

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

At the Cutting Edge: Structural Analysis and Chemical Modification of the Edges of Mechanically Cleaved Graphene Nanoribbons

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Nanoscience

at Massey University, Manawatū, New Zealand

Haidee Michaela Dykstra

2017

Abstract

The first decade of the new carbon nanomaterial graphene has been a time of great discovery and excitement as the exceptional properties of this material were uncovered and its promise for numerous applications realised. The unique properties of graphene, including its exceptional electronic structure, are now well-established, and investigations into how these properties can be manipulated and exploited are rapidly taking off. This research contributes to the emerging field by exploring the structure and chemistry of the edges of mechanically cleaved graphene nanoribbons; groundwork for the future development of edge-modified nanoribbons that could be used to form selfassembled graphene nanoribbon composite structures with potential for devices in solar energy conversion. For this purpose, a Raman microscope was built that enabled for various aspects of the structure of graphene nanoribbons to be probed, in particular the geometry and smoothness of the edges, which have important implications for the specific reactivity of the edge carbon atoms. Chemical approaches for the specific functionalisation of the edges of the nanoribbons were developed, involving reactions tailored to the reactive groups present at the edges, and these were found to be highly successful and selective.

Acknowledgements

I would like to thank my primary supervisor, A. Prof. Mark Waterland, for his extensive guidance, input, support and patience throughout the project, as well as my co-supervisors A. Prof. Gareth Rowlands and Prof. Simon Hall for their useful advice.

I would also like to thank Olaf Griewaldt from IFS Engineering Services for his assistance in the design and machining of microscope mounts; MMIC (Manawatu Microscopy and Imaging Centre) for the use of their microtome for cutting HOPG and TEM for imaging - in particular Jordan Taylor for all the hours she has put into this; Sergei Lebedkin from Karlsruhe Institute of Technology for his very helpful advice regarding optimisations of the microscope; Krishanthi Jayasundera for her advice and guidance for the nanoribbon edge chemistry; and Dominique Appadoo for his help with the Far-IR beamline at the Australian Synchrotron.

I would also like to thank Sam Brooke, Ewan Fisher and Ashley Way for their continued collaboration, advice and input throughout the project, in particular to Ewan Fisher for his invaluable assistance in developing methodologies for characterising graphene nanoribbon samples at the Far-IR beamline at the Australian Synchrotron.

Finally, I would like to thank my family, in particular my husband Liande Gao, for their continued support throughout the project.

Contents

Li	List of Figures vi			
Li	st of [Fables		xi
Ac	crony	ms and	Abbreviations	xii
1	Intr	oductio	n	1
	1.1	The H	istory of Graphene	1
	1.2	The Pr	coperties and Applications of Graphene	2
	1.3	Graph	ene Nanoribbons	4
	1.4	The C	hemistry of Graphene and Graphene Nanoribbons	6
	1.5	Ramar	Spectroscopy for Characterising Graphene Nanoribbons	8
	1.6	Projec	t Scope, Aims and Outline	8
2	Desi	gn and	Implementation of a Terahertz Raman Microscope	11
	2.1	Introdu	uction	11
		2.1.1	Basic Components of a Raman Spectrometer	11
		2.1.2	Holographic Bragg Filters - New Raman Notch Filter Technology	12
	2.2	Desigr	n, Fabrication and Assembly of a Raman Microscope	16
		2.2.1	Design	16
		2.2.2	Testing Components	18
		2.2.3	Preliminary Setups	19
		2.2.4	Microscope Alignment	24
		2.2.5	Optimisations and Improvements	31
		2.2.6	Benchmarking Microscope Performance	39
		2.2.7	Incorporating Additional Excitation Wavelengths	43
		2.2.8	Polarised Raman	46
	2.3	Conclu	usion	50
3	Exp	eriment	tal methods	51
	3.1	Produc	ction of GNRs	51
		3.1.1	Nanotomy-Based Mechanical Cleavage of HOPG	51
		3.1.2	Exfolation of GNBs	53
	3.2	Charac	cterisation of GNRs	54
		3.2.1	AFM	54
		3.2.2	TEM	54
		3.2.3	Raman Microscopy	54
	3.3	Functi	onalisation of GNRs	57
		3.3.1	Chemical Methods	57

