

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Identification of Transporter Genes from the Fungal Endophyte *Neotyphodium Iolii*

This Thesis is presented in partial fulfilment of the requirements for the degree of Master of Science (MSc) in Plant Biology at Massey University, Palmerston North New Zealand

Deborah Sian Knox

2006

<u>Abstract</u>

Neotyphodium lolii is an endophytic fungus that lives in the pasture grass, *Lolium perenne*. They share a mutualistic symbiotic relationship. *N. lolii* lives out its life cycle within the plant and produces secondary metabolites, including alkaloids peramine, ergovaline and lolitrem which protect the grass from insect and animal herbivory. In fungi the biosynthetic genes of secondary metabolites are often located in gene clusters. These clusters frequently contain one or more genes that code for transporter proteins responsible for the removal of toxic products from the fungal cells. Plants produce defence compounds, including antifungals to protect themselves from colonising fungi. However endophytes are able to neutralise these host toxins, one mechanism for this is possibly by efflux through transporter channels.

The goal of this study was to identify ABC and MFS genes from *N. lolii*. These two families are the largest and most diverse of transporter families, which transport a variety of substrates, including peptides, toxins, ions and sugars across membranes. Using degenerate PCR primers designed from fungal multi-drug transporter sequences, four unique ABC gene fragments were amplified from *N. lolii*. A further two ABC sequences and two MFS gene fragments were identified in a database of *N. lolii* EST sequences.

RT-PCR was used to compare expression of isolated ABC and MFS genes in *N. lolii*, growing in culture and in infected plants. Up-regulation of transporter transcripts *in planta* could suggest a role in symbiosis. Some genes were seen to have a visibly different expression pattern from others, although all genes were strongly expressed in cultured mycelia. Gene expression in the plant host was most evident in tissues more heavily infected with endophyte. To discover possible roles for the isolated transporter genes in transporting endophyte secondary metabolites a strain distribution study was completed. Five of the putative ABC and MFS genes were compared against 12 *Epichloë* and *Neotyphodium* endophytes. Amplified PCR products in the genotypes screened produced a unique pattern of gene occurrence for each of the five transporters. This added to the characterisation of the transporter genes and showed that one gene,

gABC 4c, was the most diverse in its distribution, while another ABC gene gABC 4g was present across all genotypes.

One ABC gene (gABC 4e) plus flanking DNA was sequenced in full. Bioinformatic analyses suggested that gABC 4e may be a half sized ABC transporter gene of 2 kb with four exons. An orotate phosphoribosyltransferase was identified 2 kb upstream of the ABC transporter.

Further work will be needed to confirm that the start and stop codons of this ABC transporter have been accurately predicted, as well as to verify the putative intron/ exon boundaries identified by gene prediction programmes. The role of *N. lolii* ABC transporter gABC 4e has not been determined, however future research could focus on the nature of the substrate(s) transported, the sub-cellular location of the channel, and the effects of gene knockout or over-expression on the symbiosis between *N. lolii* and perennial ryegrass.

Acknowledgements

To my supervisors Christine Voisey and Rosie Bradshaw for all their help, suggestions and support. Thank you for all your encouragement when I had no idea what to do next and the time you gave to me from your very busy lives. Also thanks to Richard Johnson, for his input in this project and Gregory Bryan.

Thanks to the all the people in the AFT lab over the years, particularly Shalome, Damien, Linda and Charlotte for all their help and patience in explaining new techniques and ideas, and just passing on their accumulated wisdom. Especial thanks to Jen for her friendship and distractions, and making life in the cupboard more bearable.

Everyone else at AgR who has helped me out, taught me and previously given me a job, or encouragement. You all made the working environment so friendly and encouraging, you were the reason I decided to stay and do my Masters in the first place by giving me an encouraging view of research science in the real world.

Always thanks to my family, for their love and encouragement. I want to thank my parents for all their support and love and to my sister Shelles for always being there and listening.

And for those friends I am connected with via email, thanks so much for the discussions, daily life updates (sometimes up-to-the-minute) and light amusement to improve every day.

I would lastly like to thank my cat Orion, and the boys. Just for insisting by yowls or squeals that I get out of bed every morning (just to feed them of course).

