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Abstract 
The filamentous fungus Dothistroma septosporum infects pine species throughout the 

world causing red-band disease, one of the most serious diseases of conifer species.  In NZ, 

a clonally derived asexual strain of D. septosporum was identified in 1964, and has spread 

throughout the country.  There are conflicting accounts on the environmental conditions 

required for infection, which has lead to difficulties in optimizing a laboratory-based 

system for infection.  The pathogen is spread naturally through rain-splashed inoculum of 

conidiospores from mature stromata that have erupted through the pine needle tissue.  

Diseased needles become necrotic, often with a red band due to the mycotoxin 

dothistromin produced by the hyphae. Dothistromin has the chemical structure of a 

difuranoanthraquinone and shows similarity to the aflatoxin precursor, versicolorin B 

produced by Aspergillus parasiticus. The role of dothistromin in pathogenicity has not yet 

been determined, although experiments have shown injecting toxin into pine needles 

results in the characteristic red band lesion.   

 

In this study it was found that fluctuating temperature (16°C/24°C), a 12 h diurnal cycle 

(white and ultraviolet light), high relative humidity and continuous moisture are conditions 

conducive to development of red-band disease on inoculated pine trees in an artificial 

environment.  A higher rate of infection was obtained using pine seedlings as opposed to 

pine cuttings, and using a spore suspension containing a yeast extract.  A dothistromin 

minus mutant was able to infect pine needles, indicating that dothistromin is not a 

pathogenicity factor, though it may be a virulence factor. The use of GFP-expressing 

isolates allowed the initial infection process to be monitored with both wild type and 

mutant isolates.  Additionally, a PCR-based diagnostic procedure to confirm infection was 

developed. 

 

The production of aflatoxin by Aspergillus species is regulated by nutritional parameters 

and extracellular pH, which affect both growth and aflatoxin gene expression.  D. 

septosporum similarly has enhanced growth at acidic pH, but it does not appear that pH has 

a strong influence on physiological processes as toxin biosynthesis and gene expression do 

not appear to be pH regulated.  Different carbon and nitrogen sources also affect the 

morphology of D. septosporum. 
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1 
Introduction 

 

1.1  Dothistroma Needle Blight 

Dothistroma needle blight (red-band disease) is a foliage disease of pine trees caused by 

the filamentous fungus, Dothistroma septosporum (Barnes et al., 2004).  It is thought that 

D. septosporum originated from South America in high-altitude cloud forest regions 

(Bradshaw et al., 2000).  The fungus has been found to infect both native and exotic pine 

species throughout the world, resulting in premature defoliation and incremental wood loss 

in proportion to disease severity.  Over the last decade there has been an increase in disease 

incidence in the Northern hemisphere where the fungus now appears to be colonizing 

native trees in addition to exotic pines (Woods et al., 2005).  Consequently, dothistroma 

needle blight is now classed as one of the most important diseases of pine, and is of major 

economic concern to the forest industry in countries such as New Zealand, Australia, 

Canada, Chile, Europe, Kenya, and the United States of America (Woods et al., 2005). 

 

D. septosporum, the asexual form was first identified in New Zealand Pinus  radiata pine 

plantations in 1962, with positive confirmation in 1964 (Gibson, 1972).  The sexual form 

of the fungus, Mycosphaerella pini or Scirrhia pini has not yet been identified in NZ, 

although the sexual form was found in Europe and the USA in the early 1920’s (Bradshaw 

et al., 2000).  The current asexual form found in NZ is clonally derived with very low 

genetic diversity, indicating a single strain of D. septosporum was introduced into this 

country (Hirst, 1999).   

 

1.1.1  Environmental Conditions Conductive to Infection 

There are conflicting views between scientists, dating back to the earliest studies in the 

1970’s, on the precise environmental conditions required for D. septosporum to infect pine 

needles.  The four most important variables that appear to affect the severity of infection 

are needle wetness, temperature, humidity and light. 
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Gadgil (1974 and 1977), inoculated pine seedlings in an artificially controlled environment 

and showed there was no significant effect of the length of the post-inoculation wetness 

period on germination and mycelial growth on pine needles.  In contrast, there were 

significant effects of temperature on infection, with stromata appearing two weeks post-

inoculation at 24°/16°C (day/night), and four weeks post-inoculation at 20°/12°C 

(day/night) under continuous wetness conditions with 70-80% relative humidity.  At 

temperatures of 16°/8°C, 12°/4°C (day/night) with either short periods or continuous 

wetness conditions and lower relative humidity, infection levels were significantly reduced 

and stromata took seven weeks to appear.  Although infection can occur in dry conditions, 

severity of infection increases with increased length of wetness period, and an optimum 

temperature between 12°C and 24°C. 

 

Light intensity also has an effect on disease severity, with field observations indicating that 

there is less infection by D. septosporum on shaded foliage than on foliage that is exposed 

to direct light.  Under experimental conditions, the severity of infection decreased linearly 

with decreasing light intensity (181 W/m2 – 58 W/m2).  However, stromata appeared post-

inoculation within two weeks for all light intensity conditions tested (Gadgil, 1976). 

