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ABSTRACT 

The mechanism for the reduction of Hg2+ on glassy carbon in aqueous acetate and nitrate 

electrolyte was studied. This deposition process is of interest due to the wide 

electroanalytical applications of mercury thin film electrodes. It was found in the early 

stages of this work that even though the use of these electrodes is wide spread, there has 

been little investigation into how the deposition stage occurs. 

The electrochemical techniques used were cyclic voltammetry and chronoamperometry. A 

range of experiments were undertaken including concentration dependence, rotation 

dependence, scan rate dependence, electrochemical-cleaning, and the dependence of the 

length of time left at open potential. The acetate experiments were carried out at a constant 

pH of 5.0 and all experiments were carried out at a constant temperature of20°C. 

Significant dependence was established in the cyclic voltammetry work for all the 

experimental conditions. In acetate electrolyte the development of peaks C 1 and C2 were 

seen after cycling of the electrode without mechanical-cleaning. A shift in the reduction 

potential from a mechanically-cleaned electrode cycle to the next cycle without intervening 

cleaning was also observed. Two new anodic peaks, A2 and A3, were also seen in acetate 

electrolyte. At high concentrations cathodic current spikes were observed at the extreme 

cathodic limits of the voltammograms. 

The response that was observed in nitrate electrolyte was dissimilar to that in acetate. The 

shift in reduction potential, current spikes, peaks C 1, C2, A2, and A3 , were never observed 

for the deposition ofHg2+ in nitrate electrolyte. 

The chronoamperometry work on microelectrodes led to a number of new phenomena. 

Transients that were obtained from these experiments lead to the development of a 

quantitative nucleation and growth model for the growth of hemispherical mercury 

droplets. At the onset of reduction the transients follow a t2 function which is in accordance 

with surface area dependence growth of the droplet. However, after a short length of time, 

the transients start to follow a function of t112, which is suggestive of perimeter growth 

control. This is assumed to be due to the formation of a semi-passivating Hg2(0Ac)2 film 

over the mercury droplet where Hg;+ forms as a result of a disproportionation reaction. 
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A qualitative model was also developed to account for the observations of both the 

microelectrode results and most of the features seen in the cyclic voltammetry work. 
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