

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

# IMMOBILISATION OF ENZYMES TO PERLOZA™ CELLULOSE RESIN

This thesis was presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University

Jennifer Anne Cross 1998

#### ABSTRACT

The studies reported in this thesis describe the use of Perloza<sup>TM</sup> beaded cellulose resin as a solid support for enzyme immobilisation via covalent binding. The aim of the project was to extend the uses for Perloza<sup>TM</sup> and to compare the use of well known solid support activation chemistries with a recently developed one for Perloza<sup>TM</sup>. Preparations such as these have potential industrial uses. Three attachment chemistries were studied. The first activation employed 1,1-carbodiimidazole (CDI) then direct attachment of enzyme. The second again used CDI activation followed by attachment of a 6-aminocaproic acid spacer arm and then the enzyme. The final method used was attachment of a diol and subsequent oxidation to an aldehyde. The diol/aldehyde method had the advantage over the CDI methods of being based on aqueous chemistries. The two CDI based methods require extensive use of dry organic solvents. The enzymes investigated in this study were trypsin, chymotrypsin,  $\alpha$ amylase, horseradish peroxidase (HRPO) and alcohol dehydrogenase (ADH).

Trypsin was immobilised successfully by all three chemistries. All preparations retained significant activity after immobilisation at room temperature as judged by the chromogenic substrate specific for trypsin N- $\alpha$ -benzoyl-DL-arginine-*p*-nitroanilide.HCl (BAPNA). Measurable activity was retained in different studies from between 2 to 7 days at 60°C. The activity of immobilised trypsin with a synthetic peptide substrate was comparable to the activity of free trypsin with the same substrate.

Chymotrypsin was also successfully immobilised using all three chemistries. Each preparation showed significant retention of activity after immobilisation as judged by the chromogentic substrate N-glutaryl-L-phenylalanine-*p*-nitroanilide (GAPNA). Stabilisation to heating at 60°C was less successful than with trypsin but significant activity was still retained for between 3 and 6 hours. The activity of immobilised preparations with a peptide substrate was comparable to free chymotrypsin.

 $\alpha$ -Amylase, horseradish peroxidase and alcohol dehydrogenase were studied less extensively than trypsin and chymotrypsin. Nevertheless all three enzymes were

successfully immobilised onto Perloza<sup>TM</sup>-CDI-ACA and Perloza<sup>TM</sup>-Diol/Aldehyde. Difficulty was encountered in achieving significant levels of any enzyme immobilisation to Perloza<sup>TM</sup>-CDI for all three enzymes. Subsequent activity assays showed HRPO and  $\alpha$ -amylase retained significant activity on all three resin preparations. ADH showed no measurable activity on Perloza<sup>TM</sup>-CDI and very little activity on Perloza<sup>TM</sup>-CDI-ACA and Perloza<sup>TM</sup>-Diol/Aldehyde.

Investigations have shown that enzymes can be immobilised on Perloza<sup>TM</sup> with retention of significant amounts of normal activity at room temperature and improved stability compared with free enzyme at high temperature. Comparisons of the CDI activations with the diol/aldeyde chemistry showed better performance by the latter in trypsin immobilisation and similar performance for chymotrypsin immobilisation. Horseradish peroxidase and  $\alpha$ -amylase were successfully immobilised using CDI/ACA and diol/aldehyde chemistries with the CDI/ACA giving higher initial specific activities than the diol/aldehyde preparation. Alcohol dehydrogenase was also successfully immobilised but gave no measurable activity.

#### ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisor Associate Professor "Dangerous" David R.K. Harding for his time, advice and encouragement.

I would also like to acknowledge Debbie Frumau and Nick Greenhill for running my amino acid analysis, and Jo Mudford for running my mass spectrometry samples.

I would also like to thank the Department of Biochemistry for their support, the members of the Centre for Separation Science especially Dr Simon Burton for all their help and advice.

Big thanks to everyone in the lab for putting up with me especially Elana, Rekha, Kate and Louisa.

Finally I would like to thank my family, friends and Darren for all their support and well everything really and of course thanks to Keith.