 

An intensive field study from the early 1990’s to the present within an identified D. 

septosporum epidemic area in Northwest British Columbia (BC) Canada, revealed that an 

increase in precipitation at temperatures over 16°C, correlated with an increase in disease 

severity (Woods et al., 2005).  Over the last two years (2004-2006) in BC, the increase in 

summer precipitation has led to approximately 70% mortality of log pole pine in certain 

areas, in conjunction with an extensive increase in disease severity in other areas (Woods, 

personal communication), as seen in Figure 1.  This highlights the importance of 

environmental conditions that affect extent and severity of disease in the field, whilst also 

enabling a consensus to be reached on the ideal conditions required to obtain infection in 

laboratory conditions. 
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Figure 1.  Dothistroma damage of log pole pine forests in British Columbia 

 
Photo A; extensive Dothistroma damage (Bell Irving, BC, Canada), B; Mortality (Sediesh Creek, BC, 
Canada), courtesy of Alex Woods. 
 
 

1.1.2  Mode of Infection 

Generally D. septosporum is spread over short distances by passive dispersal of conidia, 

from infected foliage, in water droplets (Ivory, 1972b).  How the fungus has spread over 

long distances is unclear, although research conducted in Kenya showed that conidia were 

taken up into clouds from infected forests at high altitude (Gibson, 1972).  The resilience 

of conidia to temperature extremes means the spores can remain viable for months until 

they encounter favorable environmental conditions allowing germination (Gibson, 1972). 

 

Once conidia (typically four celled) are attached to the pine needle, germination takes 

place within three days with a germ tube arising from each cell (Ivory, 1972b).  Generally 

germ tubes appear first from the terminal cells of the conidia, growing more vigorously 

than germ tubes arising from the median cells.  In vitro studies have shown fusion of germ 

tubes from different conidia in addition to germ tube branching (Gadgil, 1967; Ivory, 

1972b).  An extensive study by Peterson and Walla (1978) on ponderosa and Austrian pine 

in Nebraska showed germ tube growth is directed toward the stomatal pore.  Two germ 

tubes from the same conidia or branched germ tubes often grew directly into the stomatal 

pore.   Furthermore, needle topography (abaxial or adaxial side of the needle) did not affect 

germ tube orientation (Peterson and Walla, 1978).  The fungus, once established, forms an 

appressoria like structure over the stomatal cavity, with an infection peg penetrating the 

stomata (Peterson and Walla, 1978; Franich, 1983).  The stomata of young needles are 

open pores composed of guard cells that are covered in a microtubular wax that appears to 

A B 
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signal appressoria formation. This is in contrast to mature needles where the stomatal 

opening is occluded with a resinous material that may present a mechanical barrier 

(Franich, 1983).  Stomatal penetration can occur within two days of germination, with the 

infection peg branching within the pine needle sub-stomatal chamber.  Under experimental 

conditions using macerated mycelium, direct penetration of the epidermis has been 

observed with hyphae subsequently spreading throughout the mesophyll tissue (Gadgil, 

1967). 

 

Once inside the needle tissue, fungal hyphae spread both intra- and inter-cellular within the 

mesophyll, with lateral spread limited to a few millimeters from point of penetration.  The 

regions of the needle tissue where hyphae are contained, and mesophyll cells adjacent to 

the hyphae, become necrotic possibly due to the presence of dothistromin (DOTH) toxin 

produced by the hyphae (Gadgil, 1967) or due to collapsed cells becoming filled with resin 

(Ivory, 1972b).  This area of necrosis produces a red/brown band, a symptom of disease 

and a key characteristic of red band disease. The lesion area is often contrasted by healthy 

green tissue or in some cases light green/yellowish tissue may flank the lesion (Gadgil, 

1967). 

 

Correlated with the appearance of a lesion is the formation of black stromata within the 

necrotic region in the hypodermis between needle stomata (Ivory, 1972b).  The presence of 

stromata depends on the environmental conditions such as moisture on the needle surface, 

and the earliest they have been reported to occur is two weeks post-inoculation (Gadgil, 

1974, 1976, 1977).  Asexual conidia are produced within the stromata beneath the 

epidermis, which mature to split the epidermal tissue longitudinally and expose the conidia 

(Ivory, 1972b; Barnes et al., 2004).  The conidia are hyaline, can appear curved or straight, 

usually one to three septate and produced in a slimy mass (Bradshaw, 2004). 

 

1.1.3  Lifecycle in the Forest Environment 

The main infection period in New Zealand is between November and February (late 

spring-summer).  During periods of rain or heavy mist (Gibson, 1972), conidia from 

erupted stromata collect within the film of water that covers the needle surface.  Water 

droplets falling from needles are broken up upon contact with another surface which 

allows the conidia to become airborne.  Dispersal of conidia is generally within the vicinity 
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of the neighboring tree and considered the most important form of conidia dispersal 

(Gibson, 1972).  Therefore, the severity of infection depends on temperature, needle 

wetness and the number of viable conidia landing on the needle surface. 

 

Once infection has occurred the length of the pre-reproduction period is variable.  The 

incubation period before stromata are produced may be as short as three weeks in the 

summer or as long as 16 weeks in autumn; sometimes sporulation may not occur until the 

following spring (Gibson, 1972).  Generally, the shorter the incubation period the more 

severe infection will be if there is adequate rainfall.  In New Zealand it has been 

established that rainfall above 500 mm spread over 50 rain days between November-

February is ideal for severe infection to occur in areas with adequate inoculum.  However, 

conidia can remain viable on dry needles for up to 11 months at 18°C and five months at 

30°C (Gibson, 1972). 