		3.3.2	FTIR Spectroscopy	58
		3.3.3	Raman Microscopy	61
		3.3.4	SERS	61
		3.3.5	THz Spectroscopy	61
		3.3.6	XPS	62
4	Stru	cture o	f Graphene Nanoribbons	64
	4.1	Introd	uction	64
		4.1.1	Overview of the History and Development of the Understanding	
			of Raman Processes in Graphene and Graphite	65
		4.1.2	Theory of Raman Scattering Processes in Graphite and Graphene	66
	4.2	Result	s and Discussion	73
		4.2.1	Raman Spectroscopy of HOPG and Graphene Samples	73
		4.2.2	Fabrication of Graphene Nanoribbons	80
		4.2.3	Characterisation of GNRs by Raman Spectroscopy, AFM and TEM	82
		4.2.4	Raman Spectroscopy for the Determination of Layer Number in	
			GNRs	89
		4.2.5	D:G Ratios of GNRs	92
		4.2.6	Polarised Raman Microscopy of GNRs	101
	4.3	Conclu	usion	118
5	Edg	e Chem	istry of Graphene Nanoribbons	119
	5.1	Introd	uction	119
		5.1.1	Clar Sextet Theory and Graphene Aromaticity	119
		5.1.2	Functionalisation of Graphene and GNRs	122
		5.1.3	Characterisation of Functionalised Graphene Edges	126
		5.1.4	Scope and Aims	127
	5.2	Result	s and Discussion	129
		5.2.1	Ester Coupling	129
		5.2.2	Amide Coupling	137
		5.2.3	Diazonium Chemistry	145
		5.2.4	SERS	150
		5.2.5	THz Spectroscopy	155
	5.3	Conclu	usion	159
6	Con	clusion	and Future Perspectives	160
7	Bibl	iograpł	ny	164
8	Ann	endix A		179
0	<u>трр</u> 8 1	Calcul	• ation for Monolayer Coverage of SDS on GNRs	170
		Curcul	$(u_1) (u_1) (u_1) (u_1) (u_1) (u_2) (u_1) (u_2) (u_1) (u_1) (u_1) (u_1) (u_1) (u_1) (u_1) (u_2) (u_1) (u_1$	エノノ

	8.2	Estimation of Edge:Basal Carbon Ratios in GNRs	80
9	Арр	endix B 18	81
	9.1	Additional AFM images	81
	9.2	Additional TEM images	85
	9.3	Additional Raman data	92
		9.3.1 HOPG	92
		9.3.2 Graphene test samples	94
		9.3.3 GNRs	95
		9.3.4 Polarised Raman	00
		9.3.5 Functionalised GNR	48
	9.4	Additional FTIR data	51
	9.5	Additional Far-IR data	56
	9.6	Additional SERS data	57

List of Figures

Introduction		1
Figure 1	(a) Zigzag and (b) armchair GNRs	5
Design and In	plementation of a Terahertz Raman Microscope	11
Figure 2	A simple Raman setup.	12
Figure 3	Reflecting (left) and transmitting (right) VBG filters	14
Figure 4	Diagram depicting how interference can be avoided when multiple	
VBG	filters are used in series.	14
Figure 5	The IX70 microscope after removal of the lamp head, stage, ob-	
jectiv	es and beamsplitter rail	17
Figure 6	(a) CAD design for 20° diffraction at the BPF and (b) photograph	
of act	tual setup	17
Figure 7	(a) Prism mirror mounted to the beamsplitter rail	18
Figure 8	(a) Image showing diffraction of the laser beam, collimated by the	
Fiber	Port, from the BPF	19
Figure 9	(a) Laser spectrum at higher power, without BPF cleaning	20
Figure 10	Diagram of the preliminary Raman setup	21
Figure 11	Spectrum of the laser background.	21
Figure 12	Raman setup with separate objectives to illuminate the sample and	
collec	et the scattered light	23
Figure 13	Raman spectrum of cyclohexane with 90° collection geometry $$.	23
Figure 14	Raman spectrum of cyclohexane with backscattering geometry and	
Rayle	eigh suppression with 2 BNFs	24
Figure 15	Beam collimating and expanding optics incorporated into a cage	
system	m	25
Figure 16	(a) Drawing of the system used for initial alignment of the BPF	26
Figure 17	Photograph of the FiberPort positioned to collect the scattered light	
exitin	g the microscope side-port.	28
Figure 18	Initial Raman spectrum of cyclohexane, taken with a 4x micro-	
scope	objective.	29
Figure 19	Drawing of the final microscope setup	30
Figure 20	Raman spectrum of cyclohexane, with 3 BNFs rejecting the Rayleigh	
line.		30
Figure 21	Photograph of the collection fibre and tube lens aligned in a cage	
system	m	32
Figure 22	Spectra of (a) fluorescent glass coverslip and (b) Si wafer	34

