

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Experimental Investigations of Granular Matter Flow Regimes leading to Insight into Lahar Flow Dynamics

A thesis presented in partial fulfilment of the requirements for the

degree of

Doctor of Philosophy

in

Earth Science

at Massey University, Manawatū, New Zealand

Adam Charles Neather

Abstract

The flow of granular material governs numerous natural processes including the aeolian dynamics of sand dune formation, sub-aerial and submarine mass flows, the collective dynamics of ice blocks floating on the ocean, avalanches of debris and snow, as well as volcanic granular-fluid flow processes, such as pyroclastic density currents, volcanogenic debris flows and lahars.

Lahars are a particularly important type of granular flow, in regards to its possible effect on human life; they are debris and water-based flows, initiated by volcanic processes. A fascinating aspect about granular matter is the co-existence of behaviour similar to two or all three of the classical states of matter (solid, liquid, gas) and their frequent transitions between these behaviours. Despite the ubiquity of these transitions in nature and industry, the fundamental physics of granular matter remains a mystery, to the extent that a unified theory to describe the motion and behaviour of granular matter is still absent.

This study is an attempt to simulate lahars and their erosion/deposition mechanics in the laboratory by making use of a rotating drum. A rotating drum can be treated as an analogue for a lahar because it allows for erosion and deposition to occur as an active region of material flows over a passive, erodible bed. In nature these processes are transitory and highly dynamic, but an experimental analogue allows for the processes to be observed in a steady system.

Results include detailed maps of the various regions in a flowing granular material cor-

related to the speed of rotation of the flows. The changing status of the active and passive regions allows for measurements of the erosion mechanics within the drum. Also, potentially identified are two new phenomena; high speed rotations appear to include features similar to Kelvin-Helmholtz instabilities, and enclosed regions of sub-rotation, which are referred to as self-enclosed circulation cells (SECCs).

Acknowledgements

I would like to thank my supervisors, Prof. Shane Cronin, Dr. Gert Lube and Prof. Jim Jones for their support and enthusiasm. My examiners, Prof. Ian Fuller, Dr. Stephen Tallon (Callaghan Innovation), and Prof. Indresan Govender (University of KwaZulu-Natal), should also be thanked for the useful feedback on this thesis.

I would also like to thank the engineers Clive Bardell, John Edwards, Daniel Farley, David Feek, Olaf Griewaldt, Nav Prasad (SEW Eurodrive), Ian Thomas, Anthony Wade and everyone at Triple R Engineering, Ltd. for their help designing, building, maintaining and modifying all the fun toys I got to play with during this project.

Special thanks to my family, Joan and Daniel Neather, for their continuing love and care. This thesis is dedicated to them.

Additional thanks (in no particular order) to: Shane Cronin and Debbie Sparkes for being my financial fairy god-mothers; Miles Grafton for proof-reading an embarrassingly early version of this document; Luke Fullard for the MATLAB code he wrote that greatly sped up the analysis; Eric Breard for supplying the pumice material; Anja Moebis for teaching me how the pycnometer works; Kate Arentsen, Janene de Ridder, and Julia Rayner for making sure the wheels of bureaucracy turned smoothly; Liza Haarhoff for the inexhaustible office supplies; Donald Bailey for his image processing knowledge; Mark Morris, Felicity Samuel and all the staff at the Massey Health Centre for putting Humpty Dumpty together again; Matt Hewerdine, Liam Malone, Chris Sanderson, Tom Robertson, Scott Engerbretsen, and everyone at the Manawatū Duelists for understanding the allure of tiny plastic soldiers; Jonathan Barnard for taking up the torch; Ian Furkert for being able to source any piece of scientific equipment, often at a

moment's notice; Matthew Willey for running the local Sceptics in the Pub group; Lionel Wilson and Georg Zellmer, corner-fighters; David Wiltshire for advice on how to light and film the experiments; Manuela Tost for being the world's greatest office-mate; a slightly inebriated Marco Brenna (*in vino veritas*); Wayne Treanor and Gareth Tasker of Hexanine, Palmy's greatest punk/metal band; Nick Look and Matt Irwin for working their IT voodoo; Angela Woodley for ensuring I wasn't homeless; Jonathan Proctor and Braden Walsh for letting me drive; Magret Damaschke and Gaby Gomez for looking at an active volcano and thinking "that'd be a nice place to go for a walk, let's bring Adam"; Rafael Torres-Orozco for his expertise and help in finding the ash sample; Dianne Reilly and everyone at International Student Support; The Bad Cave, Nexus Games, and Mark One Comics, for helping me scratch the itch; David Stevens and everyone at Radio Control for letting me pollute the airwaves with my taste in "music"; Thalia Evans, the world's most patient shipping agent; and all the lovely staff at the campus coffee and book shops.

