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Abstract 
 

The Castle Hill buttercup (Ranunculus crithmifolius subsp. paucifolius) is a rare plant 

found only in a small area of limestone gravel at Castle Hill.  Known as Kura Tawhiti 

in Maori, the region is renowned for an abundance of rare and endangered plants and 

has historically been an important area of Maori activity.  The Castle Hill buttercup 

has a long conservation history, starting in 1948 and continuing to the present day.  

Recently the population of Ranunculus crithmifolius subsp. paucifolius has again 

declined to the point where further conservation effort is needed.   

 

Lockhart et al. (2001) found that the Castle Hill buttercup showed ambiguous 

phylogenetic results when chloroplast and nuclear DNA markers were sequenced.  It 

was theorised that the Castle Hill buttercup was a product of one or more events of 

diploid hybridisation, which would account for these ambiguous phylogenetic results.  

The aims of this study were to investigate the Castle Hill buttercup and its closest 

relatives using phylogenetic methods.  Data was gathered from nuclear ribosomal ITS 

and chloroplast JSA DNA marker sequencing and the multi-locus fingerprinting (MLF) 

methods ISSR and AFLP. 

 

No evidence was found in this study to support the hypothesis that the Castle Hill 

buttercup is a diploid hybrid, but both MLF techniques showed a level of genetic 

distinctiveness between R. crithmifolius subsp. paucifolius and its sister subspecies R. 

crithmifolius subsp. crithmifolius.  Other alpine Ranunculus taxa studied showed 

genetic groupings related to geography.  Most notably, the species R. enysii was 

divided into two separate genetic groups, one in the Waimakariri basin area, and one 

located in the southern South Island.  This southern group was itself divided into two 

genetically distinct groups, located in the east and west of the southern South Island.  

 

 Comparison of the different data gathering methods used in this study showed that 

MLF has a higher phylogenetic resolution than DNA marker sequencing and was able 

to determine genetic differences between individual accessions.  AFLP was found to 

be superior to ISSR for use in New Zealand alpine Ranunculus due to greater 

consistency between duplicate reactions. 
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1 Introduction 
 

 

1.1 The Castle Hill buttercup 
 

The Castle Hill buttercup (Ranunculus crithmifolius subspecies paucifolius) is one of 

New Zealand’s rarest plants.  Endemic to the Kura Tawhiti region, the plant exists 

only as a consequence of cultivation and management since the 1950s, and has since 

become an iconic example of a rare species brought back from the brink of extinction 

by extensive conservation effort.  The Kura Tawhiti/Castle Hill area (43.223922º S 

171.717081º E) is located in the Broken River basin northwest of Christchurch.  Kura 

Tawhiti is an important site for local Maori as it is considered a Ngai Tahu topuni site.  

This name recognises and is symbolic of the Ngai Tahu custom of Rangatira (Chiefs) 

placing their cloaks over an area as a symbol of their power and authority over the 

region.  The area was also a historically important stopover for the local Ngai 

Tuahuriri iwi when travelling towards the East coast for fishing expeditions (Joan 

Vurdman, pers. comm., 2003). 

 

In the present study, direct DNA sequencing and DNA fingerprinting have been used 

to investigate the evolutionary origin of the Castle Hill Buttercup and to determine its 

relationship to other alpine buttercups of the Kura Tawhiti region.  This study was 

motivated by recent observations suggesting that the population of Castle Hill 

buttercups has once again declined, and that the genetic distinctiveness of this species 

is unclear (Lockhart et al., 2001).  An important aim of the present study has been to 

investigate the extent of hybridisation amongst species closely related to the Castle 

Hill buttercup, and to determine whether or not R. crithmifolius subsp. paucifolius is a 

diploid hybrid species.  Although diploid hybridisation (interspecific hybridisation 

without a change in ploidy level) has been speculated as being important in evolution 

of the New Zealand flora (Rattenbury, 1962), genetic evidence for this is lacking.  

Thus it is hoped that findings from the present study will provide some insight into 

the general question of whether or not hybridisation is important for explaining extant 
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alpine plant biodiversity in New Zealand.  Answers to this question will enable us to 

make informed decisions concerning conservation of our native taonga. 