Fi	gure 23	Diagram depicting how chromatic aberration occurring in the mi-	
	crosco	pe objective lens can lead to different effective focal lengths	35
Fi	gure 24	Raman spectra of Si wafer	36
Fi	gure 25	Raman spectra of Si wafer, taken with a series of achromat objectives.	37
Fi	gure 26	Plots of Si intensity vs NA (a) and (b) and Raman:Rayleigh ratio	
	vs NA	(c) for different microscope objectives	38
Fi	gure 27	Full microscope setup	40
Fi	gure 28	(a) Raman spectrum of HOPG, laser power 5 mW, integration time	
	60s.		41
Fi	gure 29	Raman spectra of L-cystine with multi-mode collection fibres with	
	differe	nt core diameters	42
Fi	gure 30	Raman spectra of Si wafer acquired with two different spectro-	
	graph	gratings using 532 nm excitation.	44
Fi	gure 31	Raman spectra of (a) sulfur and (b) L-cystine, taken with 532 nm	
	excitat	ion	45
Fi	gure 32	Polarised Raman spectra of cyclohexane, taken with a 4x objective.	46
Fi	gure 33	Polarised Raman spectra of a linear polariser acquired with 532	
	nm ex	citation.	48
Fi	gure 34	Polar plot of the Raman intensity of the linear polariser sample	49
Expe	rimental r	nethods	51
Fi	gure 35	View from the top showing the water-filled knife boat and HOPG	
	sample	e	52
Fi	gure 36	Curve-fitting procedure in OPUS for a typical Raman spectrum of	
	GNRs		56
Fi	gure 37	FTIR spectra of GNR edge-functionalised with sulfanilic acid	60
Struc	ture of G	raphene Nanoribbons	64
Fi	gure 38	(a) The unit cell of monolayer graphene, spanned by the vectors	
	$\vec{a_1}$ and	$\vec{a_2}$	66
Fi	gure 39	(a) Breathing mode for the D band of graphene	67
Fi	gure 40	(a) Representation in real space of D peak Raman scattering at an	
	ordere	d edge	68
Fi	gure 41	(a) Wavevectors of defects for armchair (\vec{d}_a) and zigzag (\vec{d}_z) edges	
	in grap	bhene	69
Fi	gure 42	The doubly degenerate E_{2g} LO (a) and TO (b) phonon modes of	
	the G	band in graphene	70
Fi	gure 43	Calculated symmetries and frequencies for the shear modes of	
	graphe	ene with differing layer numbers	71
Fi	gure 44	Raman spectra of HOPG acquired with 785 nm excitation	73