### TABLE OF CONTENTS

| Abstract                                                            | ü    |
|---------------------------------------------------------------------|------|
| Acknowledgements                                                    |      |
| Table of Contents                                                   | v    |
| List of Figures                                                     | viii |
| List of Tables                                                      | x    |
| List of Abbreviations                                               | xi   |
| CHAPTER ONE INTRODUCTION                                            | 1    |
| Enzymes                                                             | 1    |
| Enzyme Immobilisation                                               | 1    |
| Immobilisation Methods                                              | 2    |
| Physical Adsorption                                                 | 2    |
| Metal-link/Chelation                                                | 3    |
| Cross-linking or Aggregation                                        | 5    |
| Entrapment                                                          | 5    |
| Covalent Binding                                                    | 5    |
| Solid Supports                                                      | 8    |
| Perloza™ Beaded Cellulose Resin                                     | 8    |
| Activation Methods for Covalent Binding                             | 9    |
| Activation Methods Studied                                          | 11   |
| Investigations in the Immobilisation of Enzymes to Perloza          | 12   |
| Analysis                                                            | 13   |
| Specific Activity                                                   | 14   |
| CHAPTER TWO MATERIALS AND METHODS                                   | 15   |
| Reagents and Equipment                                              | 15   |
| Perloza <sup>™</sup> Activation with 1,1'-Carbonyldiimidazole (CDI) |      |
| Enzyme Attachment to Perloza <sup>™</sup> -CDI                      |      |

| 6-Aminocaproic Acid (ACA) Attachment to Perloza <sup>™</sup> -CDI | 17 |
|-------------------------------------------------------------------|----|
| Enzyme Attachment to Perloza <sup>™</sup> -CDI-ACA                | 17 |
| Diol Activation                                                   | 17 |
| Periodate Oxidation                                               | 18 |
| Titration Methods                                                 | 18 |
| Enzyme Attachment to Perloza <sup>™</sup> -Diol/Aldehyde          | 19 |
| Bicinchoninic Acid (BCA) Protein Concentration Determination      | 19 |
| Enzyme Activity Assays                                            | 19 |
| Synthetic Peptide Synthesis and Purification                      | 21 |
| Trypsin and Chymotrypsin Digestion of Synthetic Peptide           | 21 |
| Amino Acid Analysis Preparation                                   | 21 |
| Mass Spectroscopy                                                 | 22 |
| CHAPTER THREE TRYPSIN                                             | 23 |
| Introduction                                                      | 23 |
| Results and Discussion                                            | 25 |
| Conclusions                                                       | 38 |
| CHAPTER FOUR CHYMOTRYPSIN                                         | 40 |
| Introduction                                                      | 40 |
| Results and Discussion                                            |    |
| Conclusions                                                       | 52 |
| CHAPTER FIVE α-AMYLASE, HORSERADISH PEROXIDASE AND                |    |
| ALCOHOL DEHYDROGENASE                                             | 54 |
| Introduction                                                      | 54 |
| Results and Discussion                                            |    |

59

| CHAPTER SIX | CONCLUSIONS AND FUTURE WORK | 61 |
|-------------|-----------------------------|----|
| Conclusions |                             | 61 |
| Future Work |                             | 64 |
| REFERENCES  |                             | 65 |

# LIST OF FIGURES

| Figure 1.1  | General Protocol for Covalent Binding                               | 6  |
|-------------|---------------------------------------------------------------------|----|
| Figure 1.2  | Heterogeneous Attachment                                            | 6  |
| Figure 1.3  | Cellulose Structure                                                 | 9  |
| Figure 1.4  | Attachment Chemistries Used                                         | 12 |
| Figure 3.1a | BAPNA Assay for Trypsin Activity                                    | 24 |
| Figure 3.1b | Trypsinolysis of "Real" Substrate                                   | 24 |
| Figure 3.2a | Composite Results from Preliminary™-CDI-Trypsin Heat                |    |
|             | Study at 60°C                                                       | 30 |
| Figure 3.2b | Composite Results from Preliminary <sup>™</sup> -CDI-ACA-Trypsin    |    |
|             | Heat Study at 60°C                                                  | 30 |
| Figure 3.2c | Heat Study at 60°C, a Comparison with and without                   |    |
|             | CaCl <sub>2</sub>                                                   | 30 |
| Figure 3.3  | Specific Activities of Immobilised Trypsin Samples versus           |    |
|             | Time Incubated at 60°C                                              | 32 |
| Figure 3.4  | Trypsinolysis HPLC a) Free Trypsin b) CDI-Trypsin                   | 34 |
| Figure 3.5  | Trypsinolysis HPLC a) CDI-ACA-Trypsin b) Diol/Aldehyde              |    |
|             | -Trypsin                                                            | 35 |
| Figure 3.6  | Mass Spectrometry for Perloza <sup>™</sup> -CDI-ACA-Trypsin Peak I  |    |
|             | (peptide <b>a</b> )                                                 | 37 |
| Figure 3.7  | Mass Spectrometry for Perloza <sup>™</sup> -CDI-ACA-Trypsin Peak II |    |
|             | (peptide b)                                                         | 37 |
| Figure 4.1a | GAPNA Assay for Chymotrypsin Activity                               | 41 |
| Figure 4.1b | Chymotrypsinolysis of "Real" Substrate                              | 41 |
| Figure 4.2a | Composite Results from Preliminary Perloza <sup>™</sup> -CDI        |    |
|             | -Chymotrypsin Heat Study at 60°C                                    | 44 |
| Figure 4.2b | Composite Results from Preliminary Perloza <sup>™</sup> -CDI        |    |
|             | -ACA-Chymotrypsin Heat Study at 60°C                                | 44 |
| Figure 4.3  | Specific Activities of Immobilised Chymotrypsin                     |    |
|             | Versus Time Incubated at 60°C                                       | 46 |