 

Brick red bands around the needles, typical of dothistroma needle blight can appear within 

weeks of infection and are often still visible when the infected needle has died.  The needle 

tissue beyond the band often dies, and the whole needle becomes necrotic (Bradshaw, 

2004).  Symptoms usually appear on the lower branches of the tree, during late summer but 

are more obvious during winter.  Premature defoliation of dead needles occurs in the 

spring prior to new needle growth (Franich et al., 1982).  Dothistroma does not appear to 

survive on shed needles on the plantation floor for longer than two months, probably due to 

microbial competition (Gibson, 1972). 

 
1.1.4  Dothistroma Needle Blight Control 

There are three methods used to control Dothistroma needle blight in the commercial pine 

forests in the Southern hemisphere.  These control methods are: use of resistant pine 

seedlings, silvicultural practices such as pruning and thinning of infected branches, and 

aerial application of copper fungicide (Bradshaw, 2004).  A dothistroma-resistant cultivar 

of P. radiata was developed in 1983 and is available in New Zealand for planting in high 

incidence areas where needle blight is a problem (Jayawickrama and Carson, 2000).  The 

resistant cultivar has been estimated to reduce incidence of infection by 15% (Dick, 1989).  

In addition, P. radiata becomes more resistant with age, usually around eight years in 

moderately diseased stands, or around 15 years in heavily diseased stands.  However, older 

pine trees take longer to recover from severe infection, and unfortunately little is known 
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about the mature tree resistance mechanism (Gibson, 1972).  The most prominent form of 

control is still the use of copper fungicides. 

 

Fungicides rose to prominence in 1964 in Kenya, when field trials showed that copper 

fungicides applied from the air were effective in controlling needle blight.  In New 

Zealand, aerial application of copper oxychloride and cuprous oxide have been effective in 

controlling dothistroma since the early 1970’s (Bradshaw, 2004). All stands within New 

Zealand are assessed for infection in July/August each year, and stands where infection 

levels exceed 20% are subjected to aerial application of the copper fungicide at a rate of 5 

L/ha (1.66 kg copper oxychloride and 2 L emulsifiable spray oil with sufficient water to  

make up the volume to 5 L) in November/December when inoculum levels are greatest 

(Bulman et al., 2004).  Copper fungicide is taken up by D. septosporum conidia within 60-

90 minutes of contact.  It prevents germ-tube growth, whilst also inhibiting the production 

of secondary conidia.  The copper spray persists on needles for several months (Franich, 

1988) protecting existing foliage from new infection. 

 
1.1.5  Dothistromin Mycotoxin 

Dothistromin (DOTH) is a phytotoxin that has been isolated from cultures of D. 

septosporum, and is a difuranoanthraquinone, as determined by mass spectrometry and 

nuclear magnetic resonance (NMR) (Bear et al., 1972).  DOTH is also produced by 

Cercospora species, including the peanut pathogen C. arachidicola (Stoessl and Stothers, 

1985).  In addition, there is structural similarity between DOTH and an aflatoxin precursor, 

versicolorin B, produced by Aspergillus parasiticus and A. flavus, with similarity of 

biosynthetic steps involved in production of aflatoxin (AF) by A. parasiticus (Bradshaw et 

al., 2002).  The structural similarity has been confirmed (by 13C NMR), showing the 

bistetrahydrofurano side chain of DOTH is similar to aflatoxin and sterigmatocystin side 

chains (Shaw et al., 1978).  Furthermore, both DOTH and versicolorin B share a saturated 

bifuran ring although the arrangement of the hydroxyl groups of the anthraquinone ring is 

different (Figure 2) (Bradshaw et al., 2002). 
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Figure 2.  Molecular structures of aflatoxin B1, versicolorin A, versicolorin B and 

dothistromin 

 
(Bradshaw et al., 2002) 
 

The characteristic red colour of pine needle lesions resulting from dothistroma infection is 

due to accumulation of DOTH.  This has been shown experimentally by inducing artificial 

lesions through injecting DOTH into pine needles (Shain and Franich, 1981; Franich et al., 

1986).  In addition, the tissue that separates the live part of the needle from the 

dothistroma-induced lesion is highly lignified, having four times as much lignin as the rest 

of the needle tissue (Franich et al., 1986).  DOTH is oxidized in needle lesions primarily to 

CO2 and oxalic acid, with benzoic acid synthesized by the host in cells adjacent to those 

killed by the toxin. Light affects the toxicity of DOTH, with greater breakdown of the 

toxin in the presence of light.  DOTH is also reduced in an NADPH-dependent reaction, 

upon auto-oxidation forming H2O2 and O2
-, and under anaerobic conditions is capable of 

generating OH radicals (Franich et al., 1986).  Shain and Franich (1981) detected an 

ethylene response in needles injected with DOTH, both in light and dark conditions, albeit 

a smaller response in darkness, but greater than controls.  This suggests the host is capable 

of a response regardless of light conditions (Shain and Franich, 1981).  However, the 

production of ethylene in dark conditions may have been due to the presence of residual 

oxygen radicals, which were generated from the NADPH pathway when the needle tissue 

was previously exposed to light.    Perhaps through a photosensitizing process, DOTH may 

exert toxicity by generating reactive oxygen species (Franich et al., 1986). 