 

 

1.2 Reasons behind conservation 
 

1.2.1 Justification of conservation 

 

There are at least three main reasons for the conservation of species. Crozier (1997) 

identifies these as being (a) moral – the assumption that all species have a right to 

exist, (b) aesthetic – the belief that species have a natural beauty and should be 

preserved, and (c) utilitarian – the belief that human lives are enriched by the presence 

of other species, or that we can derive some product or benefit from them.  Regardless 

of the justification used, the common theme of conservation in New Zealand and 

overseas is that of preserving biodiversity, defined in the United Nations (Secretariat 

of the Convention on Biological Diversity, 1992) as “…the variability among living 

organisms from all sources including, inter alia, terrestrial, marine and other aquatic 

ecosystems and the ecological complexes of which they are part; this includes 

diversity within species, between species and of ecosystems”.  Unfortunately without 

information of phylogenetic distinctiveness to elucidate processes that explain 

biodiversity, it is problematic to assess and evaluate the threatened status of animal 

and plant species.  When considering conservation issues, phylogenetic 

distinctiveness is relevant to both category (b) and (c) above (Crozier, 1997). 

 

1.2.2 Conservation categories 

 
The most commonly used classifications for evaluating threat status are perhaps the 

Red List categories list (IUCN, 2001) of the International Union for the Conservation 

of Nature and natural resources (IUCN), more commonly known as the World 

Conservation Union.  These categories (Fig. 1.1) use an organism’s distribution or 

habitat range, its occurrence within this habitat, population size and rate of population 

decline to assess and categorise endangered species.  However, these criteria are 
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problematic to implement in New Zealand as they do not take into account the 

relatively small size of the country, the short time period of many recent species 

declines and the large number of taxa with naturally restricted ranges and/or small 

population sizes (Molloy et al., 2002). 

 

 

 

Figure 1.1- IUCN threatened species Red List categories (IUCN, 2001) 

 

In 1999 at a species threat classification workshop, the New Zealand Department of 

Conservation (DOC) evaluated the suitability of IUCN criteria for use in New 

Zealand (Fig. 1.1) along with de Lange and Norton’s (1998) classification system for 

rare plants (Fig. 1.2).  A comparison of the classification categories in these two 

systems is presented in Table 1.1.  A subset of the DOC species priority criteria was 

also evaluated (Molloy and Davis, 1994).  This system assigned scores to species 

based on the taxonomic distinctiveness, status, vulnerability, value to humans and 

threats facing the species.  A higher score under this ranking means that a species 

should have higher priority for conservation.   
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Figure 1.2– Conservation classification system for New Zealand plants (after de Lange and 
Norton 1998) 

 
 

IUCN v3.1 
(2001) 

DeLange and Norton, 
1998 

Molloy et al., 
2002 

   
Critically 

endangered 
Critically endangered Nationally 

Critical 
Endangered Endangered Nationally 

endangered 
Vulnerable Vulnerable Nationally 

vulnerable 
Vulnerable Declining/Naturally 

uncommon/Recovering 
Serious decline 

Near 
Threatened 

Declining/Naturally 
uncommon/Recovering 

Gradual 
decline 

Least concern Declining/Naturally 
uncommon/Recovering 

Range 
Restricted 

Table 1.1 - A comparison of several systems of species classification for conservation 

 

The workshop concluded at this time that none of the schemes evaluated were ideal 

for the New Zealand situation, and that a new classification system should be made by 

combining elements from all three of these methods.  As a result, a new classification 

system for use in New Zealand was proposed (Molloy et al., 2002) (Fig. 1.3).   A 

comparison of the classification categories in this system with the systems previously 

mentioned can be seen in Table 1.1.  This scheme attempts to take into account New 

Zealand’s relatively small land size, the rapid decline of many of our native species, 
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the restricted distributions and population sizes of many of our taxa and features of 

the New Zealand environment that make it problematic to implement the IUCN 

criteria (Molloy et al., 2002). 

 

 

Figure 1.3 - Conservation classification system for New Zealand (Molloy et al. 2002) 

 
Like the IUCN red species list, the Molloy et al. (2002) proposal makes no attempt to 

prioritise taxa for conservation purposes, but rather concentrates on providing an 

indication of threat levels.  Ideally, all threatened and endangered taxa would receive 

conservation management. Unfortunately this is impractical due to financial and 

logistical constraints, so some system of allocating appropriate levels of conservation 

priority is required.  A system for deciding priorities should take into account existing 

threat levels to the taxa, as well as perceived or extrapolated risk.  Other factors such 

as cultural values also need to be taken into consideration, as often conservation 

priority is not solely based on threat factors (Mace and Lande, 1991).  Taxa that are 

not regarded as highly threatened may nevertheless have high conservation priority 

because of these additional factors. Clearly, these issues are complex and thus 

priorities were not specified as part of the Molloy et al. (2002) proposal. The aim 

instead was to provide for a “New Zealand Threat Classification System focused at 

the national level, which would provide a more sensitive classification [than IUCN 

criteria] for taxa occurring in naturally restricted distributions and in small numbers 

due to New Zealand’s island and mountainous geography”.   
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1.3 A New Zealand example - the Castle Hill buttercup 
 

1.3.1 Conservation history 

 

The Castle Hill Buttercup is a good example of this type of conservation problem.  