| Figure 4.4  | Chymotrypsinolysis HPLC Traces a) Free Chymotrypysin |    |
|-------------|------------------------------------------------------|----|
|             | b) CDI-Chymotrypsin                                  | 48 |
| Figure 4.5  | Chymotrypsinolysis HPLC Traces a) CDI-ACA            |    |
|             | -Chymotrypsin b) Diol/Aldehyde-Chymotrypsin          | 49 |
| Figure 4.6  | Mass Spectrometry for Perloza <sup>™</sup> -CDI-ACA  |    |
|             | -Chymotrypsin for Peak I (peptide d)                 | 51 |
| Figure 4.7  | Mass Spectrometry for Perloza <sup>™</sup> -CDI-ACA  |    |
|             | -Chymotrypsin Peak II (peptide c)                    | 51 |
| Figure 5.1a | Activity Assay for $\alpha$ -Amylase (Megazyme)      | 56 |
| Figure 5.1b | Activity Assay for Horseradish Peroxidase            | 56 |
| Figure 5.1c | Activity Assay for Alcohol Dehydrogenase             | 56 |
| Figure 6.1  | Immobilisation Scenarios                             | 63 |

## LIST OF TABLES

| Table 1.1 Examples of Immobilised Enzymes                                 | 3  |
|---------------------------------------------------------------------------|----|
| Table 1.2 Immobilisation Methods                                          | 4  |
| Table 1.3 Amino Acids Involved in Covalent Binding                        | 7  |
| Table 1.4 Selection of Activation Chemistries                             | 10 |
| Table 1.5 Enzymes Used in this Study                                      | 13 |
| Table 3.1 Trypsin Substitution Levels on CDI Activated Perloza™           | 26 |
| Table 3.2 Preliminary Heat Studies of Perloza <sup>™</sup> -CDI-Trypsin   |    |
| and Perloza <sup>™</sup> -CDI-ACA-Trypsin at 60°                          | 28 |
| Table 3.3 Heat Studies Comparing Buffer with or Without CaCl <sub>2</sub> | 29 |
| Table 3.4 Specific Activities of Immobilised Trypsin Samples              |    |
| Incubated for Various Times at 60°C.                                      | 31 |
| Table 3.5 Amino Acid Analysis of Peak I (peptide a)                       | 36 |
| Table 3.6 Amino Acid Analysis of Peak II (peptide b)                      | 36 |
| Table 4.1 Chymotrypsin Substitution Levels on                             |    |
| Perloza <sup>™</sup> -CDI with Variable Incubation Times                  | 43 |
| Table 4.2 Specific Activity of Immobilisation Chymotrypsin                |    |
| Samples Incubated at 60°C                                                 | 45 |
| Table 4.3 Amino Acid Analysis of Peak I (peptide d)                       | 50 |
| Table 4.4 Amino Acid Analysis of Peak II (peptide c)                      | 50 |
| Table 5.1 Substitution Levels for each Chemistry from Titration           | 57 |
| Table 5.2 Enzyme Substitution Levels (BCA Assay)                          | 58 |
| Table 5.3 Specific Activities                                             | 59 |

.

, ,

### LIST OF ABBREVIATIONS

| AAA                 | amino acid analysis                                           |
|---------------------|---------------------------------------------------------------|
| ACA                 | 6-aminocaproic acid                                           |
| ADH                 | alcohol dehydrogenase                                         |
| BAPNA               | benzoyl-DL-arginine-p-nitroanilide.HCl                        |
| BCA                 | bicinchoninic acid                                            |
| BPNPG-7             | p-Nitrophenyl maltoheptaoside                                 |
| CDI                 | 1,1'-carbonyldiimidazole                                      |
| EDC                 | 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride |
| GAPNA               | N-glutaryl-L-phenylalanine-p-nitroanilide                     |
| HC!                 | hydrochloric acid                                             |
| HMP                 | 4-hydroxymethylphenoxymethyl-copolystyrene-1%                 |
|                     | divinylbenzene resin                                          |
| HPLC                | high performance liquid chromatography                        |
| HRPO                | horseradish peroxidase                                        |
| NaCNBH <sub>3</sub> | sodium cyanoborohydride                                       |
| NAD                 | nicotinamide adenine dinucleotide (oxidised form)             |
| NHS                 | N-hydroxysuccinimide                                          |
| TFA                 | trifluoroacetic acid                                          |