 

Other research has been done to determine possible roles for the mycotoxin DOTH.  A 

study conducted to determine the toxicity of DOTH to Pinus tissue found growth of pine 

embryo and meristematic leaf callus was completely inhibited by 13 nmol DOTH per gram 

of tissue.  Furthermore, an immunoassay confirmed the uptake of DOTH by the pine 

OH 

Oli 
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embryos, they became orange and DOTH disappeared from the solution.  Using a 

dothistromin-mouse albumin conjugate and DOTH-specific antibodies, the experimenters 

identified DOTH binding in pine embryos to small vesicles and a putative 40-kDa 

dothistromin binding peptide (Jones et al., 1995).  DOTH has also been shown to inhibit 

the metabolism of the bacterial species Bacillus megaterium and Chlorella pyrenoidosa 

(Harvey et al., 1976).  Inhibition was dependent on the concentration of DOTH added to 

the cultures, and it was proposed that bacterial growth in culture recommenced due to 

DOTH being broken down by light (Franich et al., 1982).  However, whether DOTH is 

absolutely required for infection to occur in pine needles, or simply a virulence factor 

facilitating infection in respect to red-band disease is yet to be elucidated. 

 
1.1.6  Fungal Gene Clusters 

As mentioned above, DOTH biosynthesis appears to be similar to AF biosynthesis, which 

has been confirmed by using aflatoxin genes as hybridization probes to recover 

dothistromin genes (Bradshaw et al., 2002).  The genes involved in AF biosynthesis are 

well characterized, due to AF B1 being a potent natural carcinogen that is of major concern 

to the food industry.  In addition, sterigmatocystin (ST), produced by approximately 20 

species of fungi, is an intermediate compound in the AF biosynthetic pathway.  Both AF 

and ST genes are clustered, although the order of genes is different (Klich et al., 2000).  

The AF gene cluster contains approximately 25 genes within a 60 to 70 kb region 

(Bradshaw et al., 2002), whilst the ST gene cluster contains 25 genes within a 60 kb region 

(Brown et al., 1996).  Both the AF and ST pathways show conservation in respect of 

function and regulation (Brown et al., 1996). There are 10 enzymatic steps required for ST, 

and 12 steps required for AF biosynthesis after generation of the first stable intermediate, 

norsolorinic acid (Zhang and Keller, 2004). It has been proposed that dothistromin 

biosynthesis genes are clustered and share biosynthetic steps with AF production, of which 

several genes have been characterized to date that show homology to AF pathway genes 

(Bradshaw et al., 2002). 

 

Bradshaw et. at. (2002) found a genomic clone containing part of the putative dothistromin 

gene cluster, containing four genes showing similarity to AF cluster genes.  These genes 

have predicted functions based on similarities with AF/ST genes, being a ketoreductase 

(dotA), oxidase (dotB), major facilitator superfamily transporter (dotC) and thioesterase 

(dotD) (Bradshaw et al., 2002).  Recently, four other genes have been isolated from the D. 
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septosporum genomic library that show homology to aflC,, aflV, aflI and aflW genes from 

the AF gene cluster of A. parasiticus, in addition to the discovery of an epoxide hyrolase 

(epoA) gene which has not been found in the AF/ST gene clusters (Bradshaw et al., 2006).  

Figure 3 shows the AF and ST gene clusters of A. parasiticus and A. nidulans, with dark 

arrows indicating homologous genes found within three genomic regions from D. 

septosporum.   

 

Figure 3.  Comparison of putative DOTH gene cluster with AF/ST gene clusters 

 

 
(Bradshaw and Zhang, 2006) 

 

The dotA gene (proposed ketoreductase) encodes for a 263-amino acid sequence which 

shows 80% identity with the A. parasiticus AflM gene product and 79% identity to the ST 

gene product, StcU from A. nidulans.   A dotA mutant created by gene replacement did not 

produce DOTH, but produced a bright yellow pigment in media that was confirmed by 

TLC analysis and mass spectrometry to be versicolorin A.  Versicolorin A is also produced 

by the aflM  mutant of A. parasiticus further suggesting a similar biosynthetic role of DotA 

to AflM (Bradshaw et al., 2002).  The stcU gene (homolog aflM in A. parasiticus) is 

required for the conversion of versicolorin A to ST (Brown et al., 1996).   

 

The DotB gene product has a predicted oxidase function based on 24% amino acid identity 

with the StcC gene product from A. nidulans, with no homology seen to any A. parasiticus 

AF genes (Bradshaw et al., 2002)  Both StcC and DotB show amino acid identity (29% and 
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24.3% respectively) with a chloroperoxidase (Brown et al., 1996) which in Caldariomyces 

fumago catalyzes a variety of oxygen transfer reactions (Conesa et al., 2001). 

 

A toxin pump activity has been proposed for DotC (585 amino acid protein) based on 

31.2% and 30.8% homology to AflT gene (A. parasiticus) and ToxA (Cochliobolus 

carbonum) gene products respectively (Bradshaw et al., 2002).  In C. carbonum, the ToxA 

gene product is required to export endogenously produced HC-toxin (a cyclic peptide) 

from the cell, essential for protecting the fungus from the effects of this toxin.  A similar 

gene (cfp) has been identified in Cercospora kikuchii which produces the toxin 

cercosporin. Disruption of the cfp gene resulted in decreased cercosporin production and 

loss of virulence (Upchurch et al., 2002). 

