ' s life-time and haploid gametophytic phase is reduced to only short time 

at the reproductive organ developmental stage before fertilization (Berger, 2003). Once 

Arabidopsis plants reach reproductive state, the diploid plants produce special cell 

lineages that undergo meiosis to produce mega-gametophyte ( ovule) and micro­

gametophyte (pollen) (McCormick, 1993 ; Drews and Yadegari , 2002) . In ovule 

development, meiosis is followed by 3 syncytial divisions and cellularization to produce 

the mature 7-celled ovule consisting of egg cell, central cell , 2 synergid cells and 3 

antipodal cells (Faure et al., 2002). ln pollen development, meiosis is followed by two 

rounds of mitosis - pollen mitosis I (PMI) and pollen mitosis ll (PMII) - to give rise to 2 

sperm cells (McCormick, 1993). 

Following the formation of these female and male gametophytes, a process termed 

double fertilization occurs which is a fusion of 2 haploid gametes and represents the end 

of gametophytic phase (Faure et al., 2002). After pollen grain is dropped onto style, 

pollen grain grows pollen tube to deliver 2 sperm cells to the ovule (Faure et al. , 2002). 

As sperm cells are delivered to ovule, 3 antipodal cells that acted as a guide marker 

become degenerated and ovule now contains 4 cells (Faure et al., 2002). Once sperm 

cells are delivered to ovule, one of this male gamete fertilizes egg cell to produce diploid 

embryo (2n) (Faure et al., 2002). The other male gamete fertilizes central cell (2n) and 
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give rise to triploid endosperm (3n) that acts to deliver maternally produced nutrients to 

the embryo for embryo growth (Faure et al., 2002). 

Endosperm development is mainly divided into 2 phases - synctium division and 

cellularization (Berger, 2003). Synctium division is a process in which mitotic division 

occurs without cell wall formation to produce multi-nucleate endosperm (Berger, 2003). 

Experiment has shown that 5 hours after pollination (H .A.P), one of the two synergid 

cells degenerate as pollen sperm cells are released into ovule (Berger, 2003). At this 

stage, change in egg cell polarity occurs and egg cell nucleus moves away from central 

cell (Faure et al. , 2002). Then central cell nucleus becomes elongated along micropyle­

chalazal axis (Faure et al., 2002). Six to seven HAP, central cell nucleus contains 2 

nucleoli with the one in a micropylar position always being smaller than the one in 

chalazal position (Faure et al., 2002). After this stage, 2 nucleoli can also be observed in 

egg cell. Again they observed significant difference in size between the bigger nucleoli 

and smaller nucleoli (Faure et al. , 2002). In central cell, 2 nucleoli have not changed in 

size or position at this stage (Faure et al. , 2002). Fertilized central cell undergo first 

nuclear division as early as 7 HAP along the micropyle-chalazal axis (Faure et al. , 2002) . 

The outcome of this division is a 2-nucleate endosperm with its nuclei being adjacent to 

each other which can be observed at 8 to 9 HAP (Faure et al. , 2002). Second and third 

nuclear division follows 12 and 24 HAP producing 8-nucleate endosperm at the end of 

third nuclear division (Faure et al. , 2002). Mitotic divisions without cell wall formation 

continues to take place until 3 - 4 OAP at which stage multinucleate endosperm 

containing over I 00 nuclei have developed representing the end of synctium division 

(Faure et al. , 2002). 

1.6.1 PcG complex mediated epigenetic control on seed development 

Until recently only little was known about the molecular mechanisms underlying 

fertilization. However the recent sequencing of entire genome of Arabidopsis coupled 

with improvement in isolation of mutants has given further insight into molecular 

processes that take place during fertilization (Arabidopsis Genome, 2000; Dresselhaus, 

2006). When pollen sperm cell (n) fertilizes egg cell (n), 2 nuclei of these gametes need 

to fuse in a same cell-cycle phase in order to avoid aneuploidy and to allow proper 

subsequent embryo growth (Dresselhaus, 2006). Therefore, there must be some sort of 
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cell cycle regulation in both the male and female gametes (Dresselhaus, 2006). Unlike in 

animal gametes, regulation of cell cycle in plant gametes remains largely unknown 