Sheep and rabbit grazing in the area in the 1940s left a population of only 32 plants 

(McCaskill, c. 1982).  What was to become the reserve area of 6.4 hectares was 

fenced in March 1948.  An immediate improvement could be seen the next year, with 

over one hundred new seedlings and young plants counted (McCaskill, c. 1982).  A 

programme involving weeding, pest control and careful seed collection and planting 

succeeded in stabilising the population at over 400 plants by 1978 (McCaskill, c. 

1982).  A census count was performed by Havell, Hordijk and Piripi in 2003, in which 

89 clumps were counted throughout the reserve.  This recent observation shows that 

the population has once again fallen to dangerously low numbers.  A photograph of 

the reserve area taken from the northern cliff face is shown in Figure 1.4. 
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Figure 1.4 - Photograph of Lance McCaskill reserve, Kura Tawhiti 

1.3.2 Conservation value of the Castle Hill buttercup 

 

It is clear that continuing human intervention is needed to ensure its survival, but 

should scarce conservation resources be spared to do so?  The cultural value of the 

Castle Hill buttercup is clear as it is only found in a small area within the Kura 

Tawhiti region, and this in itself may be sufficient to give it high conservation 

priority. However, of relevance are also its degree of morphological and ecological 

distinctiveness in relation to other endemic New Zealand alpine Ranunculus.  The 

phylogenetic distinctiveness of this species is also relevant when determining its 

conservation value as it is applicable under the aesthetic (b) and utilitarian (c) criteria 

discussed by Crozier (1997).  The phylogenetic distinctiveness of the Castle Hill 

buttercup is also the major subject of this thesis.   
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1.4 The Alpine Ranunculi of New Zealand 
 

1.4.1 Distribution 

 

The genus Ranunculus is common and cosmopolitan, with 300-500 species 

worldwide.  Species with alpine distributions are found in most temperate world 

regions including North and South America, Europe, Asia and Australia.  New 

Zealand has 16 species of alpine Ranunculus, all within section Epirotes.  Two of 

these, R. crithmifolius and R. haastii, each have two subspecies.  These taxa all form 

part of a monophyletic group that originated in New Zealand during the Late Tertiary 

Period and began to diversify with the onset of Pliocene mountain building (Lockhart 

et al., 2001).  A recent study by Lockhart et al. (2001) using DNA marker sequencing 

found that the New Zealand alpine Ranunculi are separated into 4 genetically distinct 

groups.  Group I consists of R. lyalli, R. buchananii, R. haastii, R. nivicola, R. 

verticillatus and R. grahamii, group II consists of R. sericophyllus, R. pachyrrhizus, 

R. viridis and R. pinguis.  The focus of this study, group III, contains R. insignis, R. 

godleyanus, R. crithmifolius, R. enysii and R. gracilipes, while group IV is restricted 

to a single species, R. scrithalis. 

 

Lockhart et al.’s (2001) DNA sequencing studies have also established that two 

species of Australian alpine buttercup, R. anemoneus and R. gunnianus belong to 

groups I and II respectively, and dispersed to Australia from New Zealand during the 

Pleistocene.  Of the New Zealand alpine Ranunculi, R. insignis and R. verticillatus are 

found in both main islands.  The species found only in the South Island are R. 

sericophyllus, R. pachyrrhizus, R. scrithalis, R. lyalli, R. buchananii, R. haastii, R. 

grahamii, R. godleyanus, R. crithmifolius, R. enysii and R. gracilipes, while R. 

nivicola is found exclusively in the North Island.  R. viridis is found in Stewart Island, 

while R. pinguis is found only on the sub-Antarctic Auckland Island and Campbell 

Island.  This distribution is also shown in Table 1.2 

 

Species Locations found within 
New Zealand 

  
R. insignis North and South Islands 
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R. verticillatus North and South Islands 
  