 

The dotD gene encodes a 322 amino acid polypeptide that has putative thioesterase 

enzymatic activity with homology to polyketide synthase (pks) genes involved in AF/ST 

biosynthesis (Bradshaw et al., 2002).  The Pks gene product involved in the ST pathway 

has four catalytic domains, of which dotD appears to encode only one of these domains, a 

monofunctional thioesterase (Bradshaw et al., 2002).  The thioesterase domain may be 

involved in either  accepting malonyl-CoA  or releasing the intermediate product in initial 

enzymatic steps from the hexanoate starter unit to the first stable intermediate, norsolorinic 

acid (Yu and Leonard, 1995). 

 

As mentioned early, a cluster of five genes has been found in D. septosporum with four 

genes, pksA, cypA, avfA and moxA showing 40-60% amino acid identity to genes involved 

in AF/ST biosynthesis (Figure 3.) (Bradshaw et al., 2006).  The pksA gene homolog, stcA 

from A. nidulans encodes a polyketide synthase involved in the assembly of norsolorinic 

acid from hexanoyl CoA and malonate, the first intermediate in the ST pathway (Brown et 

al., 1996).  The essential function of stcA in ST production has been confirmed by feeding 

hexanoic acid to stcA mutant strains, in which norsolorinic acid was not produced (Zhang 

and Keller, 2004).  In addition, a gene disruptant of the A. parasiticus homolog aflC did 

not produce any AF intermediates, showing a role of aflC early on in the AF biosynthetic 

pathway.  The AflC protein contains motifs similar to those found in fatty acid synthases, 

with the notable difference of no ketoreductase activity.  This indicates that AflC is 

capable of synthesizing norsolorinic acid as long as the starting product is a hexanoate, 

thus not requiring reduction (Feng and Leonard, 1995).  The putative role of the pksA gene 
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from D. septosporum has been determined by gene replacement, which resulted in a loss of 

DOTH biosynthesis.  The predicted function of PksA in toxin biosynthesis was determined 

by metabolite feeding experiments with norsolorinic acid and versicolorin A.  The pksA 

mutant was able to convert these aflatoxin precursors to DOTH, indicating that PksA is 

likely involved in some form of condensation reaction in the early stage of toxin 

biosynthesis. 

 

The avfA gene is a putative oxidase with 47% and 43% amino acid identity to both aflI and 

stcO (A. paraciticus and A. nidulans respectively) gene homologs (Bradshaw et al., 2006).  

A complementation experiment in A. paraciticus determined that AvfA is involved in the 

conversion of averufin to versiconal hemiacetyl acetate (Wen et al., 2005).  The cypA gene 

is a putative averufin monooxygenase with 59% amino acid identity to aflV and stcB genes 

(Bradshaw et al., 2006).  In A. paraciticus, the AflV gene product catalyses the reaction 

from averufin to hydroxyversicolorone (Wen et al., 2005).    The AflV protein contains two 

conserved regions, a heme-binding motif and hydrogen bond region which are typical 

active sites present in cytochrome P450 enzymes (Yu et al., 1998).  The moxA gene 

encodes a 626 amino acid putative hydroxyversicolorone monooxygenase with 55% amino 

acid identity to the AflW gene product from A. paraciticus (Bradshaw et al., 2006).  Latest 

research by Wen et. al. (2005) determined that the moxY (AflW) gene catalyzes two 

reactions, one from hydroxyversicolorone to versiconal hemiacetal acetate and the other 

from versicolorone to versiconol acetate (Wen et al., 2005).       

         

1.2  Pathogenicity Assay 

The development of a laboratory based pathogenicity assay to monitor infection by D. 

septosporum has several potential benefits for the forestry industry.  First, an in vitro assay 

could be used as a prescreening for resistance (Browne and Cooke, 2004a). This would 

decrease the time and cost involved in screening potential resistant pine cultivars and allow 

early detection of non-resistant cultivars so they may be excluded from any field trial 

(Diamond and Cooke, 1999).  Secondly, it would allow the infection process to be 

monitored in planta via microscopy. This would allow scientists to monitor behaviour of 

wild-type and dothistromin mutant strains on the needle surface, thus determining whether 

the toxin produced by D. septosporum has a physiological role in respect to fungal 

behaviour on the host.  Thirdly, in New Zealand there is only a single clonally derived 
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strain of D. septosporum, and it has been shown experimentally that some overseas strains 

produce more toxin (Bradshaw et al., 2000).  Therefore introduction of other D. 

septosporum strains would be a major bio-security risk to New Zealand.  A pathogenicity 

assay could be used to determine differences in virulence between strains in New Zealand 

and overseas.  

 

Detached leaves or seedlings are commonly used in disease assays with fungal pathogens, 

allowing characterization of susceptible and resistant host-pathogen interactions (Wharton 

et al., 2003).  These types of assay have been used to analyze cherry leaf spot caused by 

Blumeriella jaapii (Wharton et al., 2003), fusarium ear blight of wheat caused by Fusarium 

spp. (Diamond and Cooke, 1999), sclerotina blight of peanut caused by Sclerotinia minor 

(Hollowell et al., 2003), late leaf-spot disease of groundnut caused by Phaeoisariopsis 

personata (Butler et al., 1994) and canker of red pine caused by Sphaeropsis sapinea 

(Blodgett et al., 2003) to name a few.  Detached leaf segments of the host are placed on 

water agar plates (generally adaxial surface upwards), and inoculated with a spore 

suspension (1 x 106 conidia ml-1) or agar plugs taken from the actively growing edge of a 

fungal colony, placed mycelium side down on the leaf surface (Diamond and Cooke, 1999; 

Hollowell et al., 2003; Wharton et al., 2003; Browne and Cooke, 2004a).  For whole plant 

inoculations, a spore suspension (1 x 106 conidia ml-1) is sprayed with an atomizer to run 

off (Butler et al., 1994; Wadia and Butler, 1994; Wharton et al., 2003).  Incubation 

conditions conducive to infection obviously vary according to the host-fungal interaction 

under study. Conditions usually require optimization with respect to temperature, light 

intensity, humidity and free water if stable conditions are required, or these variables may 

be manipulated to determine what effects they have on the host-pathogen interaction.   