Figure 45	Raman spectra of HOPG acquired with 532 nm excitation	74
Figure 46	Raman spectra of HOPG and various graphene samples acquired	
with 7	85 nm excitation	75
Figure 47	Raman spectra of (a) HOPG and (b) CVD graphene on a Ni substrate.	77
Figure 48	Raman spectra of monolayer CVD graphene on (a) a glass sub-	
strate	and (b) a SiO ₂ substrate	78
Figure 49	Raman spectra of (a) single/double CVD graphene (b) and (c) mul-	
tilayeı	CVD graphene	79
Figure 50	Nanotomy method for the production of GNRs	81
Figure 51	(a) AFM image of 100 nm wide GNBs on a mica substrate, ac-	
quirec	l in tapping mode	83
Figure 52	(a) AFM image of exfoliated GNRs	84
Figure 53	AFM in tapping mode of 100 nm GNR on a mica substrate	85
Figure 54	AFM in tapping mode of a GNR aggregate on mica	86
Figure 55	TEM images of GNRs cut at (a) 300 nm and (b) 20 nm	87
Figure 56	TEM images of GNRs cut at 100 nm	88
Figure 57	Raman spectra acquired with 785 nm excitation of the low-frequency	
region	of HOPG, 100 nm GNB and 100 nm GNR	89
Figure 58	2D bands of Raman spectra of 100 nm and 300 nm wide GNRs fit	
with I	Lorentzians	91
Figure 59	D:G ratios for (a) dry- and (b) wet-cut GNRs plotted as a function	
of ribl	oon width	93
Figure 60	(a) Averaged D:G ratios over all sonication powers plotted as a	
functi	on of ribbon width.	94
Figure 61	D:2D ratios for (a) dry- and (b) wet-cut GNRs plotted as a function	
of ribl	oon width	95
Figure 62	(a) Averaged D:2D ratios over all sonication powers plotted as a	
functi	on of ribbon width.	96
Figure 63	Averaged Raman spectra of wet- and dry-cut 100 nm GNRs ac-	
quirec	l with 532 nm excitation.	97
Figure 64	Averaged Raman spectra of wet- and dry-cut 100 nm GNRs ac-	
quired	l with 488 nm excitation.	98
Figure 65	Averaged D:G ratios plotted as a function of ribbon width (see	
figure	60a) with error bars	99
Figure 66	(a) Intensities of the D and G bands of HOPG plotted as a function	
of the	degree of rotation of the plane of polarisation of the input laser beam. I	04
Figure 67	D:G ratio of HOPG Raman spectra plotted as a function of polari-	
sation	, with a $\cos^2\theta$ fit	05