(Faure et al., 2002). Recently it was suggested that in Arabidopsis, sperm cells enter new 

S-phase after PMII and the sperm cells are likely to be in G2 phase when they are 

delivered to ovule (Dresselhaus, 2006). Since two nuclei from male and female gametes 

must fuse in same cell-cycle phase, simplest assumption was that female gametes are also 

in G2 phase at the time of fertilization (Dresselhaus, 2006). In female gametes, cell-cycle 

arrest is mediated by polycomb group (PcG) complex (Drews and Yadegari, 2002). These 

PcG complex genes include FERTILIZATION INDEPENDENT SEED (FIS) , MEDEA 

(MEA) , and FERTILIZATION INDEPENDENT ENDOSPERM (FIE) and loss-of-function 

mutation of these genes all result in autonomous initiation of cell division in central cell 

without the fertilization (Luo et al. , 2000). The PcG complex genes are shown to be 

involved in epigenetic control of gene expression (Luo et al. , 2000). Many evidences 

point to the importance of epigenetic control of gene expression on seed development 

(Luo et al. , 2000 ; Makarevich et al. , 2006). Particularly the regulation of imprinted gene 

expression in developing endospem1 by methylation was shown to play significant role in 

seed development in Arabidopsis (Luo et al., 2000). Polycomb group (Pc-G) genes 

initially identified in Drosophila melanogastor are group of genes that maintain 

repression of target gene expression by methylating the target his tone lysine residue and 

hence remodeling the chromatin structure (Muller et al. , 2002). In Drosophila, pc-g 

mutants failed to maintain transcriptional repression of homeo-box genes (Muller et al. , 

2002). Pc-G genes assemble in 2 complexes to carry out their function of repressing 

expression of target genes (Muller et al. , 2002). First, Polycomb Repressive Complex 2 

(PRC2) or E(Z)/ESC complex that consists of 4 Pc-G proteins - Enhancer of Zeste 

(E(z)) , Extra Sex Comb (ESC) , Supressor of Zeste 12 (Su(z)l2) and NURF-55 - bind to 

histone H3 and methylate lysine27 residue (H3K27) to create epigenetic mark (Muller et 

al. , 2002). The second complex PRCl is then recruited to H3K27 via interaction of its 

component with the methylated H3K27 (Muller et al. , 2002). PRCI complex also 

consists of 4 proteins - Polycomb (PC), Polyhomeotic (PH), Posterior Sex Combs (PSC), 

and dRing (Muller et al., 2002) . After binding to target gene via methylated H3K27, 

PRCl interacts with SWVSNF chromatin remodeling complex to modify chromatin 

structure in a way that transcription initiation is blocked (Muller et al., 2002). 
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In plants, Pc-G genes were first identified in a genetic screen for mutants with defective 

seed development (Luo et al., 2000). Several Pc-G genes have been isolated since and 

presence of PRC2 like complex was confirmed (Makarevich et al., 2006). However, there 

is still no evidence for existence of PRC I-like complex in plants yet (Makarevich et al., 

2006). To date, 3 PRC2 like complexes have been characterized FIS - complex, CLF 

complex and VRN complex (Reyes and Grossniklaus, 2003). Interestingly all 3 plant PcG 

complexes seem to have MADS-box genes as their target (Michaels et al., 2003). For 

example, VRN complex regulates expression of FLC and have a role in flowering time 

and CLF complex repress the expression of floral organ identity gene AG (Michaels et 

al., 2003) . Of these 3 complexes, FIS complex has been shown to play important role in 

gametophyte and early seed development (Makarevich et al. , 2006). FIS complex consists 

of 3 proteins - MEA, FIS2, and FIE - and these 3 proteins are homologues of E(z) , 