 

The method used to characterize disease symptoms post inoculation depends on the host 

and fungus. However this usually involves monitoring the inoculated host tissue for 

symptoms and signs of infection, such as, formation of lesions and the development of 

spores.  Often the shortest incubation period before disease symptom appearance, and the 

latent period before sexual/asexual spore production is determined (Browne and Cooke, 

2004a).  In addition, lesion length (Hollowell et al., 2003), lesion density (Wadia and 

Butler, 1994), the number of lesions/sporulating lesions (Wharton et al., 2003), stomatal 

penetrations and percentage of conidial germination (Wadia and Butler, 1994) are often 



 13 

measured.  Analysis of symptom development can also be quantified using a disease 

severity scale, if available (van Jaarsveld et al., 2003; Wharton et al., 2003).  

 

Pathogenicity assays are often developed as a prescreening technique in determining host 

resistance to the associated fungal pathogen.  Browne and Cooke (2004a) have proposed 

there is a difference in wheat resistance to Fusarium species, with Type I being resistance 

to initial infection, Type II being resistance against the spread of the pathogen within the 

host and Type III, the ability to degrade or tolerate the mycotoxin deoxynivalenol.  These 

types of resistance may also be applicable to other fungal-host interactions.  However there 

may be variability in the relationship or correlation of the components of resistance shown 

in a detached leaf assay compared with a whole plant assay (Browne and Cooke, 2004a).   

Resistance may or may not be under the same genetic control in a detached leaf assay and 

whole plant field trial, and there is a possibility that susceptibility factors may or may not 

be detected in a detached leaf assay (Browne and Cooke, 2004a).  It has been shown with a 

wheat cultivar that there is independent segregation of genes controlling head and leaf 

resistance, therefore traditional field screening for resistance to fungal infection can not be 

replaced with a detached leaf assay in this instance (Diamond and Cooke, 1999).  The 

expression of plant resistance also depends on the method of inoculation, conditions and 

timing of inoculation, and stage of plant development.  In addition the use of mycelium 

plugs as inoculum provide a nutrient base for the fungus, therefore this may lead to 

enhanced lesion development and be a severe test of host resistance (Hollowell et al., 

2003).  However, many detached leaf assay tests have shown a correlation with field 

resistance, for example soybean and dry bean resistance to S. minor and alfalfa resistance 

to S. trifoliorum (Hollowell et al., 2003).  Detached leaf assays are therefore not a 

substitute for field evaluations but are useful for preliminary screening for resistance. 

 
1.3  Green Fluorescence Protein 

The green fluorescence protein (GFP), responsible for bioluminescence in the jellyfish 

Aequorea victoria, was isolated in 1992, and has since been used as a reporter and marker 

in both prokaryotes and eukaryotes.  Aequorea GFP is a 27kDa protein consisting of 238 

amino acid residues (Lorang et al., 2001). It fluoresces under UV or blue light in the 

presence of oxygen (Maor et al., 1998).  The protein has been fused to cellular and 

extracellular proteins allowing analysis of gene regulation, protein localization and 

organelle labeling.  Other reporter genes such as GUS require exogenous substrates, co-
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factors or antibiotics for detection, in addition to destructive sampling (Atkins et al., 2004).  

GFP is useful as a reporter in living systems, reflecting gene expression and protein 

localization without the associated problems of using other reporter systems.  However, the 

wild type GFP protein in some applications has a low turnover rate, taking up to two hours 

for auto-activation of the chromophore responsible for fluorescence.  GFP is also subject to 

incorrect folding at temperatures above 37°C.  Additionally, the GFP chromophore is 

formed exclusively from part of the polypeptide chain (Maor et al., 1998).  Another 

potential problem is the requirement of oxygen for fluorescence, which may not be present 

in  sub-cellular locations or various cell types at equal concentration within the organism  

(Lorang et al., 2001). To overcome associated problems such as non-fluorescence, 

insoluble forms, or inefficient translation that occurs in some systems, point mutations 

have been inserted into the wild type gfp gene (Maor et al., 1998).   These modified forms 

of GFP have resulted in faster chromophore formation, increased fluorescence and 

solubility and decreased photobleaching (Maor et al., 1998; Lorang et al., 2001). 