	Figure 68	G:2D, D:G and D:2D ratios of 500 nm wet-cut GNR plotted as a	
	function	on of polarisation	108
	Figure 69	G:2D, D:G and D:2D ratios of 300 nm wet-cut GNR plotted as a	
	function	on of polarisation	10
	Figure 70	G:2D, D:G and D:2D ratios of 300 nm wet-cut GNR plotted as a	
	function	on of polarisation	11
	Figure 71	G:2D, D:G and D:2D ratios of 100 nm dry-cut GNR plotted as a	
	function	on of polarisation	112
	Figure 72	G:2D, D:G and D:2D ratios of 500 nm wet-cut GNR plotted as a	
	functi	on of polarisation	13
	Figure 73	G:2D, D:G and D:2D ratios of 500 nm GNR plotted as a function	
	of pol	arisation	114
	Figure 74	G:2D, D:G and D:2D ratios of 500 nm GNR plotted as a function	
	of pol	arisation	115
	Figure 75	G:2D, D:G and D:2D ratios of 500 nm wet-cut GNR plotted as a	
	function	on of polarisation	116
	Figure 76	G:2D, D:G and D:2D ratios of 100 nm wet-cut GNR plotted as a	
	function	on of polarisation	117
	Figure 77	G:2D, D:G and D:2D ratios of 100 nm dry-cut GNR plotted as a	
	function	on of polarisation	117
БЧ			110
ĽU	lge Chemisti	y of Graphene Nanoribbons 1	119
ĽU	l ge Chemisti Figure 78	ry of Graphene Nanoribbons I Resonance structures of a graphene sheet	1 19 120
шu	ge Chemistr Figure 78 Figure 79	ry of Graphene Nanoribbons I Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair-	120
ĽU	ge Chemistr Figure 78 Figure 79 edged	ry of Graphene Nanoribbons I Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1	120 120
ĽU	ge Chemistr Figure 78 Figure 79 edged Figure 80	ry of Graphene Nanoribbons I Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1 Segment of a zigzag-edged GNR with migration of Clar sextets	120 120
ĽU	ge Chemistr Figure 78 Figure 79 edged Figure 80 depict	ry of Graphene Nanoribbons I Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1 Segment of a zigzag-edged GNR with migration of Clar sextets 1 ed by red arrows. 1	120 120 120
ĽU	ge Chemistr Figure 78 Figure 79 edged Figure 80 depict Figure 81	ry of Graphene Nanoribbons I Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1 Segment of a zigzag-edged GNR with migration of Clar sextets 1 Alternative representation of the Clar structure shown in figure 80. 1	120 120 121 121
Eu	ge Chemistr Figure 78 Figure 79 edged Figure 80 depict Figure 81 Figure 82	ry of Graphene Nanoribbons I Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1 Segment of a zigzag-edged GNR with migration of Clar sextets 1 Alternative representation of the Clar structure shown in figure 80. 1 Illustration of the symmetry of A and B sublattices in (a) armchair	120 120 121 121
Eu	ge Chemistr Figure 78 Figure 79 edged Figure 80 depict Figure 81 Figure 82 and (b	ry of Graphene Nanoribbons I Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1 Segment of a zigzag-edged GNR with migration of Clar sextets 1 Alternative representation of the Clar structure shown in figure 80. 1 Illustration of the symmetry of A and B sublattices in (a) armchair 1 y zigzag GNRs. 1	120 120 121 121 121
Eu	ge Chemistr Figure 78 Figure 79 edged Figure 80 depict Figure 81 Figure 82 and (b Figure 83	ry of Graphene Nanoribbons I Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1 Segment of a zigzag-edged GNR with migration of Clar sextets 1 Alternative representation of the Clar structure shown in figure 80. 1 Illustration of the symmetry of A and B sublattices in (a) armchair 1 whechanism for covalent functionalisation of graphene with diazo- 1	120 120 121 121
Eu	ge Chemistr Figure 78 Figure 79 edged Figure 80 depict Figure 81 Figure 82 and (b Figure 83 nium s	ry of Graphene Nanoribbons I Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1 Segment of a zigzag-edged GNR with migration of Clar sextets 1 ed by red arrows. 1 Alternative representation of the Clar structure shown in figure 80. 1 Illustration of the symmetry of A and B sublattices in (a) armchair 1 v) zigzag GNRs. 1 Mechanism for covalent functionalisation of graphene with diazo- 1	120 120 121 121 122
Eu	ge Chemistr Figure 78 Figure 79 edged Figure 80 depict Figure 81 Figure 82 and (b Figure 83 nium s Figure 84	ry of Graphene Nanoribbons I Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1 Segment of a zigzag-edged GNR with migration of Clar sextets 1 ed by red arrows. 1 Alternative representation of the Clar structure shown in figure 80. 1 Illustration of the symmetry of A and B sublattices in (a) armchair 1 b) zigzag GNRs. 1 Mechanism for covalent functionalisation of graphene with diazo- 1 Reaction scheme for functionalisation of GNRs with 4-aminobenzoic 1	120 120 121 121 122
Eu	ge Chemistr Figure 78 Figure 79 edged Figure 80 depict Figure 81 Figure 82 and (b Figure 83 nium 8 Figure 84 acid v	ry of Graphene Nanoribbons 1 Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1 Segment of a zigzag-edged GNR with migration of Clar sextets 1 Alternative representation of the Clar structure shown in figure 80. 1 Illustration of the symmetry of A and B sublattices in (a) armchair 1 y zigzag GNRs. 1 Mechanism for covalent functionalisation of graphene with diazo- 1 Reaction scheme for functionalisation of GNRs with 4-aminobenzoic 1 ia EDC/DMAP ester bond formation. 1	120 120 121 121 122 122
Eu	ge Chemistr Figure 78 Figure 79 edged Figure 80 depict Figure 81 Figure 82 and (b Figure 83 nium 9 Figure 84 acid v Figure 85	ry of Graphene Nanoribbons I Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1 Segment of a zigzag-edged GNR with migration of Clar sextets 1 ed by red arrows. 1 Alternative representation of the Clar structure shown in figure 80. 1 Illustration of the symmetry of A and B sublattices in (a) armchair 1 b) zigzag GNRs. 1 Mechanism for covalent functionalisation of graphene with diazo- 1 salts via aryl radical formation. 1 Reaction scheme for functionalisation of GNRs with 4-aminobenzoic 1 ia EDC/DMAP ester bond formation. 1 Chemical structures of the modifiers used in the ester coupling 1	120 120 121 121 121 122 124
Eu	ge Chemistr Figure 78 Figure 79 edged Figure 80 depict Figure 81 Figure 82 and (b Figure 83 nium 8 Figure 84 acid v Figure 85 reaction	ry of Graphene Nanoribbons 1 Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1 Segment of a zigzag-edged GNR with migration of Clar sextets 1 ed by red arrows. 1 Alternative representation of the Clar structure shown in figure 80. 1 Illustration of the symmetry of A and B sublattices in (a) armchair 1 o) zigzag GNRs. 1 Mechanism for covalent functionalisation of graphene with diazo- 1 Reaction scheme for functionalisation of GNRs with 4-aminobenzoic 1 ia EDC/DMAP ester bond formation. 1 Chemical structures of the modifiers used in the ester coupling 1	120 120 121 121 121 122 124 130
Eu	ge Chemistr Figure 78 Figure 79 edged Figure 80 depict Figure 81 Figure 82 and (b Figure 83 nium 9 Figure 84 acid v Figure 85 reactio Figure 86	ry of Graphene Nanoribbons 1 Resonance structures of a graphene sheet. 1 The three different width-dependent Clar formulae for armchair- 1 GNRs 1 Segment of a zigzag-edged GNR with migration of Clar sextets 1 ed by red arrows. 1 Alternative representation of the Clar structure shown in figure 80. 1 Illustration of the symmetry of A and B sublattices in (a) armchair 1 wechanism for covalent functionalisation of graphene with diazo- 1 Reaction scheme for functionalisation of GNRs with 4-aminobenzoic 1 ia EDC/DMAP ester bond formation. 1 Chemical structures of the modifiers used in the ester coupling 1 FTIR microscope spectra of unmodified GO and GO function- 1	120 120 121 121 121 122 124 130

