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ABSTRACT 

Lactoferrin, a monomeric 80 kDa glycoprotein, is a major component of human milk 

and is found in many other exocrine secretions as well as in the neutrophilic granules of 

white blood cells. A member of the transferrin family of iron-binding proteins, lactoferrin 

has the ability to bind tightly but reversibly 2 fe3+ ions with the concomitant binding of 

2c032- ions. Crystal structure studies clearly demonstrate that the polypeptide chain is 

folded into two similar lobes, representing the N- and the C-terminal halves of the protein, 

and that each lobe contains one of the two very similar iron-binding sites. Transferrins 

also show considerable versatility in their binding properties, being able to bind many 

metal ions in place of fe3+ and anions in place of C032-. Differences between the two 

sites become more pronounced, however, with the substitution of non-native metals and 

anions, and the origins of this inequivalence have long been debated. 

To investigate the means by which lactoferrin can accommodate anions larger than 

carbonate, the diferricdioxalatolactoferrin (Fe2(C204)2Lf) complex was prepared and 

crystallised. The crystals, which were isomorphous with those of Fe2(C03)2Lf, were 

used to collect a complete 2.4 A data set at the Photon Factory (Japan) synchrotron 

source. The structure was refined by restrained least squares methods to a final R factor 

of 0.196 for all 31758 reflections in the resolution range 8.0 to 2.4 A. The polypeptide 

folding and domain closure were identical to those of the native Fe2(CD3)2Lf. In contrast 

to the carbonate complex, however, in which the two binding sites appear almost 

identical, with the carbonate coordinating in a symmetrical bidentate mode to each iron, 

when oxalate is the anion, the coordination around the metal differs between the N- and 

the C-lobe. In the C-lobe, the oxalate has a symmetrical 1,2-bidentate coordination to the 

iron, but in the N-lobe this coordination is quite asymmetric (010x-Fe = 1.87 A., 0 2ox-Fe 

= 2.55 A). Analysis of the structure indicates that the stereochemistry of the oxalate 

coordination to the iron is influenced by the position of the anion-binding arginine. The 

position this arginine can adopt in each lobe is, in turn, influenced by residues more 

remote from the iron site and which differ between the N- and C-lobes. 

All lactoferrins so far characterised are glycoproteins, but the importance of the 

glycan chains for structure and/or function has yet to be established. Enzymatic methods 

were used to deglycosylate human and bovine lactoferrins, and the native deglycosylated 

forms of the human protein were compared with respect to CD spectra, iron binding and 

release, stability to proteolysis and heat stability. 

Deglycosylation was carried out at pH 6.0 on the iron-free form of lactoferrin, using 

an endoglycosidase preparation from Flavobacterium meningosepticum, comprising 

PNGase F and Endo F. Deglycosylation was rapid for human lactoferrin, being 

essentially complete within 12-24 hr. Only partial deglycosylation of bovine lactoferrin 

could be achieved under the same conditions, however, and this is attributed to the relative 

inaccessibility of at least one of the glycosylation sites. 
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The CD spectra of native and deglycosylated human lactoferrins were found to be 

essentially identical in the range 250-350 nm, implying the same three dimensional 

structures. Both also bind iron in identical fashion; 2 Fe3+ ions are bound and binding is 

complete within 1 minute. The release of iron as the pH was lowered from 8.0 to 2.0 also 

showed no significant difference, the pH at which 50% release had taken place being 3.2 

and 3.0 respectively for native and deglycosylated proteins. Susceptibility to proteolytic 

digestion by bovine trypsin over a period of 24 hr showed similar fragmentation patterns 

and a similar time course for the reaction for both species. Iron binding ability as a 

function of temperature was used as a measure of heat stability; melting temperatures 

derived from these experiments were 64"C for native and 63°C for deglycosylated 

lactoferrin. Comparison of the three dimensional structures of glycosylated iron

lactoferrin with deglycosylated apo-lactoferrin are consistent with these results, showing 

only a small increase in flexibility near the glycosylation site, when the carbohydrate is 

removed. 

Conclusions are that the in vitro physicochemical properties of lactoferrin are 

unaffected by the presence or absence of its glycan chains. In vivo studies may be 

necessary to establish the importance, if any, of glycosylation. 
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