Su(z) 12, and ESC respectively (Luo et al. , 2000). All 3 mea, fis2 , and.fie mutants show 

common phenotypes - autonomous endosperm development in absence of fertilization, 

arrest of embryo development at heart stage and failure of mutant seeds to develop 

beyond endosperm cellulalization (Luo et al. , 2000). These common phenotypes 

indicated that MEA, FIE, and FIS2 work in a same pathway to suppress various aspects 

of seed development in absence of fertilization and that fertilization inactivates FIS 

complex to initiate seed development (Luo et al. , 2000). Since MEA and FIE are 

homologues of E(z) and ESC respectively and E(z) and ESC physically interact in 

Drosophila to repress target genes ' expression, one can postulate that MEA and FIE do 

the same in Arabidopsis as well (Pien and Grossniklaus, 2007). Yeast-2-hybrid assay was 

carried out and it was shown MEA and FIE do ind~ed interact with each other (Kohler et 

al. , 2003). The assay also showed FIS2 does not physically interact with neither MEA nor 

FIE (Kohler et al. , 2003). This implies yet unidentified component in FIS complex that 

attaches FIS2 to the rest of complex (Kohler et al. , 2003). 

1.7 Plant type I MADS-box mutants 

Plant type I and type II MADS-box genes have a few more differences apart from their 

MADS-domain structures (Parenicova et al., 2003). One difference is their distribution on 

the chromosomes (Johansen et al. , 2002). Arabidopsis thaliana genome is composed of 5 

chromosomes (Arabidopsis Genome, 2000). Type II plant MADS-box genes are evenly 
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distributed across all the 5 chromosomes whereas most plant type I MADS-box genes are 

located on chromosomes I and V (Parenicova et al., 2003). It has been estimated that up 

to 83% of the plant type I MADS-box genes are located on these 2 chromosomes 

(Parenicova et al., 2003) . 

For many eukaryotic transcription factor families , gene duplication that gave rise to them 

occurred predominantly between different chromosomes (Parenicova et al. , 2003). Plant 

type I and II MADS-box genes differ in this aspect as well (Parenicova et al. , 2003). 

Analysis of closely related members of type 11 and type l plant MADS-box genes showed 

that 53% of the type II probably originated from gene duplications between 2 different 

chromosomes (Parenicova et al., 2003). On the other hand, 82% of the type I genes are 

thought to have risen by internal gene duplication within the chromosome (Parenicova et 

al. , 2003). In other eukaryotes, recent gene duplication occurred more frequently within 

chromosomes and hence this difference may be suggesting diversity originated more 

recently in subclades of plant type I MADS-box gene (Becker and Theissen, 2003; De 

Bodt et al. , 2003b; Martinez-Castilla and Alvarez-Buylla, 2004). Consistent with this, 

type I plant MADS-box genes are further classified into several subclades by several 

researchers (Kofuji et al. , 2003; Parenicova et al. , 2003 ; Martinez-Castilla and Alvarez­

Buylla, 2004). For example, Parenicova et al divided plant type I MADS-box genes into 

Ma, MB, Mb, and My subgroups (Parenicova et al. , 2003). 

Also in terms of exon/intron numbers, plant type II MADS-box genes typically contain 7 

to 9 exons while type I groups tend to have only I or 2 exons ( am et al. , 2003). 

On top of all these differences, type II MADS-box genes are much more well 

characterized than type I clades in plants (Alvarez-Buylla, 2001; De Bodt et al. , 2003b; 

de Falter et al., 2005). This is quite Surprising since there are much more type l plant 

MADS-box genes than type II (Johansen et al. , 2002). It may be possible that because 

plant type II MADS-box genes have been known for a longer time than the type I, more 

experiments including reverse genetic analysis have been carried out with the type II 

(Ostergaard and Yanofsky, 2004). However, statistically it is unlikely that this is the only 

reason for the unequal identification of mutants between type I and type II genes 

(Parenicova et al., 2003). One possible reason for not being able to identify type I 

MADS-box mutant in plant is that type I plant MADS-box genes are either non­

functional or pseudogenes (Parenicova et al. , 2003). There is evidence that at least one 
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plant type I MADS-box gene (At5g49490) is a processed pseudogene (De Bodt et al., 

2003a). However, Expression profile and protein - protein interaction studies have shown 

that most type I MADS-box genes are expressed in various tissues of plants and are 

interacting with other proteins which strongly rejects this idea (Johansen et al. , 2002; de 