Figure 87	Raman spectra of GO and modified GO samples acquired with 785		
nm excitation			
Figure 88	Raman spectra of as-cut GNR, GNR reduced with NaBH ₄ and		
GNR	modified with 4-ABA		
Figure 89	ATR-FTIR spectra of r-GNR, 4-ABA-GNR and RhB-GNR 133		
Figure 90	Raman spectra of the samples in figure 89 acquired with 532 nm		
excitat	tion		
Figure 91	Raman spectra of 50 nm modified and unmodified GNR samples		
acquir	ed with 532 nm excitation		
Figure 92	ATR-FTIR spectra of 50 nm r-GNR with various edge modifications.136		
Figure 93	Reaction scheme for the amidation of GNR COOH groups 137		
Figure 94	Rearrangement of the O-acylurea intermediate to form an N-acylurea.137		
Figure 95	Chemical structures of the modifiers used in the amide coupling		
reaction	ons		
Figure 96	FTIR microscope reflectance spectra of GO and GO modified with		
SA an	d 4-NA		
Figure 97	Raman spectra of GO and f-GO samples acquired with 785 nm		
excitat	tion		
Figure 98	FTIR microscope spectra of multiple SA-GNR samples 140		
Figure 99	(a) Comparison of SA-GO and SA-GNR FTIR spectra 141		
Figure 100	Raman spectra of 20 nm GNR samples acquired with 532 nm ex-		
citatio	n		
Figure 101	FTIR microscope spectra of 20 nm f-GNR		
Figure 102	Raman spectra acquired with 488 nm excitation		
Figure 103	FTIR microscope spectra of 20 nm GNR modified with SP groups. 145		
Figure 104	FTIR microscope spectra of 20 nm GNR modified with NP groups 146		
Figure 105	Raman spectra of 20 nm GNR modified with (a) SP and (b) NP		
groups	8		
Figure 106	Comparison Raman spectra of 20 nm GNR modified NP groups 149		
Figure 107	SERS spectra acquired with 488 nm excitation		
Figure 108	SERS spectra acquired with 532 nm excitation		
Figure 109	Raman and SERS spectra of 4-NA and NP-GNR samples acquired		
with 4	88 nm excitation		
Figure 110	GNRs edge-functionalised with various combinations of multi-		
carbox	xylated molecules and ethylenediamine		
Figure 111	Far-IR spectra of 20 nm GNR with various edge modifications 157		

