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Abstract 

Gauss' Theorema Egregium contains a partial differential equation relating the 

Gaussian curvature K to components of the metric tensor and its derivatives. Well

known partial differential equations such as the Schrodinger equation and the sine

Gordon equation correspond to this PDE for special choices of Kand special coordinate 

systems. The sine-Gordon equation, for example, can be derived via Gauss ' equation 

for K = - l using the Tchebychef net as a coordinate system. 

In this thesis we consider a special class of Backlund Transformat ions which corre

spond to coordinate transformations on surfaces having a specified Gaussian curvature. 

These transformations lead to Gauss ' PDE in different forms and provide a method for 

solving certain classes of non-linear second order partial differential equations. 

In addition, we develop a more systematic way to obtain a coordinate system for a 

more general class of PDE, such that this PDE corresponds to the Gauss equation. 
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Chapter 1 

Introduction 

I.I General 

The dynamics of interfaces, surfaces, fronts are an important ingredients in numerous 

nonlinear phenomena arising in classical and quantum physics, and in some cases the 

dynamics can be modelled by nonlinear partial differential equations (PDEs) that de

scribe the evolution of surfaces in time. As a result of this relationship , the study of the 

connection between certain types of surfaces and nonlinear PDEs has been one of the 

classical problems of differential geometry. Curvature, for example, plays an important 

part in a number of problems of physics and mathematics associated with manifolds. 

Often, one has to solve nonlinear PDEs in order to explain the physical phenomena, 

but solution techniques for nonlinear PDEs are fairly specialized and rare. One of 

these techniques, a coordinate transformation method, loosely speaking, known as the 

Backlund Transformation method, is of interest in this text. It is known [7] that a 

Backlund transformation may be regarded, in geometrical language, as a transformation 

of a surface S into a new surface S, where S is a solution of a given PDE, but where 

the transformed surface S may either be a solution of the original PDE or of some 

other differential equation. Backlund transformations, in essence, preserve invariant 

properties between two differential equations and their solutions, and they relate these 

equations to one another through a representation of surfaces with the same curvature 

in some known coordinate systems. They can thus be useful for finding a solution to a 
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given differential equation by relating it to another differential equation with a known 

solution. In recent times, interest in these transformations have persisted due to their 

connection with the sine-Gordon equation and its associated soliton theory. 

1.2 A Brief Description 

The first chapter contains the general introduction and a review of the literature per

taining to the work in this thesis, followed by some definitions and fundamental equa

tions which will be used in the following chapters. In section 1.3 we review some basic 

definitions which arise in differential geometry. In subsection 1.3.2, the Gauss equation, 

which plays a central role in our discussions, is presented. We then illustrate how some 

well known PDEs such as the Schrodinger equation, the sine-Gordon equation, the 

Liouville equation and the Monge-Ampere equation can be generated from the Gauss 

equation by the appropriate choice of coordinates. In section 1.4 we show how the 

covariant transformation equations can be used to determine the Backlund transfor

mations between two coordinate systems, where each coordinate system represents a 

specific PDE. 

Chapter 2 consists of two major sections. In section 2.1 we look mainly at the solu

tion techniques and Backlund transformations developed for various classes of second 

order quasi-linear partial differential equations [26). In subsection 2.1.1 we first show 

how a certain class of second order quasi-linear PDEs of the hyperbolic type can be 

solved. As an example, a family of solutions for the sine-Gordon equation is derived. 

The Cauchy problem is then discussed and the sine-Gordon equation is used as an il

lustration. Further, we establish that the solution obtained for the Cauchy problem of 

the sine-Gordon equation corresponds to a Beltrami surface. Our approach in deriving 

solutions through Backlund transformations is further illustrated through an example, 

where a soliton solution of the sine-Gordon equation is used to derive a solution to 

the Schrodinger equation. Subsections 2.1.2 and 2.1.3 deal with some classes of sec

ond order quasi-linear PDEs of the parabolic type and the elliptic type, respectively. 

Illustrative examples are given wherever appropriate. 