Apologies to anyone who feels they should be listed here but aren't - your omission was not intentional, and should be seen as a reflection of my poor memory, rather than your lack of contribution.

Declaration

I hereby declare that this thesis is my own work and effort and that it has not been submitted anywhere for any award. Where other sources of information have been used, they have been acknowledged.

Adam Neather, August 2, 2017

Jim Jones

Shane Cronin

Gert Lube

"One can scoop up poppy seeds with a ladle as easily as if they were water and, when dipping the ladle, the seeds flow in a continuous stream." - Titus Lucretius Carus, ca. 90 to 55 BCE

Quoted in Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (*Springer, New York, 2000*) by D. Jacques. "If you sneeze into it, and it goes everywhere, then it's a powder."

- Dr. Marco Brenna, 28th November 2012

Quoted at the Geological Society of New Zealand annual conference BBQ.

Contents

1	Intro	oductio	n	1
	1.1	Overv	iew	2
		1.1.1	Granular Material Behaviour	2
	1.2	Summ	ary and Aims	5
		1.2.1	Research Approach	6
		1.2.2	Controlling Erosion and Deposition	7
2	Lite	rature I	Review	9
	2.1	Overv	iew	10
	2.2	Introd	uction	11
		2.2.1	Lahars	11
		2.2.2	Lahar Composition	12
	2.3	Dange	ers	14
		2.3.1	Specific Cases	15
		2.3.2	Danger Mitigation	16
	2.4	Debris	s Flows	18
	2.5	Difficu	ulties when Studying Lahars	19
	2.6	Analog	gue Experiments	20
		2.6.1	Rotating Drums	21
		2.6.2	Methods of Non-invasive Interrogation	23
	2.7	Mathe	ematical Descriptions and Modelling	27
		2.7.1	The Inertial Number, I	28
		2.7.2	Empirical Relationships	29
		2.7.3	The Discrete Element Method (DEM)	30

		2.7.4	Other Models for Describing Granular Materials	33
	2.8	Summ	nary	33
		2.8.1	Research Question	34
3	Exp	erimen	tal Methodology	35
	3.1	Experi	imental Overview	36
	3.2	Equip	ment	38
		3.2.1	Rotating Drum	38
		3.2.2	Annular Shear Cell	41
		3.2.3	Video Analysis Computer	46
	3.3	Mater	ials - The Ideal Particulates	48
	3.4	Experi	imental Methodology	53
		3.4.1	General Concerns	53
		3.4.2	Granular Material Characterisation	54
		3.4.3	Introductory Experiments	59
		3.4.4	Intermediate Experiments	60
		3.4.5	Advanced Experiments	63
4	Ana	lytical N	Methodology	67
	4.1	Introd	uction	68
	4.2	PIV - F	Particle Image Velocimetry	68
		4.2.1	Image Skew Problem and Solution	70
	4.3	Autom	nated Layer Thickness Analysis	70
		4.3.1	Area of Active and Passive Regions	71
		4.3.2	The Centre of Mass/Dynamic Angle of Friction	72
	4.4	Mohr-	Coulomb Circle Analysis	73
		4.4.1	Finding the flow function	77
		4.4.2	Internal Friction, Flow Factor, and Cohesiveness	84
	4.5	Dimer	nsionless Numbers	85

5 Results I - Dry Volcanic Ash under Constant Velocities

89

	5.1	Introd	uction
		5.1.1	Internal Structure
	5.2	Flow I	Description as a Function of Drum Rotational Velocity 92
		5.2.1	Active Region Fraction
		5.2.2	Velocity Profiles
		5.2.3	Avalanche Velocity Profiles
		5.2.4	Area of Passive and Active Regions
		5.2.5	Collapse Events
		5.2.6	The Dynamic Angle of Friction
	5.3	Meası	rements of a Passing Avalanche
	5.4	Discus	ssion
		5.4.1	Active Region Fraction
		5.4.2	Dynamic Angles of Friction
		5.4.3	Collapse Periodicity
		5.4.4	The Effect of a Passing Avalanche
		5.4.5	The Mechanical Limit
6	Rest	ılts II -	Acceleration and New Phenomena 111
Ū	6.1	Introd	luction 112
	6.2	Dvnar	mic Equivalents
	0.2	6.2.1	Laver Fractions
		6.2.2	Dynamic Angle
	6.3	New P	Phenomena
		6.3.1	Self-Enclosed Circulation Cells
		6.3.1 6.3.2	Self-Enclosed Circulation Cells
	6.4	6.3.1 6.3.2 Discus	Self-Enclosed Circulation Cells
	6.4	6.3.1 6.3.2 Discus	Self-Enclosed Circulation Cells
	6.4	 6.3.1 6.3.2 Discus 6.4.1 6.4.2 	Self-Enclosed Circulation Cells .116 Kelvin-Helmholtz Instabilities .117 ssion .120 Layer Thicknesses .120 Dynamic Angle .120
	6.4	 6.3.1 6.3.2 Discussion 6.4.1 6.4.2 6.4.3 	Self-Enclosed Circulation Cells .116 Kelvin-Helmholtz Instabilities .117 ssion .120 Layer Thicknesses .120 Dynamic Angle .120 SECC Behaviour .121
	6.4	 6.3.1 6.3.2 Discussion 6.4.1 6.4.2 6.4.3 6.4.4 	Self-Enclosed Circulation Cells .116 Kelvin-Helmholtz Instabilities .117 ssion .120 Layer Thicknesses .120 Dynamic Angle .120 SECC Behaviour .121 KHI Behaviour .124