List of Tables

Experimental methods 51			
1	Samples prepared for the Far-IR beamline at the Australian Synchrotron	63	
Structur	re of Graphene Nanoribbons	64	
2	Comparison of average D:G and D:2D ratios for 100 nm wet- and dry-cut		
	GNRs with 532 nm and 488 nm excitation.	98	
3	Variation in D:G ratios for the dry-cut GNRs in figure 65	99	
4	Variation in D:G ratios for the wet-cut GNRs in figure 65	99	
5	Variation in D:G ratios for the 100 nm GNRs in figures 63 and 64	100	

List of Acronyms and Abbreviations

In order of appearance:

CVD	Chemical vapour deposition
GO	Graphene oxide
BZ	Brilluoin zone
QHE	Quantum Hall effect
FET	Field effect transistor
LED	Light-emitting diode
ITO	Indium Tin oxide
SAM	Self-assembled monolayer
DOS	Density of states
GNR	Graphene nanoribbon
CNT	Carbon nanotube
HOPG	Highly-oriented pyrolytic graphite
HNF	Holographic notch filter
VBG	Volume Bragg grating
VHG	Volume holographic filter
PTR	Photo-thermo-refractive
BNF	BragGrate TM notch filter
BPF	BragGrate TM bandpass filter
OD	Optical density
NA	Numerical aperture
OPSL	Optically pumped semiconductor laser
MFD	Mode field diameter
PM	Polarisation maintaining
PMMA	Poly(methyl) methacrylate
GNB	Graphite nanoblock
AFM	Atomic force microscopy
TEM	Transmission electron microscopy
IPA	Isopropanol
SDS	Sodium dodecylsulfate
CMC	Critical micelle concentration
THF	Tetrahydrofuran
r-GNR	Reduced GNR
4-ABA	4-aminobenzoic acid
EDC	1-Ethyl-3-(3-dimethylaminopropyl)
	carbodiimide
DMAP	4-Dimethylaminopyridine

DMCO	Dimethyl gylforide
DMSO	formational include
I-GINK	functionalised GNR
	N Hudrowsen originaido
NH5	N-Hydroxysuccinimide
DMF	Dimethylformamide
FTIR	Fourier transform infrared
AIR	Attenuated total reflection
S:N	Signal-to-noise
HDFT	Heptadecafluoro-1-decanethiol
KK	Kramers-Kronig
SERS	Surface-enhanced Raman spectroscopy
CTAB	Cetyltrimethylammonium bromide
Agnp	Silver nanoparticle
PE	Polyethylene
XPS	X-ray photoelectron spectroscopy
TA	Terephthalic acid
TMA	Trimesic acid
BTB	Benzene 1,3,5-tribenzoic acid
EDA	Ethylenediamine
TFA	Trifluoroacetic acid
4-NA	4-nitroaniline
PDOS	Phonon density of states
iTO	In-plane transverse optical
iLO	In-plane longitudinal optical
DR	Double resonance
РАН	Polycyclic aromatic hydrocarbon
NMP	N-methyl-pyrrolidone
SDBS	Sodium dodecylbenzenesulfonate
BDE	Bond dissociation energy
OTS	Octadecyltrichlorosilane
hBN	Hexagonal Boron nitride
STM	Scanning tunnelling microscopy
TERS	Tip-enhanced Raman spectroscopy
AE	Activated ester
4-NBA	4-nitrobenzoic acid
RhB	Rhodamine B
SP	Sulfophenyl
NP	Nitrophenyl
SPR	Surface plasmon resonance

R6G	Rhodamine 6G
HATN	hexaazatriphenylene
TCNQ	7,7,8,8-tetracyanoquinodimethane
F4-TCNQ	2,3,5,6-tetrafluoro-7,7,8,8-
	tetracyanoquinodimethane