R. nivicola North Island only 
  

R. buchananii South Island only 
R. crithmifolius South Island only 

R. enysii South Island only 
R. gracilipes South Island only 
R. grahamii South Island only 

R. godleyanus South Island only 
R. haastii South Island only 
R. lyalli South Island only 

R. pachyrrhizus South Island only 
R. sericophyllus South Island only 

  
R. viridis Stewart Island 

  
R. pinguis sub-Antarctic Islands 

Table 1.2 - Distributions of New Zealand alpine Ranunculus 

 

1.4.2 Morphology 

Morphologically, the New Zealand species vary widely in form and leaf shape.  R. 

lyalli has large, entire peltate leaves up to 40cm in diameter and scapes up to 1.0m in 

height.  In comparison, the leaves of R. gracilipes may only be 3cm long with 

bipinnasect divisions, the entire plant rarely exceeding 10cm in height.  Morphology 

can also show extreme variation intraspecifically as well as between species;  R. 

enysii is a good example of this.  The least dissected specimens (formerly known as R. 

berggrenii) from the Carrick Range near Cromwell have leaves that are approximately 

2cm in length, shallowly trilobate and almost orbicular in overall shape.  The most 

divided leaves are palmate, with up to five ternately lobed leaflets and are found in 

Canterbury and Fiordland.  Intraspecific variation can be correlated with the 

geographical distribution of the species (e.g. R. enysii and R. insignis), but this is not 

always the case (e.g. R. verticillatus). 

 

1.4.3 Habitat 

 

The New Zealand alpine Ranunculi are also found in a wide variety of habitats (Dave 

Havell, pers. comm., 2004; (Fisher, 1965).  R. lyallii and the North Island form of R. 
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insignis occur in damp shady areas such as stream sides and gorges, while South 

Island R. insignis is often found in tussock grassland or shrubland. R. grahamii is 

usually found in snowfields, while R. buchananii is found in high altitude scree or on 

wet cliffs.  R. godleyanus is found at the snowline fringe, typically above 2000m, 

often near snowmelt channels or temporary tarns.  R. sericophyllus and R. 

pachyrrihzus occur in similar habitats to R. godleyanus but R. pachyrrihzus is found 

in the block schist mountains east of Mount Aspiring in the Central Otago mountain 

zone, while R. sericophyllus grows throughout the central Southern Alps in suitable 

habitats.  R. haastii is found on coarse scree slopes, while R. crithmifolius grows in 

finer screes with high proportions of gravel, or in compacted scree.  R. crithmifolius 

subsp. paucifolius is found only in the fine limestone debris at Castle Hill.  Two other 

buttercups highly localised in their distribution are R. scrithalis, found on fine clay 

screes in the Eyre Mountains and R. viridis which is confined to the summits of 

granite outcrops in the Tin Range of Stewart Island.  R. pinguis grows only on 

Auckland Island and Campbell Island on open stony ground and cliff ledges. 

 

 

 

 

 

1.5 Taxonomic uncertainty of the Castle Hill buttercup 
 

1.5.1 Taxonomic history 

 

Although ecologically distinct, the morphological distinctiveness of the Castle Hill 

buttercup has been unclear, and taxonomic revisions have led to numerous taxonomic 

reassignments.  Most recently, citing a number of morphological similarities, such as 

glaucous leaf surfaces with brown epidermal pitting, versus a relatively small number 

of differences, Fisher (1965) combined the three plants known as R. crithmifolius, R. 

chordorhizos and R. paucifolius into one species.  That is, R. crithmifolius and R. 

chordorhizos were subsumed into R. crithmifolius subsp. crithmifolius whilst R. 

paucifolius was relegated to subspecies status:  R. crithmifolius subsp. paucifolius.  

This classification recognises that the Castle Hill buttercup is morphologically similar 
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to R. crithmifolius subsp. crithmifolius, but that there is also considerable difference in 

shape of the leaves, which are much less dissected, with wider segments, than R. 

crithmifolius subsp. crithmifolius.   

 

1.5.2 Research history 

 

The botanical monograph “The Alpine Ranunculi of New Zealand” by F. J. Fisher 

(1965) provides the most recent overview of biological diversity for the group 

including studies on morphological diversity and breeding relationships.  Included in 

this monograph were chromosome counts of all alpine Ranunculus species; except for 

R. nivicola with 96 chromosomes, the entire group is regarded as ancient hexaploids 

of the Ranunculus base number of eight (Fisher, 1965).  Understanding of taxonomic 

relationships within the group has been further advanced  by a recently published 

study on genetic diversity; “Phylogeny, dispersal and radiation of New Zealand alpine 

buttercups: molecular evidence under split decomposition”, a paper by Lockhart et al. 