In section 2.2, we show how the same technique used in section 2.1 can be imple

mented to solve a fully non-linear second order PDE, the Monge-Ampere equation, 
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and further discuss the solution to the Cauchy problem for this equation. Finally, 

we discuss some relationships among the sine-Gordon, the Monge-Ampere and the 

Schrodinger equations, which Backlund transformations elucidate and discuss briefly 

how a more general class of Monge-Ampere equation can be solved using Backlund 

transformations. 

The topics in Chapter 3 pertain to a systematic way of obtaining a coordinate system 

corresponding to a more general class of PDEs which can be interpreted as the Gauss 

equation. This complements the material in Chapter 2, where we established some 

useful solution techniques via Backlund transformations for some classes of PD Es. It is 

noted that in generalising the technique to include a non-constant Gaussian curvature 

function , we extend significantly to class of PDEs for which this solution method is 

available. 

Section 3.1 provides a brief introduction to the remainder of Chapter 3. Section 3.2 

deals with the preliminaries required for the sections to follow . We also provide with a 

brief review of the literature pertaining to the material in Chapter 3 in this section. 

In section 3.3 a complete characterisation is given for the class of differential equa

tions of type 

( 
ou oku) 

Ut = F K(x , t), u, ox , . .. , oxk . 

Illustrative examples such as the generalised Burgers equation and the generalised KdV 

equation are provided to show how we can, in principle, determine the coordinate 

systems for these types of equations. 

Section 3.4 consists the complete characterisation for the class of differential equa

tions of type 

( 
ou &ku) 

Uxt = F K(x , t) , u, ox , ... , &xk . 

Once again , we provide illustrative examples to show how we can determine the coor

dinate systems for these types of equations. The generalised sine-Gordon equation and 

the generalised sinh-Gordon equation are used as examples. 

In Chapter 4, we conclude the thesis by summing up particular results and proposing 

certain matters which need further investigation. 
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1.3 Some Geometrical Aspects 

In this section, we review some basic definitions which arise in differential geometry 

[7, 34, 35]. Let S be a surface in E 3
, Euclidean 3-space, and let r be a curve on S. 

If (u, v) denote curvilinear coordinates on S, then the curve r can be described by an 

implicit relationship of the form 

cp(u, v) = 0. 

N 
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Figure 1.1 : The surface S and the curve r 

The curve r defined above can also be given in parametric form: 

u = u(t), V = v(t). (1.1) 

Let r be the position vector of a point P on the curve. Then the vector d r / dt = r, 
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given by 

(1.2) 

is tangent to the curve and therefore to the surface (cf. Fig.1.1) . Here the subscripts 

u and v denote partial differentiation with respect to u and v respectively. Equation 

(1.2) can also be written (in a form independent of the choice of parameter) as, 

dr = rudu + rvdv. (1.3) 

If Q is in a neighbourhood of Pon the curve, then the distance ds , between P and Q 

on the curve can be expressed as 

I= ds 2 = dr.dr = Edu2 + 2Fdudv + Gdv 2
, (1.4) 

where 

(1.5) 

The quadratic form in equation (1.4) is called t he first fundam ental form for the surface 

s. 
The functions E , F and G depend on u and v and are called the components of the 

m etric tensor or the components of the first fundamental form. 

The quantity 

Ir u I\ r v I = H = J EC - F 2 
, (1.6) 

corresponds to the differential area element. The angle 0 between the coordinate curves 

is 
F 

vlfc" (1.7) 

If t is the unit tangent vector at P to the curve r on the surface S and N is the unit 

surface normal, then the curvature vector of r at P , k, can be decomposed as 

d t / ds = k = kn + kg , 

where kn is parallel to N and orthogonal to kg (see Fig. 1.2). 

The vector kg is called the tangential curvature vector or geodesic curvature vector and 
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Figure 1.2: The normal and tangential curvature vectors 

the vector kn is called the normal curvature vector. The latter can be expressed by 

where K,n is known as the normal curvature. The normal curvature is given by 

K,n = 
e du2 + 2j du dv + g dv2 

Edu2 + 2Fdudv + Gdv2 

where, in terms of vector triple products, 

f 
= (r~LV) ru , rv) 

H ' 

(1.8) 

(1.9) 
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The numerator of equation (1.8), written as 

I I= - dr.dN = e du2 + 2f du dv + g dv 2 (1.10) 

is defined as the second fundamental form. The functions e, f and g are known as the 

components of the second fundamental form. 