Folter et al., 2005) . Also phylogenetic studies and bioinformatics showed that 

homologous genes have been identified in rice ( Oryza saliva) which indicates that 

MADS-box genes were present before the divergence of dicots and monocots (Kofuji et 

al. , 2003; Martinez-Castilla and Alvarez-Buylla, 2004). Because type l MADS-box genes 

are expressed, conserved between species , and are capable of encoding group specific 

protein domains, it is unlikely that plant type I MADS-box genes are non-functional or 

pseudogenes. Another possibility of not being able to identify the type l MADS-box 

phenotypic mutant is that loss-of-function mutation in these genes give embryonic lethal 

phenotype (Parenicova et al. , 2003) . However, several T-O A or transposon insertion 

mutants have been identified in the type l genes which rejected this idea (Parenicova et 

al. , 2003) . Redundancy could be another reason for not identifying type l MADS-box 

mutant in plants (Pelaz et al. , 200 I ; Pinyopich et al. , 2003). In type II plant MADS-box 

genes, several very clear examples of redundancy was observed. In Arabidopsis flower 

fonnation , B and C class genes controlling petal , stamen and carpel identity are 

functionally dependent on 3 very similar MADS-box genes, SEPJ , SEP2 , and SEP3 and 

only when all of the 3 SEP genes were knocked out in sepl sep2 sep3 triple mutant was 

there a loss of petal, stamen, and carpel observed (Pelaz et al. , 2000; De Bodt et al. , 

2003a) . Another example of redundancy was observed in SHPJ and SHP2 (Rounsley et 

al., 1995; Liljegren et al., 2000). Single mutants of either shpl or shp2 showed phenotype 

indistinguishable from that of WT but when these mutants were crossed to produce the 

shpl shp2 double mutant, disturbance in dehiscence zone development was observed in 

the double mutant fruit which resulted in a failure to release seeds (De Bodt et al. , 

2003a). These examples indicated that redundant activity is a common phenomenon in 

plant type II MADS-box genes, which could also occur in type I MADS-box genes. 
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1.8 AGL40 & AGL62 

Of approximately just over 100 plant MADS-box genes, about 60 of them belong to type 

I lineage (Parenicova et al. , 2003). As previously mentioned, type I lineage can be further 

sub-divided into several subclades based on their sequence similarity (Parenicova et al., 

2003). Both AGL40 and AGL62 belong to Ma subclade and share expression domain in 

inflorescence and sillique (fruit) (Parenicova et al., 2003). Because MADS-box genes 

tend to function in a site of expression (De Bodt et al. , 2003a), their sequence similarity 

and similar expression pattern indicates A GL40 and A GL62 are most closely related to 

each other and that they may have redundant activities. Yeast 2 hybrid assay showed that 

AGL40 and AGL62 can physically interact with each other in embryo further pointing 

out to the possibility of AGL40 and AGL62 playing role in embryo development (de 

Folter et al. , 2005). 

1.9 Aim & Hypothesis 

So far, only little functional characterization has been achieved with plant type I MADS­

box clade (De Bodt et al. , 2003a). However, functional characterization has been 

achieved extensively in other clades of MADS-box genes (De Bodt et al. , 2003a) and 

knowing that plant type I MADS-box genes share the conserved MADS-box domain with 

other MADS-box gene clades, one can hypothesize that plant type l MADS-box genes 

also play a role in plant development. Recent findings that AGL80 and PHE 1 play a role 

in seed development in plants also support this hypothesis (Kohler et al., 2005; Portereiko 

et al. , 2006). 

Therefore our aims in this project are 

1) To give further evidence of plant type l MADS-box genes playing role in plant 

development and further the understanding of a role plant type I MADS-box genes play 

in plant development by studying functions of AGL40 and AGL62 - 2 most closely 

related members within plant type I MADS-box clade - using T-DNA knock out lines. 

2) Identify spatial and temporal expression pattern of AGL40 and AGL62 in plan/a and 

use the information obtained for functional characterization of A GL40 and A GL62 
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