(2001). 

 

1.5.3 Molecular findings 

 

The study by Lockhart et al. (2001) characterised a small number of accessions for all 

eighteen recognised taxa (species and subspecies) of New Zealand alpine buttercups 

and two Australian species through phylogenetic analysis of nuclear Internal 

Transcribed Spacer (ITS) and chloroplast (JSA) DNA sequences.  The authors found 

that the alpine Ranunculi of New Zealand consist of four phylogenetic groups, and 

that divergence of these groups began approximately 5 million years ago.  This is an 

estimate that coincides with the onset of the late Tertiary orogeny in New Zealand 

(Batt et al., 2000), suggesting that the first novel species of alpine buttercups in New 

Zealand may have evolved in response to the creation of new habitats and niches.  

These genetic studies indicate that the phylogenetic groups I and II correspond closely 

with Fisher’s (1965) “many petals, silky hair” group, while group III which includes 

the Castle Hill buttercup is equivalent with Fisher’s “few petals, coarse hair” breeding 

group.  In their analyses Lockhart et al. (2001) also found evidence to suggest that the 
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species R. sericophyllus and R. lyalli were paraphyletic.  In the study of Lockhart et 

al. taxon sampling was insufficient to draw conclusions about paraphyly of group III 

species.  However, the preliminary chloroplast DNA results for this group were 

surprising, suggesting that the Castle Hill buttercup was genetically distinct from the 

other subspecies of R. crithmifolius. An important specific aim of this thesis has 

therefore been to examine in more detail the genetic diversity of species in group III: 

R. insignis, R. godleyanus, R. enysii, R. crithmifolius and R. gracilipes. 

 

 

1.6 Geological history of New Zealand alpine buttercups 
 

1.6.1 Glacial refugia 

 

An interesting finding in the studies of Lockhart et al. (2001) was that the species R. 

lyalli and R. sericophyllus were found to be paraphyletic in analyses of two 

independent molecular markers. The authors hypothesised that this phenomenon may 

indicate regional speciation from distinct Pleistocene glacial refugia in the central 

South Island and the southern South Island.  The last New Zealand glacial maximum 

ended approximately 10,000 years ago and is termed the Otiran glaciation (Gage and 

Suggate, 1958).  The glacial advances during this period covered extensive areas near 

Kumara in north Westland and in the Waimakariri Basin on the eastern side of the 

Southern Alps. Ranunculus crithmifolius subsp. paucifolius is found only in the 

McCaskill reserve in the Kura Tawhiti area – a known hotspot for rare New Zealand 

plants, including a forget-me-not (Myosotis colensoi), two whipcord koromiko, (Hebe 

cupressoides and H. armstrongii) and a tussock (Carex inopinata).  The Castle Hill 

region is thought to have been glaciated in the last glaciation period (Burrows and 

Moar, 1996; Gage, 1958, 1977; Gage and Suggate, 1958). The abundance of endemic 

plants in the region, or those with restricted distributions centred around this locale, 

suggests that Castle Hill may have been a glacial refugium where these plants 

survived.  Alternatively, novel species may have evolved in the area after the glaciers 

retreated, creating new habitats available for colonisation. 
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1.6.2 Disjunct distributions 

 

The existence of South Island glacial refugia may explain observations of north/south 

species disjunctions in the South Island.  First discussed by Willet (1950), the most 

well known example of a species disjunction in the South Island is the “beech gap”, 

so called because there is little or no Nothofagus beech forest between the Taramakau 

and Paringa rivers on the west coast of the South Island, despite an apparently suitable 

habitat.  North-south disjunct distributions have also been noted for many other taxa 

(Heads, 1998) including Celmisia traversii (Wardle, 1963) and Drapetes laxus 

(Burrows, 1965).  Some have at times argued that these species distributions are 

geologically old and possibly due to events that occurred in the Oligocene or Miocene 

epochs (Cooper and Cooper, 1995; Heads, 1998; Heads and Craw, 2004; McGlone, 

1985), others have suggested that such disjunctions arose during the Pleistocene 

(McGlone et al., 2001; Trewick and Wallis, 2001; Wallis and Trewick, 2001).  Willet 

(1950) for example suggested that the heavy glaciation of the South Island during the 

late Pleistocene caused the unusual South Island distribution of Nothofagus species by 

causing local extinction.  Wardle (1963) similarly proposed that the high numbers of 

plants endemic to Southland/Otago and to the Nelson/Marlborough districts of the 

South Island is a result of plants surviving Pleistocene extinction events in these non-

glaciated areas throughout the Otiran glaciation.   

