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Abstract

The first decade of the new carbon nanomaterial graphene has been a time
of great discovery and excitement as the exceptional properties of this mate-
rial were uncovered and its promise for numerous applications realised. The
unique properties of graphene, including its exceptional electronic structure,
are now well-established, and investigations into how these properties can be
manipulated and exploited are rapidly taking off. This research contributes
to the emerging field by exploring the structure and chemistry of the edges
of mechanically cleaved graphene nanoribbons; groundwork for the future
development of edge-modified nanoribbons that could be used to form self-
assembled graphene nanoribbon composite structures with potential for de-
vices in solar energy conversion. For this purpose, a Raman microscope was
built that enabled for various aspects of the structure of graphene nanoribbons
to be probed, in particular the geometry and smoothness of the edges, which
have important implications for the specific reactivity of the edge carbon
atoms. Chemical approaches for the specific functionalisation of the edges
of the nanoribbons were developed, involving reactions tailored to the reac-
tive groups present at the edges, and these were found to be highly successful

and selective.
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