1.3.1 Gaussian and Mean Curvatures 

The normal curvature given in equation (1.8) , when considered in the direction ,\ = 
du/ dv is 

e + 2f >. + g >.2 

E + 2F >. + G >.2 

Extrema for "'n w.r.t ,\ are characterized by 

and this condition implies 

II f +g>. e+f>. 
K,n = J = F + G,\ = E + F>. · 

The above equation indicates that 

(Fg - GJ) >-.2 + (Eg - Ge)>.+ (Ef - Fe ) = 0, 

(1.11) 

which determines two directions dv / du, in which "'n obtains an extreme value, unless I I 

vanishes or unless I I and I are proportional. One value must be maximum, the other a 

minimum. These directions are called the directions of principal curvature or curvature 

directions and the corresponding values for "'n denoted by "'i and "'2 are defined as the 

principal curvatures. 

The quantities 

(1.12) 
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and 
eg -j2 

K = K1K2 = ----
EG-F2 

(1.13) 

are invariants, and are called respectively the mean curvature and the Gaussian curva

ture of the surface. 

1.3.2 The Gauss Equation and some well-known PDEs 

A key result in classical differential geometry is Gauss' Theorema Egregium [34], which 

asserts that the Gaussian curvature depends purely on the components of the first 

fundamental form. Specifically, we have the Gauss Equation: 

(1.14) 

This equation will play a central role in our discussion. Many nonlinear and, some 

linear PDEs of interest , correspond to the Gauss equation on a surface of prescribed 

curvature parametrized in an appropriate coordinate system. In certain coordinate 

systems the Gauss equation takes a particularly simple form. Well known partial 

differential equations such as the Schrodinger equation, the sine-Gordon equation, the 

Liouville equation and the Monge-Ampere equation are the classical examples[4, 18]. 

We illustrate below how these PDEs can be generated from the Gauss equation by the 

appropriate choice of coordinates. 

1.3.2.1 The Schrodinger Equation 

Our first example is the Schrodinger equation, 

1Puu + K(u, v) 'Ip = 0, 

which, as will be seen, corresponds to the Gauss equation for surfaces of Gaussian 

curvature K(u, v) in geodesic polar coordinates. 

In a neighbourhood of every point on a smooth surface, a geodesic polar coordinate 

system exists[34]; hence, we can always construct such a local coordinate system for 
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the surface with Gaussian curvature K(u, v). For a geodesic polar coordinate system 

E = l and F = 0, equation (1.4) reduces to 

ds2 = du2 + Gdv2
, 

and equation (1.14) becomes, 

K(u, v) _ c-112 ( 0 112)v.v.. 

Using H = -JG we have, 

Huv. + K(u , v) H = 0. (1.15) 

The solution to Schrodinger's equation (1.15) thus corresponds to the differential area 

element for a surface of curvature K ( u, v) in the geodesic coordinates. 

1.3.2.2 The sine-Gordon Equation 

When E = G = l, the coordinate system forms a Tchebychef Net [6, 34], which exists 

for sufficiently smooth surfaces[34], and equation (1.4) becomes, 

ds2 = du2 + 2Fdudv + dv2
. 

If 0 is the angle through which the coordinate vector rv. must be turned to bring it into 

coincidence with rv then we have, 

F = cos0 

(from equation (1.7)). Now equation (1.14) takes the form 

K - l (~ .F) 
- Jl - F 2 H v. v 

i.e. 

Buv = -K(u, v) sin 0. (1.16) 

This is a second order hyperbolic PDE for the function 0, with u constant and 
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v = constant as the characteristics. For K(u , v ) = -1, we get the familiar sine-Gordon 

Equation, 

0uv = sin0 . (1.17) 

1.3.2.3 The Liouville Equation 

Let E = G = 0 so that , the coordinate curves are the minimal lines. We note that this 

makes the surface representation complex. Equation (1.14) becomes, 

(lnF)uv + KF = 0 

i.e . 