Table of Contents

Chapter 1 Introduction	1
1.1 Lolium perenne and Neotyphodium Iolii, mutualistic symbionts	2
1.1.1 Endophytic Interactions	2
1.1.2 Alkaloid Production; Benefits to the Host	3
1.2 Fungal Secondary Metabolites and Gene Clusters	5
1.2.1 Gene Clusters and the Production of Fungal Secondary Metaboli	tes5
1.2.2 Gene Clusters in Endophyte Genomes	6
1.2.2.1 Lolines	6
1.2.2.2 Lolitrems	6
1.2.2.3 Ergot Alkaloids	7
1.2.2.4 Peramine	7
1.3 ABC and MFS transporters	9
1.3.1 Identification of Transporters in Fungi	9
1.3.2 ABC Transporters	9
1.3.2.1 Structure of ABC Transporters	10
1.3.2.2 Classes of ABC Transporters	10
1.3.2.3 Mechanism of ABC Transporters	11
1.3.2.4 Roles of ABC Transporters	12
1.3.3 MFS Transporters	13
1.3.3.1 Structure of MFS Transporters	13
1.3.3.2 Classes of MFS Transporters	14
1.3.3.3 Mechanism of MFS Transporters	15
1.3.3.4 Roles of MFS Transporters	15
1.4 Identifying ABC and MFS transporter genes in Neotyphodium lo	<i>lii</i> 18
1.4.1 Identification and Analysis of Transporter Genes	18
1.4.2 Identification of Transporter Genes in <i>N. Iolii</i>	18
1.4.3 Expression of Transporter Genes	19
1.4.4 Distribution of Endophyte Transporter Genes	20
1.5 Aims and Objectives	22
Chapter 2 Materials and Methods	23
2.1 Growth and Maintenance of Cultures	24
2.1.1 Growth of E. coli Cultures	24
2.1.2 Growth of Fungal Cultures	24
2.2 Nucleic Acid Extractions	26
2.2.1 Protoplast Method	26
2.2.2 High Molecular Weight Extraction of Endophyte Genomic DNA	27
2.2.3 Isolation of Plasmid DNA from E. coli	28
2.3 Molecular Techniques	28
2.3.1 Polymerase Chain Reaction (PCR)	28
2.3.1.1 Standard PCR	28
2.3.1.2 Degenerate PUR	29
2.3.2 Gel Electrophoresis	- 32
	32
2.3.4 NUCLEIC ACID CONCENTRATION	- 32

2.3.5	Restriction Digests	32
2.3.6	Ligations	32
2.3.7	Transformations	33
2.3.8	Sequencing	33
2.3.9	Preparation of Sequencing Template DNA	34
2.4 RNA Procedures		
2.4.1	RNA Extraction	36
2.4.2	cDNA Synthesis	37
2.4.3	Reverse Transcriptase PCR	37
2.5 Lib	rary Screening	38
2.5.1	BAC Library Screening	38
2.5.2	λ Library Screening	39
2.5.3	Plaque Lifts	39
2.6 So	uthern Blotting with DIG-Labelled Probes	40
2.6.1	Labelling of DNA Probes	40
2.6.2	Hybridisation of Southern Blots and λ Plaque Lifts	40
2.6.3	Stripping Membrane-Bound Probes and Reusing Probe Solutions	42
2.7 Bio	pinformatics	42
2.7.1	BLAST Searches	42
2.7.2	Sequence Alignments	42
2.7.3	Sequence Assembly	43
2.7.4	Gene Annotation	43

Chapter 3 Results	44
3.1 Isolation ABC and MFS Transporters from Genomic DNA of N. Iol	ii
	47
3.1.1 Multidrug Transporters and the N. Iolii Genome	47
3.1.2 Fungal ABC and MFS Genes	47
3.1.3 Alignment of MFS Transporter Genes and Primer Design	48
3.1.3.1 MFS PCR Optimisation	50
3.1.3.2 Cloning of Putative PCR Fragments	51
3.1.4 Alignment of ABC Transporter Genes and Primer Design	53
3.1.4.1 ABC Alignment 1	53
3.1.4.2 ABC Alignments Two and Three	54
3.1.4.3 Sequencing of Putative ABC and MDR Gene Fragments	58
3.1.4.4 Nested PCR Primers Improves the Identification of ABC	
Transporters	59
3.1.4.5 Sequencing Putative ABC Transporter Genes from Nested PC	R
Fragments	61
3.1.5 Identification of ABC and MFS Transporters from a Database of N	
<i>Iolii</i> ESTs	67
3.1.6 Summary of ABC and MFS Transporter Gene Identification	70
3.1.6.1 MFS Transporters: Low Sequence Conservation	70
3.1.6.2 ABC Transporter Identification: Success in Nesting	70
3.2 Analysis and Expression of <i>N. Iolii</i> ABC and MFS Transporters	73
3.2.1 Semi-Quantitative Reverse-Transcriptase PCR of putative	
transporter genes	73
3.2.2 Analysis of Transporter Sequence Fragments for RT-PCR Primer	
Design	75