CONTENTS

		6.4.5	Implications for Natural Flows	. 125
7	Resu	ılts III -	- Cross-Material Comparisons	129
	7.1	Introd	luction	. 130
	7.2	Obser	vation Summary: by Phenomenon	. 131
	7.3	Measu	ured Variables	. 135
		7.3.1	Example Velocity Profiles	. 136
		7.3.2	Avalanche Velocity Profiles	. 136
		7.3.3	Layer Thicknesses	. 137
		7.3.4	Area of Passive and Active Regions	. 137
		7.3.5	Collapse Periodicity	. 139
		7.3.6	Dynamic Angle of Friction	. 140
	7.4	Passin	g Avalanche	. 140
	7.5	Mass l	Flux	. 141
	7.6	Discus	ssion	. 142
		7.6.1	Qualitative Observations	. 142
		7.6.2	Active Region Fraction	. 144
		7.6.3	Dynamic Angles of Friction	. 146
		7.6.4	Collapse Periodicity	. 147
		7.6.5	Passing Avalanche	. 148
		7.6.6	Pumice Radial Stripes	. 148
		7.6.7	Implications for Natural Flows	. 154
-	-	1		
8	Rest	ilts IV -	Wet Materials under Constant Velocities	157
	8.1	Introd		. 158
	8.2	Wet Ex	xperiment Equivalents	. 158
	8.3	Obser	vation of the Varied Water Fill Level Experiments	. 159
		8.3.1	Low Water Content	. 160
		8.3.2	Mid-level Water Content	. 162
		8.3.3	Full Drum	. 162

	8.4	Tempo	orary Centrifuging	:
	8.5	Discus	sion	~
9	Disc	ussion	169	I
	9.1	Restate	ement of Aims	1
	9.2	Consic	leration of Material Behaviour	I
		9.2.1	Overview	
		9.2.2	Flow Regimes	
		9.2.3	Collapse Periodicity	
		9.2.4	Dynamic Angle of Friction	
		9.2.5	Material Dilation	
		9.2.6	Mass Flux	,
		9.2.7	Temporary Centrifuging	,
		9.2.8	Differences Between Materials	
		9.2.9	Changes in Behaviour with Interstitial Fluid	I
	9.3	Relatir	ng Findings to Natural Flows	
		9.3.1	Clean Water Region Analogue	
		9.3.2	Implications for Hazard Planning	
	9.4	New P	henomena	
		9.4.1	Kelvin-Helmholtz Instabilities	1
		9.4.2	Self-Enclosed Circulation Cells	
		9.4.3	Counter-Rotational Zones	,
	9.5	Unsuit	ability of Hydrodynamic Models	
	9.6	Difficu	lties and Limitations	
		9.6.1	Difficulties	
		9.6.2	Limitations	
	9.7	Addres	sing the Aims	
10	Cond	clusion	s 201	
- •	10.1	Summ	ary	
			,	

	10.2	Broader Implications
	10.3	Implications for Lahars
	10.4	Future Directions
		10.4.1 Water-based Experiments
		10.4.2 Other Fluids
		10.4.3 Deceleration
		10.4.4 Torque Measurements
	10.5	Synopsis
-		
Re	feren	ces 211
A	Obse	ervations by Velocity 249
	A.1	Introduction
	A.2	Ash
	A.3	Beach Sand
	A.4	Pumice
	A.5	Millet
-	-	
В	Pum	ice Jet Streams 261
	B.1	Introduction
С	Nom	enclature 265
	C.1	Introduction
	C.2	Nomenclature
		C.2.1 Roman
		C.2.2 Greek
	C.3	Glossary
D	Sour	ce Code 271
	D.1	Introduction
	D.2	MATLAB PIV Analysis Code
		D.2.1 License

	D.3	C# Acc	celeration Code	.273
		D.3.1	License	.273
E	Ope	n Sourc	ce Software	275
	E.1	Introd	luction	.276
		E.1.1	Software Used	.276