 

1.6.3 Biogeographic research 

 

To date, relatively few attempts have been made to test hypotheses that explain 

disjunct distributions of New Zealand native plant species.  Nevertheless, a general 

consensus from the study of genetic diversity of sequence data for many plant groups 

(Stoeckler, 2001; Wagstaff and Garnock-Jones, 2000; Winkworth et al., 2002) 

suggest that events of the Pleistocene may be a more appropriate explanation for 

observed species distribution patterns than earlier geological events. On a global 

scale, in recent years findings from both DNA and palynological studies emphasise 

the importance of Pleistocene climate change for understanding plant species 

distributions (Comes and Kadereit, 1998). 
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One of the few recent attempts to test hypotheses of the importance of glacial refugia 

in the South Island of New Zealand is the work by Heenan and Mitchell (2003).  

These authors applied phylogenetic techniques to morphological and ITS DNA 

sequence data in eight species of Pachycladon as well as one undescribed species.  

They considered the potential alpine habitat available during the last glacial maximum 

for Pachycladon species and concluded that P. fastigiata was likely to have been 

eradicated from the high Southern Alps by Pleistocene glacial activity. In contrast 

they argued that P. enysii may well have survived the Otiran in “nunataks”, ice-free 

mountain regions that protruded above the glacial ice sheet.  Similar inferences for in 

situ survival of species have been suggested in the Northern Hemisphere 

(Schonswetter et al., 2003; Schonswetter et al., 2004; Stehlik et al., 2002; Stehlik et 

al., 2001) where large scale glaciations once covered much of the European Central 

Alps.   

 

 

 

 

 

 

1.7 Hybridisation 
 

1.7.1 Hybridisation in New Zealand 

 

Glacial refugia may act passively and allow species to survive in situ, however it has 

been argued that they may also act as species pumps to promote species 

diversification (Willis and Whittaker, 2000), possibly through hybridisation-

differentiation cycles (Ehrendorfer, 1959).  Indeed hybrid speciation has been 

suggested as playing a significant role in the evolution of the New Zealand flora 

(Rattenbury, 1962).  However, its frequency of occurrence and true evolutionary 

significance in the New Zealand flora remains to be tested.   
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1.7.2 Hybridisation of New Zealand alpine buttercups 

 

At present there are only limited molecular data available on the Castle Hill Buttercup 

that might indicate its closest genetic relatives and origins.  Nevertheless, analyses of 

nuclear ITS (nITS) sequences suggest a close phylogenetic relationship with R. 

crithmifolius subsp. crithmifolius, whilst analyses of chloroplast DNA (cpDNA) 

sequences have suggested closer relationships with R. insignis and R. enysii (Lockhart 

et al., 2001).  This discrepancy of phylogeny may be explained if the species is hybrid 

in origin; different genetic lineages may be evident because cpDNA is maternally 

inherited in Ranunculus (Corriveau and Coleman, 1988), while nuclear  DNA is 

biparental. 

 

Several other naturally occurring alpine Ranunculi are thought to be hybrids, and 

Fisher (1965) compiled an extensive list of putative natural and experimental hybrids.  

R. crithmifolius subsp. crithmifolius has been suggested to hybridise with R. insignis 

in the field and will produce fertile hybrids with this species under cultivation. At the 

time of his study (pre 1965) Fisher mentioned that R. insignis and R. crithmifolius 

subsp. paucifolius were often seen flowering at the same time at Castle Hill, an 

observation that can still be made today. 

 

1.8 Conservation genetics of the Castle Hill Buttercup 
 

Most conservation genetic studies that seek to help evaluate threatened species status 

and determine conservation priority involve characterisation of the degree of genetic 

distinctiveness at neutral gene loci.  Interpretation of the data from these loci may not 

be straightforward in interspecific studies because plants such as Ranunculus 

crithmifolius subsp. paucifolius and its relatives are products of alpine species 

radiations, phenomena in which hybridisation may play a significant role 

(Ehrendorfer, 1959; Stebbins, 1959).  Sensible management of alpine plant species 

requires an understanding of the radiation events, the underlying genetic processes 

and the effect of these processes on speciation.  The pres  ent study of Ranunculus 

crithmifolius subsp. paucifolius illustrates the potential and problems of genetic data 

when used for conservation purposes.   
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1.9 Focus of this research 
 