 

In filamentous fungi, the wild type gfp gene is not efficiently translated, and a synthetic 

version of GFP (sGFP) has been developed that results in faster chromophore formation, 

and an increase in GFP protein fluorescence.  The sGFP protein has a serine-to-threonine 

substitution at amino acid 65 (Maor et al., 1998).  This substitution causes a red shift in 

excitation maxima from 395 and 475 nm to 488 nm, with light emittance detected at 508 

nm, making it ideal for use with fluorescent microscopy.  Studies have confirmed that 

sGFP yields a higher concentration and level of fluorescence than native GFP in 

filamentous fungi such as Ustilago maydis, Aspergillus nidulans, Cochliobolus 

heterostrophus, Colletotrichum gloeosporioides, Neurospora crassa and Neotyphodium 

lolii (Lubeck et al., 2002).  An alternative variant to sGFP is enhanced GFP (eGFP) which 

is a red-shift variant of the wild-type GFP, optimized for brighter fluorescence.  This gene 

contains a double amino acid substitution of Phe-64 to Leu and Ser-65 to Thr. Enhanced 

GFP has been used successfully with many fungal species to monitor fungal growth on or 

within plant hosts.  Tanaka et. al. (2006) used eGFP Epichloe festucae mutants to show the 

importance of reactive oxygen species in regulating the interaction between the fungal 

endophyte and ryegrass host (Tanaka et al., 2006).  However, further variants of GFP are 

being developed, now requiring choice of which gfp gene to use depending on the 

organism, promoter driving the gfp gene and method of fluorescence detection (Lorang et 

al., 2001). 
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The use of GFP as a marker requires a strong constitutive promoter, which usually results 

in a cytoplasmically located protein that occurs in all fungal morphotypes, such as hyphae, 

spores, and appressoria (Lorang et al., 2001). However, differences in fluorescence 

intensity seen within fungal colonies can be due to non-fluorescent hyphae resulting from 

non-transformed nuclei (Lubeck et al., 2002) in multinucleate protoplasts, or multiple 

copies of the GFP plasmid (Balint-Kurti et al., 2001).  Once GFP transformants are 

mitotically stable, all cell types expressing the GFP can be easily detected.  However, 

changes in the cytoplasmic conditions of organs or specific cells, such as condensation of 

the cytoplasm at the two poles of a spore during germination, may contribute to differences 

in fluorescence intensity (Maor et al., 1998). 

 

1.3.1  The Use of GFP to Follow Infection 

The development of GFP expressing strains of D. septosporum, both wild type and mutants 

defective in DOTH biosynthesis would enable monitoring of fungal development, and 

determination of whether the mutated genes are crucial for infection.  In addition, D. 

septosporum transformed with GFP would be a valuable tool allowing visualization of the 

pathogen-host interaction, infection structures and post-penetration development (Rohel et 

al., 2001).  Host-pathogen interactions have been followed between Fusarium 

graminearum and barley (Skadsen and Hohn, 2004), Mycosphaerella fijiensis and banana 

(Balint-Kurti et al., 2001), M. graminicola and wheat (Rohel et al., 2001), Alternaria citri 

and citrus tissue (Isshiki et al., 2003), and Cochliobolus heterostrophus and maize (Maor et 

al., 1998), using GFP transformed fungi.   

 

Microscopy is the common method of detecting GFP transformed fungi on and within 

inoculated plant tissue.  Using epifluorescent microscopy, Maor et. at. (1998) observed 

hyphae of C. heterostrophus colonizing the mesophyll zone under the point of inoculation 

on maize.  Lu et. al. (2004) observed induction of bio-control related genes (fused to GFP) 

during mycoparasitism of Pythium ultimum and Rhizoctonia solani by Trichoderma 

atroviride on cucumber seed using confocal laser scanning microscopy.   They observed 

that the bio-control genes were activated by the presence of the host and chitin within 24 

hours of T. atroviride colonization.  Furthermore, they showed that mycoparasitism takes 

place on the seed surface, with T. atroviride hyphal branches growing towards the host and 

coiling around the host hyphae (Lu et al., 2004).  The endophyte Neotyphodium lolii has 
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been transformed with GFP, and was visualized in the leaf sheaths of perennial ryegrass.  

Observations showed the presence of GFP throughout the cytosol of living hyphae, and the 

lengthwise orientation of hyphae, with infrequent branching within leaf sheath cells 

(Mikkelsen et al., 2001).  The effects of a fungicide, azoxystrobin in impairing M. 

graminicola infection of wheat leaves has been assessed using a GFP transformed strain of 

the fungus.  The growth of M. graminicola inside wheat leaves was monitored following 

treatment with azoxystrobin at various stages of incubation post-inoculation.  The results 

indicated that the fungistatic effect of azoystrobin on M. graminicola lasted up to 50% of 

the time during the incubation phase (Rohel et al., 2001).   As a final example of the use of 

GFP, the mechanism by which Mycosphaerella pathogens cause Sigatoka disease of 

banana has been elucidated.  In addition to monitoring the multiple stages of plant 

infection using fluorescein (FITC), the experimenters determined that the end of the 

necrotic area was often in advance of fungal hyphae.  It has been proposed that several 

Mycosphaerella banana pathogens produce a diffusible phytotoxin, and the lack of hyphae 

found within the necrotic area, sometimes up to half of this area leads further support for a 

role of a phytotoxin in Sigatoka disease (Balint-Kurti et al., 2001). 

 

One of the main advantages of using GFP transformed fungi to monitor the host-pathogen 

relationship is that no clearing of plant tissue is required for observation.  Furthermore, 

GFP allows non-destructive sampling, so the host-fungal interaction from time of 

inoculation to final stages of disease development is not interrupted (Maor et al., 1998).  

Therefore, macroscopic symptoms observed due to infection by transgenic fungi are 

distinguishable from symptoms caused by wild type untransformed fungi (Balint-Kurti et 

al., 2001).    In most instances where GFP has been used to transform fungi, the protein 

does not seem to interfere with any major physiological pathways (Isshiki et al., 2003), and 

further suggests that the transformation process does not affect fungal pathogenicity or 

virulence (Balint-Kurti et al., 2001). 