List of Figures

2.2.1	Cross-section of a typical lahar
2.2.2	Types of flow behaviour
2.3.1	Aftermath - Nevado del Ruiz
2.3.2	A sabo dam
2.6.1	Typical rotating drum structure
2.7.1	Spring and dashpot
3.1.1	Rolling regimes
3.2.1	Lighting rig
3.2.2	The annular shear cell
3.2.3	Critical consolidation
3.4.1	The ϕ scale
3.4.2	Size distributions
3.4.3	Acceleration verification 1
3.4.4	Acceleration verification 2
3.4.5	Target acceleration profile. 65
4.3.1	Example of image skew problem
4.3.2	Finding the area of layers
4.3.3	Code demonstration

4.4.1	Mohr-Coulomb circles
4.4.2	A family of internal yield loci
4.4.3	Internal yield loci for the ash
4.4.4	Internal yield loci for the beach sand
4.4.5	The left-hand Mohr-Coulomb circle
4.4.6	The right-hand Mohr-Coulomb circle
4.4.7	Simplified right-hand Mohr-Coulomb circle
4.4.8	Major versus unconfined stresses
4.4.9	Ash flow function
4.4.10	Beach flow function
4.4.11	Static angle of internal friction and cohesion
4.4.12	Static angle of internal friction and cohesion
5.1.1	Ash observation summary
5.2.1	The designations given to the various layers
5.2.2	Layer structure diagrams
5.2.3	Key stages in the life time of an avalanche
5.2.4	Dimensionless layer thicknesses - ash
5.2.5	Ash velocity profiles
5.2.6	Ash avalanche velocity profiles (9.375 RPM)
5.2.7	Ash avalanche velocity profiles (15 RPM)
5.2.8	Ash avalanche velocity profiles (21.875 RPM)
5.2.9	Areas of the ash
5.2.10	Illustration of collapse event
5.2.11	Collapse periodicity versus RPM (ash)
5.2.12	The dynamic angle of friction
5.2.13	Dynamic angle of ash
5.3.1	Passing avalanches in ash
6.2.1	Dimensionless layer thicknesses - accelerating ash

6.2.2	Dynamic angle of accelerating ash
6.3.1	SECC velocity profile 1
6.3.2	SECC velocity profile 2
6.3.3	SECC velocity profile 3
6.3.4	Rotational velocity versus SECC area
6.3.5	Illustration of a single KHI event
6.3.6	Still frames of KHI event
6.3.7	KHI observation - propagation velocity
6.3.8	KHI observation - area
6.3.9	KHI observation - size ratio
6.3.10	KHI frequency
7.2.1	Observation summary
7.2.2	Curvature example
7.2.3	Low-density region example
7.2.4	Inflection example
7.3.1	Ash velocity profiles
7.3.2	Beach sand velocity profiles
7.3.3	Ash avalanche velocity profiles (9.375 RPM)
7.3.4	Ash avalanche velocity profiles (15 RPM)
7.3.5	Ash avalanche velocity profiles (21.875 RPM)
7.3.6	Beach sand avalanche velocity profiles (9.375 RPM)
7.3.7	Beach sand avalanche velocity profiles (15 RPM)
7.3.8	Beach sand avalanche velocity profiles (21.875 RPM)
7.3.9	Dimensionless layer thicknesses - comparison
7.3.10	Areas of the ash
7.3.11	Areas of the beach sand
7.3.12	Collapse periodicity versus RPM (ash and beach)
7.3.13	Dynamic angles of friction
7.4.1	Passing avalanches in ash

7.6.2	Radial stripes in the pumice
7.4.2	Passing avalanches in the beach sand
7.5.1	Ash mass flux
7.5.2	Beach sand mass flux
7.6.1	Beach sand area - linear interpretation
7.6.3	Axial segregation
7.6.4	Radial segregation
7.6.5	Raised region in the pumice
8.2.1	Dimensionless layer thicknesses - wet
8.2.2	Dynamic angle of friction, wet experiment
8.3.1	Low water level behaviour
8.3.2	Clean water region
8.3.3	Early curved free surface onset
8.3.4	Wet and dry cases comparison
8.4.1	Forces on a single particle
9.2.1	Flow regimes - ash
9.2.2	Flow regimes - beach
9.4.1	SECC area versus rotational velocity
9.6.1	Mass flux imbalance demonstration
A.3.1	Curved and undulating free surfaces
A.4.1	Pumice low-density region
B.1.1	Pumice jet stream example

List of Tables

3.1	Consolidation stress
3.2	Angle of repose
3.3	Particulate densities
3.4	The bulk densities, in kg m^{-3} to four significant figures, of the materials
	used in this study
3.5	Speed verification
4.1	Angle of internal friction, flow function, and cohesion
6.1	SECC attributes
7.1	Material dilations.
8.1	Saturation Percentages
9.1	Material dilations (repeat)
9.2	Fluid/solid density ratios
9.3	SECC Attributes (repeat)