1.9.1 The context of this project 

 

This study attempts to contribute to a better understanding of alpine plant biodiversity 

in New Zealand through specific studies made on alpine Ranunculus.  These studies 

have involved DNA sequence determinations and phylogenetic analyses of the nITS 

regions and the chloroplast JSA (cpJSA) region from closely related species belonging 

to the “group III” New Zealand alpine buttercups (R. crithmifolius, R. enysii, R. 

insignis and R. gracilipes) recognised by Lockhart et al. (2001). Both molecular 

markers were implemented successfully in the earlier work of Lockhart et al. (2001), 

and although they have some limitations (as will be discussed), additional taxon 

sampling with these markers has allowed the testing of specific hypotheses that arose 

from this earlier work.  

 

Additionally, Amplified Fragment Length Polymorphism (AFLP) and Inter – Simple 

Sequence Repeat (ISSR) fingerprint profiles were used to provide finer resolution 

analysis of the population of Ranunculus crithmifolius subsp. paucifolius, as these 

methods provide a relatively fast means of analysing many genetic loci at once.  ISSR 

(Ziętkiewicz et al., 1994) is a potentially rapid and powerful technique now being 

widely adopted by plant biologists for studying hybrid species (Garcia-Maroto et al., 

2003; Wolfe et al., 1998).  ISSR was also successfully used by Smissen et al. 

(Smissen et al., 2003) to genetically identify populations of the New Zealand alpine 

genus Raoulia.  Analyses of AFLP (Vos et al., 1995) profiles are considered more 

robust than ISSR methods (Archak et al., 2003; McGregor et al., 2000) and provide 

resolution at intraspecific levels on a finer scale than nITS sequences (Wolfe et al., 

1998).  These studies were implemented with the aim of providing a measure of the 

genetic diversity of the remaining Castle Hill buttercup plants, and to find the extent 

and significance of diploid hybridisation in the Castle Hill buttercup population. 
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1.9.2 Plant molecular markers 

 

Nuclear ITS and chloroplast markers have made significant contributions to the field 

of plant phylogenetic reconstruction.  Together they can provide much phylogenetic 

information, and the nITS region has also been used to verify the occurrence of 

hybridisation in plant studies (Andreasen and Baldwin, 2003).  nITS ribosomal DNA 

sequences are one of the mainstays of plant molecular phylogenetics (Álvarez and 

Wendel, 2003).  Since its introduction the nITS region has been analysed in numerous 

recent phylogenetic studies (Álvarez and Wendel, 2003), due in large part to the 

advantages of simple experimental protocols and perceived low mutation rates 

coupled with high amounts of information (Baldwin et al., 1995).   

 

Chloroplast DNA data have also been used extensively in phylogenetic studies 

(Olmstead and Palmer, 1994).  The major advantages of studying cpDNA are its 

genetic simplicity and its stability.  The presence of multiple chloroplasts per cell, and 

multiple genomes in each chloroplast make experimental work simple and have 

helped make it the most widely used source of genetic data for plant phylogenetic 

studies (Álvarez and Wendel, 2003).   

 

1.9.3 Problems with commonly used markers 

 

However, the scientific community has become reliant on the tools of cpDNA and 

nuclear ribosomal DNA (nrDNA), often to the exclusion of other tools that may be 

better suited to the task at hand (Álvarez and Wendel, 2003).  The highly repetitive 

nature of nrDNA markers such as ITS gives it properties that may make it less 

suitable for phylogenetic studies than other genes in some circumstances.  There are 

many copies of nrDNA in plant genomes and it has been recognised for some time 

that these are subject to “concerted evolution” (Arnheim et al., 1980; Fuertes Aguilar 

et al., 1999).  That is, the different sequences tend to homogenise towards the same 

sequence by gene conversion or high-frequency crossing over.  In most studies, PCR 

is used to amplify a single consensus sequence that is assumed to be representative of 

all the different sequences.  Unfortunately, concerted evolution is not uniform across 

repeats or taxa (Small et al., 2004), so nrDNA sequences may not be homogeneous.  
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In automated sequencing these differences can be read as polymorphic bases which 

may subsequently remain undetected, be ignored or the strongest peak read as the 

actual base at that position.  In experimental work, differences across copies can cause 

PCR to preferentially amplify a particular sequence over others due to differences in 

primer affinity or variable copy numbers of the different sequences.  The multi-copy 

nature of the nITS marker also means that paralogous sequences are possible; i.e. 

sequence divergence that occurs soon after gene duplication, leading to two different 

sequences descended from a common ancestor in the same species. 