<I>uv + K eq, = 0, (1.18) 

where 

For K = constant , equation (1.18) corresponds to the Liouville Equation. 

1.3.2.4 The Monge-Ampere Equation 

Consider a surface described by 

r = (u , v , Z(u , v )) . 

Then the components E , F and G of the first fundamental form , for graphical coordi

nates will be given by 

E = 1 + Z~ , F = Zu Zv , G = 1 + Z; , 

and thus equation (1.4) becomes 

ds2 = (1 + Z~)du2 + 2ZuZvdudv -=I,- (1 + Z;)dv2
• 
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The Gauss equation (1.14) reduces to 

K(u v) = Zuu Zvv - Z~v 
' ( 1 + Z~ + Z;) 2 

' 
(1.19) 

which also can be written as 

2 ( 2 2)
2 

Zuu Zvv - Zuv - K(u , v) l + Zu + Zv = 0 

which is an equation of the Monge-Ampere type. 

Certain partial equations can thus be interpreted as statements of Gauss' Theorem on 

a surface of curvature Kin an appropriate coordinate system. This observation moti

vates a strategy for solving these equations based on Backlund transformations which 

correspond to curvilinear coordinate transformations on the surface defined intrinsically 

by K. 

1.4 Gauss Equation and Backlund Transformations 

Given a PDE, the idea here is to first find a coordinate system such that the PDE cor

responds to the Gauss equation for a surface of known Gaussian curvature. Then we 

seek another PDE that can be solved, and determine a coordinate system such that this 

PDE corresponds to the Gauss equation for the same Gaussian curvature. Using the 

covariant transformation equations for the two determined coordinate systems yields a 

system of non-linear PDEs. Solutions to this system define the Backlund transforma

tions between the two coordinate systems, thus enabling us to obtain solutions to the 

given PDE by transforming the known solution of the other PDE. 

In order to further describe this method, let us consider two partial differential equations 

'D(</>) = 0 and £(x) = 0 which are of the same order. Assume that the PDE 'D(</>) = 0 

is the given equation to be solved and the other is a PDE with a known solution. 

Further, we assume that these two PDEs can be identified as the Gauss equation with 

the same K, and that the corresponding components of their first fundamental forms 

are E , F, G and E, P, G respectively. Let the respective coordinates be (u, v) and (x , y) 
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(see Fig. 1.3). 

Coordinate System I 

E 

G 

(u,v) 

Coordinate System II 

A 
G 

(x,y) 

12 

Figure 1.3: Coordinate transformation from coordinate system I to the coordinate 
system II. 

From the tensor formula, 
fJXl fJXm 

!Jij = g1m fJXi . fJXj , (1.20) 

for coordinate transformations, where gu = E , g12 = g21 = F , g22 = G, 9n = E, 
912 = 921 = fr , 922 = G and then by using the specific values for 9i/s and g1m's we 

obtain the system 

E Ux Uy + F ( Ux Vy + Vx Uy) + G Vx Vy 

and 
2 2 -E Uy , + 2F Uy Vy + G Vy = G. 

fr 

(1.21) 

(1.22) 

(1.23) 

We need to solve this system of non-linear PDEs to determine the required Backlund 

transformations. 

When applying the method described above in solving a PDE, we are aware of the 

fact that we may have difficulties, first in identifying the given PDE as the Gauss equa

tion; i.e., to determine the corresponding coordinate system, and then in solving the 

system of PDEs which determines the Backlund transformations. The latter could be 

relatively harder than the original problem. Further, it should be noted that, imposing 
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different initial conditions on this system of PD Es yields different Backlund transforma

tions. This shows that all the solutions to the given PDE cannot be obtained by using 

one set of Backlund transformations , and thus we only end up with certain classes of 

solutions. This certainly is a weakness in our method, especially when we are looking 

for all possible solutions. 