3.2.3 Design and PCR Optimisation of ABC and MFS Primers for R1	-PCR
2.2.2.1 Design and Optimization of EET Drimora	79
3.2.3.2 Genemic Brimers Design and Optimisation	7 9 0 1
3.2.4 Poverse Transcription Expression Analysis	0 I 9 2
3.2.4 Reverse-Transcriptase Expression Analysis	82
3.2.4.2 cDNA synthesis	83
3.2.4.3 cDNA Expression of 8 Different Transporter Genes	83
3.3 Identifying Transporter Genes in the BAC Library	86
3.3.1 Screening the Pooled BAC Plate	86
3.3.2 Selecting Putative Transporters of Interest	89
3.4 Distribution of Transporters in Other Endophyte Strains	91
3.4.1 Primer Optimisation	91
3.4.2 Presence of transporters across 12 Endophyte strains	92
3.5 Sequencing and Annotation of Transporter Gene gABC 4e and	
Flanking DNA	97
3.5.1 Sequencing of a Lambda Phagemid Insert	97
3.5.2 Analysis of the Complete Sequence of an ABC Transporter Ge	ne
from N. Iolii	97
3.5.3 Searching for Exons: Gene Annotation	99
Chapter Four Discussion and Conclusions 4.1 Identifying ABC and MFS Genes in the <i>N. Iolii</i> Genome 4.2 Expression of ABC and MES Genes	108 109 111
4.2 Expression of AbC and WFS Genes 4.3 ABC and MES Genes in the Genomes of Endonhyte and Other F	unai
so reso and mile concern the contentes of Endephyte and other t	114
4.4 Gene Analysis	117
4.5 Conclusion	119
References	122
Appendices	131
Appendix I Media	131
Appendix II Common Buffers and Solutions	131
Appendix III Vector Maps	133
Appendix IV Additional Transporter Alignments	134
Appendix V Complete Sequence of Phagemid Insert with gABC 4e	
	142

List of Figures

Figure	1.1	Alkaloids of N. Iolii	4	
Figure	1.2	Structure of an ABC Transporter 1		
Figure	ure 1.3 Structure of a MFS Transporter			
Figure	1.4	Mechanisms of Substrate Transport by MFS	15	
Figure	3.1	MFS Alignment 1	49	
Figure	3.2	Motifs of the MFS transporters	50	
Figure	3.3	Optimisation of MgCl ₂ Concentration and Annealing Temperature	е	
	0	f Degenerate Primers MFS 1F/2R	51	
Figure	3.4	PCR Confirmation of Initial Putative MFS Transformants	52	
Figure	3.5	PCR Optimisations for Primers ABC 1F/2R	54	
Figure	3.6	ABC Alignment 2	56	
Figure	3.7	PCR Optimisation for Primers ABC 4F and ABC 5R	57	
Figure	3.8	PCR Optimisation for Primers MDR 1F and MDR 2R	58	
Figure	3.9	PCR Confirmations of ABC and MDR Transformations	59	
Figure	3.10	Nested PCR step 1	60	
Figure	3.11	Nested PCR step 2	61	
Figure	3.12	BLASTX Alignment	62	
Figure	3.13	Alignment tree containing the 88 GA 300 sequences grouped	63	
Figure	3.14	Amino Acid Alignment of Translated Genomic ABC Fragments	67	
Figure	3.15	Tissue Types for Expression Studies.	74	
Figure	3.16	Genomic and EST Transporter Sequences from N. Iolii	76	
Figure	3.17	Pre-optimisation for EST Primer Pairs.	79	
Figure	3.18	EST Primer Pairs PCR Optimisations.	80	
Figure	3.19	Nucleotide Alignment of Genomic ABCs	81	
Figure	3.20	Reverse Transcriptase Tissue Expressions.	84	
Figure	3.21	Evaluation of Small Primer Sets	92	
Figure	3.22	Presence or Absence of Transporters in Endophyte Strains	93	
Figure	3.23	Phylogeny of Endophyte Strains and Presence/Absence of		
	Т	ransporters	94	
Figure	3.24	Phagemid Containing gABC 4e a Putative ABC Transporter Ge	ne	
		1	101	
Figure	3.25	Amino Acid Alignment of gABC 4e with the C-terminal of fungal		
_ .	A	BCs	103	
Figure	3.26	Intron Splice Sites	105	
Figure	3.27	Complete gABC 4e Gene sequence	106	

List of Tables

25
30
31
35
37
48
53
54
66
69
se,
71
82
87
88
95
98
100

Abbreviations

ABC:	ATP-binding cassette
BLAST:	Basic Local Alignment Search Tool
bp:	base pair
cDNA:	copy DNA
°C:	degree celsius
DNA:	deoxyribonucleic acid
DNase:	deoxyribonuciease
dNTP:	deoxynucleotide triphosphate
EST :	Expressed sequence tag
g :	gram
IPTG:	Isopropyl-β-d-thiogalactoside
kb:	kilobase pair
L:	litre
LB:	Luria broth
M:	mole per litre
MFS:	Major Facillitator superfamily
ml:	milliliter
mM:	millimole per litre
NRPS:	Non-ribosomal peptide synthase
ORF:	Open reading frame
PCR:	Polymerase chain reaction
PKS:	Polyketide synthase
RNase:	ribonuclease
RNA:	ribonucleic acid
RT-PCR:	reverse transcriptase PCR
SDS:	sodium dodecyl sulfate
μl:	microlitre
μM:	micromole per litre
hð:	microgram
v/v:	volume per volume
w/v:	weight per volume
X-Gal:	5- bromo-4-chloro-3-indolyl-β-D-galactopyranoside