 

Chloroplast DNA also has caveats which should be taken into consideration before it 

is used in phylogenetic studies.  It is generally assumed that cpDNA is non-

recombining, but some evidence has been shown to the contrary (Marshall et al., 

2001).  Another generally accepted view is that inheritance is uniparental, but 

exceptions have been noted e.g Geranium and Pisum (Corriveau and Coleman, 1988; 

Wolfe and Randle, 2004).  Evidence has also arisen to challenge the common view 

that chloroplast genomes are simple and stable.  Wolfe and Randle (2004) reviewed 

instances of heteroplasmy in the chloroplast genome and the transfer of segments of 

chloroplast DNA to the mitochondrial or nuclear genomes. 

In hybrid studies, bifurcating trees from cpDNA will identify a hybrid species as 

belonging to the clade of one parent, without revealing its mixed origin.  If an 

independent nuclear marker such as ITS was inherited from the other parent and was 

included in the same study the two phylogenies will show different closest relatives, 

thus identifying the parentage (e.g. the hybrid has the ITS of species A and the 

cpDNA of species B).  However this trait can be equally disadvantageous if the two 

markers are derived from the same parent, as both phylogenies will show this, 

effectively masking a hybrid origin. 

 

1.9.4 Multilocus DNA fingerprinting 

 

Some of the problems associated with using single-locus DNA sequences can be 

resolved by using multilocus DNA fingerprints (MLF).  Amplifying and analysing 

many genetic loci at once means fingerprints have much finer resolution than single 

locus analyses.  This is especially useful in intraspecific studies as individuals can be 
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distinguished by their fingerprint profiles.  This aids in the discovery and 

classification of hybrid species.  One of the disadvantages of multilocus fingerprinting 

when compared with DNA marker sequencing is that there is no way of determining 

whether bands of the same size are truly homologous unless fingerprint bands are 

isolated and sequenced.  Additionally, no information is known about the nature of the 

loci;  they are essentially anonymous.  This means that uninformative or unsuitable 

loci are given the same weight as all others.  However, problems of doubtful 

homogeneity and anonymity are overcome by the large number of loci that can be 

amplified and analysed at once, greatly improving the tree-building properties of the 

data. 

 

1.9.5 Phylogenetic methods 

 

Studies in this thesis have also involved phylogeographic analyses that seek to test for 

the existence of regionally specific biodiversity patterns.  A feature is the use of the 

phylogenetic network analysis method Neighbor-Net (Bryant and Moulton, 2004) to 

help visualise species phylogenies, in contrast to “gene tree phylogenies”.  Standard 

phylogenetic method using neighbor-joining phylogenies are also used in this study 

for investigating the nature of the Castle Hill buttercup. 
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1.10  Hypotheses 
 

The experiments described in subsequent chapters were designed to test the following 

specific hypotheses: 

 

(I) that there is genetic distinctiveness between regions among the group III (Lockhart 

et al., 2001) New Zealand alpine Ranunculus.   

 

This group contains species which are closely related to the Castle Hill buttercup as 

evidenced in both molecular (Lockhart et al., 2001) and classical breeding studies 

(Fisher, 1965), and may shed some light onto the origins of the Castle Hill buttercup 

 

(II) that the Castle Hill buttercup is genetically distinct from its closest relatives in the 

group III (Lockhart et al., 2001) New Zealand alpine Ranunculus. 

 

The results of this hypothesis are relevant to the evaluation of the conservation status 

of the Castle Hill buttercup, and to the management of the McCaskill Reserve and the 

Kura Tawhiti area. 

 

(III) that the Castle Hill buttercup has a diploid hybrid origin. 

 

This issue is also relevant to the evaluation of the conservation status of the Castle 

Hill buttercup and will help us to understand the evolutionary relationship between 

Ranunculus crithmifolius subsp. paucifolius and its closest genetic relatives. 

 

Although not accepted taxonomic nomenclature, in the interests of brevity and 

comprehensibility in this thesis the abbreviations R. c. paucifolius and R. c. 

crithmifolius have been used to refer to Ranunculus crithmifolius subsp. paucifolius 

and Ranunculus crithmifolius subsp. crithmifolius respectively at many points. 

 

 
 
 
 