 
1.4  Ambient pH Regulates Physiological Processes 

Research has determined that hydrogen ion concentration of inoculum affects spore 

attachment to leaf surfaces and subsequent disease severity, whilst also affecting growth 

and sporulation on media (Schuerger and Mitchell, 1992; Wang et al., 1999).  Research 

with Aspergillus spp. has shown growth optima and AF production at acidic pH, with 

inhibition of AF production at alkaline pH.  Furthermore, up to 27 genes have been shown 



 17 

to be regulated by ambient pH, with gene expression induced with increasing pH (Price et 

al., 2005).  Conversely, a limited amount of research has been conducted on D. 

septosporum physiological response to ambient pH.  Shaw (1975) showed an increase in 

DOTH production associated with increasing pH from pH 4.8 to 5.5, 80 h post-inoculation, 

in liquid media.  Therefore, due to the similarity in the biosynthesis of toxins between 

dothistroma and Aspergillus, it is possible the response of dothistroma to ambient pH may 

be similar to results found for Aspergillus spp. 

 

For most eukaryotic cells, cytoplasmic pH must be maintained within a narrow range for 

effective cell function and intracellular processes.  In fungi internal pH homoeostatis is 

achieved by a plasma membrane H+-ATPase pump (Docampo et al., 1996).  Research with 

Penicillium showed that weak organic acids or inhibitors of the plasma membrane pump 

disrupted pH homoeostatis by lowering internal pH which subsequently inhibited fungal 

growth in culture medium (Zhang et al., 2005).  Therefore, the ability of fungi to survive at 

adverse environmental pH in part depends on the effect of pH on exclusion of protons, and 

maintenance of a proton gradient (Davis, 2003).  Fungi however also maintain pH 

homoeostatis through pH regulatory pathways, of which many are not well understood.  

For Aspergillus spp. the production of AF acidifies culture medium, and is under the 

control of the global pH regulator PacC.  The pacC gene induces expression of alkaline-

expressed genes while repressing expression of acid-expressed genes (Price et al., 2005).  

The ability to alter ambient pH thus ensures the survival of the fungus in conditions that 

would otherwise be inhibitory for growth. 

 

Fungi are capable of altering external pH by secretion of various compounds into the 

medium.  Often a decrease in pH of the medium during growth is common, as acids are 

formed from the carbon source (Weiergang et al., 2002).  However, the survival of many 

fungal species in an acidic environment results in a high expenditure of energy on 

expelling protons from the cytosol (Zhang et al., 2005).  Additionally, some fungal plant 

pathogens have to alter ambient pH in order for specific enzymes associated with early 

plant infection to be active.  For S. sclerotiorum, the secretion of oxalic acid acidifies the 

environment, thus enabling transcription and activity of cell wall-degrading enzymes 

during pathogensis (Cotton et al., 2003).  Dothistroma survives on the acidic surface of 

pine needles (Ivory, 1967), with infection usually through stomatal openings.  However, 

dothistromin is broken down to oxalic acid, which is non-toxic to pine needles (Franich et 
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al., 1986). Therefore, DOTH production may be in response to ambient pH within the pine 

needle.  Perhaps this may lead to acidification within the internal pine needle environment, 

creating conditions conducive to transcription and activity of genes and enzymes required 

for infection.  Therefore determining whether Dothistroma is pH responsive in respect to 

physiological processes may help in understanding the development of red-band disease.   

 
1.5  Summary of Current Research 

1.5.1  Hypothesis 1 

Wild type and DOTH mutants of D. septosporum transformed with eGFP will allow 

visualization of the infection process in planta, and determination of the putative role of 

DOTH as a pathogenicity or virulence factor. 

 

1.5.2  Aim 1 

To develop a laboratory-based pathogenicity assay to monitor fungal infection of pine 

fascicles and pine seedlings inoculated with D. septosporum. 

 

1.5.3  Objectives 

• Optimize environmental conditions (temperature, humidity, moisture and light) 

conducive to the completion of the infection cycle (stromata on pine needles). 

• Determine which form of inoculum, spores, mycelia plugs or macerated mycelium 

cause the highest incidence of infection. 

• Determine which type of host, detached pine fascicles, pine seedlings or cuttings is 

appropriate to use in a pathogen assay. 

• Use eGFP wild type isolates to monitor fungal behaviour on pine needles post-

inoculation. 

• Determine if the behaviour of D. septosporum eGFP DOTH mutants, on pine 

needles post-inoculation is comparable to that of the wild type isolate, and whether 

they can cause infection and disease. 

 

1.5.4  Hypothesis 2 

Ambient pH will affect D. septosporum growth, spore production, DOTH biosynthesis and 

associated DOTH gene expression. 
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1.5.5  Aim 2 

To determine whether ambient pH has an effect on D. septosporum physiological 

processes such as growth, sporulation, DOTH biosynthesis and gene expression of putative 

DOTH genes. 

 

1.5.6  Objectives 

• Assess daily radial growth rate of D. septosporum on a variety of solid media at a 

predetermined pH. 

• Assess growth and DOTH production of D. septosporum in liquid media in 

response to ambient pH. 

• Determine level of DOTH gene expression, in relation to growth and toxin 

production, at different ambient pH values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


